Bacillus subtilis ZJU15产生的抗菌肽研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从水稻叶片中分出一株具有较好抗菌活性的细菌菌株ZJU15,经常规的生理生化鉴定、显微镜观察和16S rDNA部分序列的检测分析,将该菌株鉴定为枯草芽孢杆菌(Bacillus subtilis)。经作用谱测定,该菌株的培养去菌液能够有效抑制多种食品腐败和致病革兰氏阳性细菌,如单核细胞增生李斯特菌(Listeria monocytogenes)、藤黄微球菌(Micrococcus luteus)、粪肠球菌(Enterococcus feacalis)、金色葡萄球菌(Staphylococcus aureus)、肺炎链球菌(Streptococcus pyogenes)等,但该培养去菌液对革兰氏阴性细菌没有抑制作用。此外,该菌株的培养去菌液对引起柑橘采后腐败的意大利青霉(Penicillium digitatum)、引起多种食品霉变的黄曲霉(Aspergillus flavus)和水稻纹枯病菌(Rhizoctonia solani)等也具有明显的抑制作用,但对酵母样真菌念珠菌(Candida spp.)没有抗菌作用。
     通过不同配方培养基的培养比较研究,确定CM培养基最适合ZJU15菌株抗菌物质产生。通过生长曲线和活性曲线测定,发现该菌株在培养30小时左右去菌培养液具有最大的抗菌活性。不同硫酸铵饱和浓度沉淀试验结果显示20%-30%的硫酸铵饱和浓度能使ZJU15菌株产生的拮抗物质得到最大程度的沉淀。在此基础上,将ZJU15菌株接种于液体培养中,35℃下振荡培养30小时,所得发酵液通过离心去菌、硫酸铵沉淀、Superdex 75 prep grade柱层析和RP-HPLC色谱(Hypersil ODS2色谱柱)纯化,获得三个具有抗菌活性的洗脱峰。它们的洗脱时间分别为11.762Min,12.767Min,14.340Min,分别命名为ZJU15A、ZJU15B和ZJU15C。将所得的抗菌肽提交中国人民解放军军事医学科学院生物医学分析中心进行MALDI-TOF-MS质谱扫描分析(扫描范围50-5000Da)、Q-TOF2一级质谱扫描得到LC-ESI-MS图。选择待测离子,然后进行ESI-MS/MS分析。结果显示ZJU15菌株产生的三个抑菌活性成分的分子量分别为1021.70Da,1021.71 Da和1035.69 Da;它们的氨基酸序列分别为LLELLVPLL, LLELLVPLL和LTHMLVPLL.经BLAST序列查询,没有发现SWISS-PROT/TrEMBL数据库中相似抗菌肽序列存在,我们认为它们为新的抗菌肽。
     ZJU15菌株的培养去菌液经蛋白酶K处理后完全失去抑菌活性;对蛋白酶E部分敏感,但对胰蛋白酶、胃蚕白酶不敏感。不同pH值处理的结果显示,在pH2-10之间ZJU15菌株的培养去菌液保持抑菌活性不变,在pHl1、pH12处理下抑菌活性显著下降。ZJU15菌株的培养去菌液经37℃、60℃、80℃、100℃、121℃(高压)各处理30min,其抑菌活性保持不变。
     将不同浓度的抑菌物质粗提液加入到对数生长中期单增李斯特菌液中,24h后涂板测定茵落总数。结果显示512AU/ml的活性浓度是对对数生长中期单增李斯特菌的最小杀菌浓度,256AU/ml的活性浓度是对对数生长中期单增李斯特菌的最小抑菌浓度。对数生长中期的单增李斯特菌经512AU/ml活性浓度的抑菌物质粗提液处理后,经透射电镜观察发现:单增李斯特菌的菌体边缘模糊、空泡化、胞壁缺陷。此结果表明,ZJU15菌株产生的抑菌物质能够导致单增李斯特菌细胞壁破裂或者形成孔洞,导致内容物泄漏,最终导致细菌细胞的死亡。
     棋盘法联合测定抑菌活性研究结果表明:乳酸链球菌素和ZJU15菌株培养去菌液具有协同增效作用。
     经ZJU15菌株抑菌物质粗提液对小鼠急性经口灌胃毒性试验,初步表明最高剂量50ml/kg的ZJU15菌株抑菌物质粗提液没有造成雌雄小鼠死亡和异常,即ZJU15菌株抑菌物质粗提液的急性经口LD50>50000mg/kg,ZJU15菌株抑菌物质粗提液对小鼠的急性经口毒性属无毒。
     为了评估ZJU15菌株产生的抗菌物质对食品的防腐保鲜效果,我们以腊肉、豆浆和牛奶为材料进行了试验。结果表明经终浓度为512AU/g或1024AU/g的抑菌粗提物处理的未加工腊肉,在37℃保存条件下,7天后出现白色菌斑,而灭菌水对照3天就出现白色菌斑;经终浓度1024AU/ml和512AU/ml的抑菌粗提物处理新鲜豆浆,在37℃的条件下放置16h后没有检测到微生物的存在。商品纯牛奶经终浓度1024AU/ml的抑菌粗提物处理,可有效减少牛奶中的菌落数。以上结果显示出ZJU15菌株产生的抗菌肽在食品加工上有较好的应用前景。
A bacterial strain ZJU15, isolated from rice leaf in Hangzhou, China and was identified as Bacillus subtilis ZJU15 according to the conventional physiological biochemistry properties, electron microscope and 16S rDNA sequence analysis. The cell-free supernatant (CFS) of B.subtilis ZJU15 showed antimicrobial activity against several important Gram-positive pathogenic and food-spoilage bacteria, which including Enterococcus feacalis, Listeria monocytogenes, Micrococcus luteus, meticillin-resistant Staphylococcus aureus (MRSA) and S. epidermidis, but it was neither inhibitory to the Gram-Negative bacteria nor the closely related Bacillus bacteria such as B. subtilis, B. pumilus and B. licheniformis. The CFS could also inhibit the growth of some fungal strains such as Aspergillus flavus, Penicillium digitatum and Rhizoctonia solani, but could not inhibit the growth of Candida spp.
     The comparison of different culture mediums indicated that CM culture medium was most suitable for the production and extraction of the antibacterial peptides of strain ZJU15. Through the growth curve and the activity detection, it was found that the biggest inhibiting activity reached after the culture of 30 hours. The inhibiting activity of suspension could reach maximum after ammonium sulfate precipitation with 20%-30% saturateion. Based on these results, strain ZJU15 was incubated in CM medium under shake cultivation for 30 hours at 35℃. Three AMPs designated ZJU15A, ZJU15B and ZJU15C were purified from the CFS by sequential ammonium sulphate precipitation with 20% saturateion, gel filtration and reverse phase high-performance liquid chromatography (RP-HPLC).
     Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), Electrospray ionization mass spectrometry (ESI/MS) and Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was performed at the Chinese People's Liberation Army Academy of Military Medical Sciences Biomedicine Analysis Center and the results revealed that the ZJU15A, ZJU15B, and ZJU15C had molecular mass of 1021.70 Da, 1021.71 Da, and 1035.69 Da with the sequences of nine amino acid residues:LLELLVPLL for ZJU15A, LLELLVPLL for ZJU15B and LTHMLVPLL for ZJU15C respectively. There had no significant homology to the known peptides in the database, in our knowledge which indicating that they may be novel antimicrobial peptides.
     The cell-free culture of strain ZJU15 lost the inhibiting activity completely after the treatment of proteinase K, and was sensitive to the proteinase E partially, but was stable after the treatment of trypsin, pepsin. The inhibiting activity of the cell-free culture of ZJU15 was invariable at pH2-10, and droped obviously at pHl land pH12. The inhibiting activity of the cell-free culture of strain ZJU15 maintains invariable after treatment at 37℃,60℃,80℃,100℃or 121℃for 30min.
     The culture of Listeria monocytogenes at early expression phase was added with different concentration of the Crude Antimicrobial Peptides Supernatant (CAPS) of strain ZJU 15, and the colony-forming units (CFU)/ml was detected after 24h. The results showed that 256AU/ml of the CAPS was the minimum bactericidal concentration (MBC) and 512AU/ml of the CAPS was the minimum inhibitory concentration (MIC). The cells edge blurring, yacuole, wall flaw was observed by transmission electron microscope after the addtion of 512AU/ml of the CAPS to the culture of L. monocytogenes. This result indicated that the CAPS of strain ZJU 15 could cause the cell wall of L. monocytogenes to burst or to form the hole, which resulted in the contents divulging and the cell death finally.
     The results indicated that the CFS of strain ZJU 15 and the nisin have the coordination synergized action.
     The acute oral toxicity on the mouse showed that the CAPS of strain ZJU15 was not caused death to the tested mouses at the dosage of 50ml/kg.
     In order to estimate the preservation efficiency of the antimicrobial peptides produced by ZJU 15 strain on foods, cured meat, fresh soya-bean milk and milk were tested by adding the crude antimicrobial peptides of strain ZJU15. The cured meat, which were treated with 1024 AU/g and 512 AU/g as final concentration of the CAPS or dH2O (as control), were kept at 37℃. After 7d, white microbial spots appeared on the cured meat with the CAPS at 1024 AU/g or 512 AU/g, which was four days later than the time white microbial spots appeared on the cured meat with dH2O. The fresh soya-bean milk, which was treated with 1024 AU/g or 512 AU/g as final concentration of the CAPS or dH2O (as control), was kept at 37℃. After cultivation for16h, no microorganisms was detected in the fresh soya-bean milk with the crude antimicrobial peptides at 1024 AU/g or 512 AU/g. The commercial pure milk, which was treated with 1024 AU/g or 512 AU/g as final concentration of the CAPS or dH2O (as control), was kept at 37℃. After cultivation for 20h, the number of microorganisms was less greatly in the fresh soya-bean milk which incubated with the crude antimicrobial peptides at 1024 AU/g than other treatments.
引文
别小妹等,Bacillus subtilis fmbJ脂肽类抗菌物质的分离和鉴定.生物工程学报,2006.22(4):644-649.
    别小妹等,Bacillus subtilis fmbR抗菌物质的分离和鉴定.中国农业科学,2006.39(11):2327-2334.
    陈华等,枯草芽孢杆菌JA产生的脂肽类抗生素-iturin A的纯化及电喷雾质谱鉴定.微生物学报,2008(1):116-120.
    陈轶群等.抗菌肽研究进展.中国畜牧杂志2009.(11):60-64.
    杜芸.天然食品防腐剂的研究进展.食品研究与开发.2006.27(3):162-165.
    高金湖等.人防御素分子生物学研究进展及其应用.生物技术通报.2009(12):30-36.
    高学文等,枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,2003.43(5):647-652.
    高芬等,枯萎菌拮抗芽孢杆菌BC98-I抗菌多肽的纯化.植物病理学报.2007.37(4):403-409.
    黄曦等.枯草芽孢杆菌在抑制植物病原菌中的研究进展.生物技术通报.2010(1):24-29.
    李晶等.生防枯草芽孢杆菌的研究进展.安徽农业科学.2008.36(1):106-111.
    李文春等.抗菌肽在畜牧业上的应用前景.饲料工业.200526.(16):14-16.
    龙雯等,16S rRNA测序在细菌鉴定中的应用.北京工商大学学报:自然科学版,2006.24(5):10-12.
    蒙显英等.芽孢杆菌产生的抗菌物质的研究进展.中国植保导刊.2004.24(12):13-15.
    宋连花等.乳链菌肽(Nisin)研究进展.食品研究与开发.2004.25(5):18-21.
    孙艳发等.抗菌肽在畜牧生产中的应用.饲料研究.2009.(11):21-23.
    孙长贵.细菌对抗菌药物耐药性研究进展.临床检验杂志.2002.20(U08):70-73.
    杨细媚等.天蚕素A截短肽在大肠埃希菌中的高效表达及活性分析.中国抗生素杂志2010(1):20-23.
    易有金等.内生枯草芽孢杆菌B-001菌株抗菌肽纯化与性质.植物病理学报2007.37(5):556-560.
    朱丽云等.枯草芽孢杆菌对畜禽常见致病微生物体外拮抗作用的研究.中国畜牧杂志.2009.(21):41-43.
    Abee, T., Krockel, L., Hill, C.1995. Bacteriocins:Modes of action and potentials in food preservation and control of food poisoning. International Journal of Food Microbiology 28, 169-185.
    Ajesh, K., Sreejith, K.2009. Peptide antibiotics:An alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30,999-1006.
    Al-Ajlani, M.M., Hasnain, S.2007. Antagonistic activity against nosocomial clinical isolates with Bacillus subtilis MZ-7. Annals of Microbiology 57,419-424.
    Altena, K., Guder, A., Cramer, C., Bierbaum, G.2000. Biosynthesis of the lantibiotic mersacidin:Organization of a type B lantibiotic gene cluster. Applied and Environmental Microbiology 66,2565-2571.
    Ananou, S., Galvez, A., Martinez-Bueno, M., Maqueda, M., Valdivia, E.2005. Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli 0157:H7. Journal of Applied Microbiology 99,1364-1372.
    Apolonio, A.C.M., Carvalho, M.A.R., Bemquerer, M.P., Santoro, M.M., Pinto, S.Q., Oliveira, J.S., Santos, K.V., Farias, L.M.2008. Purification and partial characterization of a bacteriocin produced by Eikenella corrodens. Journal of Applied Microbiology 104,508-514.
    Appelbaum, P.C.2006. MRSA-the tip of the iceberg. Clinical Microbiology and Infection 12, 3-10.
    Appleyard, A.N., Choi, S., Read, D.M., Lightfoot, A., Boakes, S., Hoffmann, A., Chopra, I., Bierbaum, G., Rudd, B.A.M., Dawson, M.J., Cortes, J.2009. Dissecting Structural and Functional Diversity of the Lantibiotic Mersacidin. Chemistry & Biology 16,490-498.
    Arima, K., Kakinuma, A., Tamura, G.1968. Surfactin a crystalline peptidelipid surfactant produced by Bacillus subtilis-isolation characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications 31,488-&.
    Babasaki, K., Takao, T., Shimonishi, Y., Kurahashi, K.1985. Subtilosin-A, a new antibiotic peptide produced by Bacillus subtilis 168-isolation, structural-analysis, and biogenesis. Journal of Biochemistry 98,585-603.
    Barrett, M.S., Wenzel, R.P., Jones, R.N.1992. Invitro activity of mersacidin (m87-1551), an investigational peptide antibiotic tested against gram-positive blood-stream isolates. Diagnostic Microbiology and Infectious Disease 15,641-644.
    Barros, F.F.C., de Quadros, C.P., Marstica, M.R., Patore, G.M.2007. Surfactin:Chemical, technological and functional properties for food applications. Quimica Nova 30,409-414.
    Bechinger, B., Lohner, K.2006. Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochimica Et Biophysica Acta-Biomembranes 1758,1529-1539.
    Bizani, D., Brandelli, A.2002. Characterization of a bacteriocin produced by a newly isolated Bacillus sp Strain 8 A. Journal of Applied Microbiology 93,512-519.
    Bizani, D., Morrissy, J.A.C., Dominguez, A.P.M., Brandelli, A.2008. Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. International Journal of Food Microbiology 121,229-233.
    Boman, H.G., Agerberth, B., Boman, A.1993. Mechanisms of action on Escherichia coli of cecropin-pl and pr-39,2 antibacterial peptides from pig intestine. Infection and Immunity 61, 2978-2984.
    Borchert, S., Stachelhaus, T., Marahiel, M.A.1994. Induction of surfactin production in Bacillu ssubtilis by gsp, a gene located upstream of the gramicidin-s operon in Bacillus brevis. Journal of Bacteriology 176,2458-2462.
    Brannen, P.M., Kenney, D.S.1997. Kodiak(R)-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology & Biotechnology 19,169-171.
    Breukink, E., van Heusden, H.E., Vollmerhaus, P.J., Swiezewska, E., Brunner, L., Walker, S., Heck, A.J.R., de Kruijff, B.2003. Lipid Ⅱ is an intrinsic component of the pore induced by nisin in bacterial membranes. Journal of Biological Chemistry 278,19898-19903.
    Breukink, E., vanKraaij, C., Demel, R.A., Siezen, R.J., Kuipers, O.P., deKruijff, B.1997. The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36,6968-6976.
    Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O.P., Sahl, H.G., de Kruijff, B.1999. Use of the cell wall precursor lipid Ⅱ by a pore-forming peptide antibiotic. Science 286, 2361-2364.
    Brogden, K.A.2005. Antimicrobial peptides:Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology 3,238-250.
    Brotz, H., Bierbaum, G., Leopold, K., Reynolds, P.E., Sahl, H.G.1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid Ⅱ. Antimicrobial Agents and Chemotherapy 42,154-160.
    Brown, K.L., Hancock, R.E.W.2006. Cationic host defense (antimicrobial) peptides. Current Opinion in Immunology 18,24-30.
    Brul, S., Coote, P.1999. Preservative agents in foods-Mode of action and microbial resistance mechanisms. International Journal of Food Microbiology 50,1-17.
    Bulet, P., Hetru, C., Dimarcq,-J.L.,- Hoffmann, D.1999. Antimicrobial peptides in insects; structure and function. Developmental and Comparative Immunology 23,329-344.
    Butcher, R.A., Schroeder, F.C., Fischbach, M.A., Straightt, P.D., Kolter, R., Walsh, C.T., Clardy, J.2007. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 104, 1506-1509.
    Castiglione, F., Lazzarini, A., Carrano, L., Corti, E., Ciciliato, I., Gastaldo, L., Candiani, P., Losi, D., Marinelli, F., Selva, E., Parenti, F.2008. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chemistry & Biology 15,22-31.
    Cha, D.S., Chinnan, M.S.2003. Emerging role of nisin in food and packaging systems. Food Science and Biotechnology 12,206-212.
    Chan, W.C., Bycroft, B.W., Leyland, M.L., Lian, L.Y., Roberts, G.C.K.1993. A novel posttranslational modification of the peptide antibiotic subtilin-isolation and characterization of a natural variant from Bacillus subtilis ATCC-6633. Biochemical Journal 291,23-27.
    Chatterjee, C., Paul, M., Xie, L.L., van der Donk, W.A.2005. Biosynthesis and mode of action of lantibiotics. Chemical Reviews 105,633-683.
    Chen, C.L., Chang, L.K., Chang, Y.S., Liu, S.T., Tschen, J.S.M.1995. Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Molecular & General Genetics 248,121-125.
    Cherif, A., Chehimi, S., Limem, F., Hansen, B.M., Hendriksen, N.B., Daffonchio, D., Boudabous, A.2003. Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp entomocidus HD9. Journal of Applied Microbiology 95,990-1000.
    Cherif, A., Rezgui, W., Raddadi, N., Daffonchio, D., Boudabous, A.2008. Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp Entomocidus HD110. Microbiological Research 163,684-692.
    Christ, K., Al-Kaddah, S., Wiedemann, I., Rattay, B.; Sahl, H.G., Bendas, G.2008. Membrane Lipids Determine the Antibiotic Activity of the Lantibiotic Gallidermin. Journal of Membrane Biology 226,9-16.
    Chromek, M., Slamova, Z., Bergman, P., Kovacs, L., Podracka, L., Ehren, I., Hokfelt, T., Gudmundsson, G.H., Gallo, R.L., Agerberth, B., Brauner, A.2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nature Medicine 12, 636-641.
    Cleveland, J., Montville, T.J., Nes, I.F., Chikindas, M.L.2001. Bacteriocins:safe, natural antimicrobials for food preservation. International Journal of Food Microbiology 71,1-20.
    Conlon, J.M., Kolodziejek, J., Nowotny, N.2004. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochimica Et Biophysica Acta-Proteins and Proteomics 1696,1-14.
    Cotter, P.D., Hill, C., Ross, R.P.2005. Bacteriocins:Developing innate immunity for food. Nature Reviews Microbiology 3,777-788.
    Crandall, A.D., Montville, T.J.1998. Nisin resistance in Listeria monocytogenes ATCC 700302 is a complex phenotype. Applied and Environmental Microbiology 64,231-237.
    Cutter, C.N., Siragusa, G.R.1998. Incorporation of nisin into a meat binding system to inhibit bacteria on beef surfaces. Letters in Applied Microbiology 27,19-23.
    de Souza, E.L., da Silva, C.A., de Sousa, C.P.2005. Bacteriocins:Molecules of fundamental impact on the microbial ecology and potential food biopreservatives. Brazilian Archives of Biology and Technology 48,559-566.
    Deleu, M., Paquot, M., Nylander, T.2008. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal 94,2667-2679.
    Drider, D., Fimland, G., Hechard, Y., McMullen, L.M., Prevost, H.2006. The continuing story of class Ⅱa bacteriocins. Microbiology and Molecular Biology Reviews 70,564-582
    Dubois, J.Y.F., Kouwen, T., Schurich, A.K.C., Reis, C.R., Ensing, H.T., Trip, E.N., Zweers, J.C., van Dijl, J.M.2009. Immunity to the bacteriocin Sublancin 168 is determined by the SunI (YolF) protein of Bacillus subtilis. Antimicrobial Agents and Chemotherapy 53,651-661.
    Durr, U.H.N., Sudheendra, U.S., Ramamoorthy, A.2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochimica Et Biophysica Acta-Biomembranes 1758,1408-1425.
    Etchegaray, A., Bueno, C.D., de Melo, I.S., Tsai, S., Fiore, M.D., Silva-Stenico, M.E., de Moraes, L.A.B., Teschke, O.2008. Effect of a highly concentrated lipopeptide extract of Bacillus subtilis on fungal and bacterial cells. Archives of Microbiology 190,611-622.
    Falla, T.J., Karunaratne, D.N., Hancock, R.E.W.1996. Mode of action of the antimicrobial peptide indolicidin. Journal of Biological Chemistry 271,19298-19303.
    Fredericq, P.1957. COLICINS. Annual Review of Microbiology 11,7-22.
    Galvez, A., Abriouel, H., Lopez, R.L., Ben Omar, N.2007. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology 120,51-70.
    Ganz, T.2003. Defensins:Antimicrobial peptides of innate immunity. Nature Reviews Immunology 3,710-720.00
    Gao, F.H., Abee, T., Konings, W.N.1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome-c oxidase-containing proteoliposomes. Applied and Environmental Microbiology 57,2164-2170.
    Garde, S., Avila, M., Medina, M., Nunez, M.2004. Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. International Journal of Food Microbiology 96,165-172.
    Giffard, C.J., Ladha, S., Mackie, A.R., Clark, D.C., Sanders, D.1996. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching. Journal of Membrane Biology 151,293-300.
    Glaser, R., Harder, J., Lange, H., Bartels, J., Christophers, E., Schroder, J.M.2005. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature Immunology 6,57-64.
    Gold, H.S., Moellering, R.C.1996. Drug therapy-Antimicrobial-drug resistance. New England Journal of Medicine 335,1445-1453.
    Goulhen, F., Meghrous, J., Lacroix, C.1998. Characterization of nisin-resistant variants of Pediococcus acidilactici UL5, a producer of pediocin. Journal of Applied Microbiology 85, 387-397.
    Grande, M.J., Lucas, R., Abriouel, H., Valdivia, E., Ben Omar, N., Maqueda, M., Martinez-Canamero, M., Galvez, A.2006. Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48. Journal of Applied Microbiology 101,422-428.
    Gratia, J.P.1962. Effect of multi-site mutation to colicine resistance on recombination and segregation in Escherichia coli. Nature 196,1337-1338
    Hancock, R.E.W., Rozek, A.2002. Role of membranes in the activities of antimicrobial cationic peptides. Fems Microbiology Letters 206,143-149.
    Hancock, R.E.W., Sahl, H.G.2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24,1551-1557.
    Hansen, J.N.1994. Nisin as a model food preservative. Critical Reviews in Food Science and Nutrition 34,69-93.
    Heng, N.C.K., Tagg, J.R.2006. What's in a name? Class distinction for bacteriocins. Nature Reviews Microbiology.4.
    Hoffmann, A., Pag, U., Wiedemann, I., Sahl, H.G.2002. Combination of antibiotic mechanisms in lantibiotics. Farmaco 57,685-691.
    Huang, Y., Luo, Y.B., Zhai, Z.Y., Zhang, H.X., Yang, C.X., Tian, H.T., Li, Z., Feng, J.N., Liu, H., Hao, Y.L.2009. Characterization and application of an anti-Listeria bacteriocin produced by Pediococcus pentosaceus 05-10 isolated from Sichuan Pickle, a traditionally fermented vegetable product from China. Food Control 20,1030-1035.
    Itokawa, H., Miyashita, T., Morita, H., Takeya, K., Hirano, T., Homma, M., Oka, K.1994. Structural and conformational studies of [Ile(7)] and [Leu(7)]surfactins from Bacillus subtilis natto. Chemical & Pharmaceutical Bulletin 42,604-607.
    Jack, R., Bierbaum, G., Heidrich, C., Sahl, H.G.1995a. The genetics of lantibiotic biosynthesis. Bioessays 17,793-802.
    Jack, R.W., Tagg, J.R., Ray, B.1995b. Bacteriocins of gram-positive bacteria. Microbiological Reviews 59,171-200.
    Jenssen, H., Hamill, P., Hancock, R.E.W.2006. Peptide antimicrobial agents. Clinical Microbiology Reviews 19,491-511.
    Kabuki, T., Uenishi, H., Seto, Y., Yoshioka, T.,Nakajima, H.2009. A unique lantibiotic, thermophilin 1277, containing a disulfide bridge and two thioether bridges. Journal of Applied Microbiology 106,853-862.
    Kakinuma, A., Hori, M., Isono, M., Tamura, G., Arima, K.1969. Determination of amino acid sequence in surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis. Agricultural and Biological Chemistry 33,971-972.
    Kaufmann, E., Geisler, N., Weber, K.1984. SDS-PAGE strongly overestimates the molecular masses of the neurofilament proteins. FEBS Letters 170,81-84.
    Kawulka, K.E., Sprules, T., Diaper, C.M., Whittal, R.M., McKay, R.T., Mercier, P., Zuber, P., Vederas, J.C.2004. Structure of subtilosin A, a cyclic antimicrobial, peptide from Bacillus subtilis with unusual sulfur to alpha-carbon cross-links:Formation and reduction of alpha-thio-alpha-amino acid derivatives. Biochemistry 43,3385-3395.
    Kellner, R., Jung, G., Josten, M., Kaletta, C., Entian, K.D., Sahl, H.G.1989. Pep5-structure elucidation of a large laritibiotic. Angewandte Chemie-International Edition in English 28, 616-619.
    Keren, T., Yarmus, M., Halevy, G., Shapira, R.2004. Immunodetection of the bacteriocin lacticin RM:Analysis of the influence of temperature and tween 80 on its expression and activity. Applied and Environmental Microbiology 70,2098-2104.
    Kies, S., Vuong, C., Hille, M., Peschel, A., Meyer, C., Gotz, F., Otto, M.2003. Control of antimicrobial peptide synthesis by the agr quorum sensing system in Staphylococcus epidermidis: activity of the lantibiotic epidermin is regulated at the level of precursor peptide processing. Peptides 24,329-338.
    Kitts, D.D., Weiler, K.2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current Pharmaceutical Design 9,1309-1323.
    Klaenhammer, T.R.1988. Bacteriocins of lactic-acid bacteria. Biochimie 70,337-349.
    Klaenhammer, T.R.1993. Genetics of bacteriocins produced by lactic-acid bacteria. Ferns Microbiology Reviews 12,39-86.
    Kleerebezem, M., Bongers, R., Rutten, G., de Vos, W.M., Kuipers, O.P.2004. Autoregulation of subtilin biosynthesis in Bacillus subtilis:the role of the spa-box in subtilin-responsive promoters. Peptides 25,1415-1424.
    Knoll, C., Divol, B., Du Toit, M.2008. Influence of Phenolic Compounds on Activity of Nisin and Pediocin PA-1. American Journal of Enology and Viticulture 59,418-421.
    Koczulla, A.R., Bals, R.2003. Antimicrobial peptides-Current status and therapeutic potential. Drugs 63,389-406.
    Konisky, J.1982. Colicins and other bacteriocins with established modes of action. Annual Review of Microbiology 36,125-144.
    Koroglu, T.E., Kurt-Gur, G., Unlu, E.C., Yazgan-Karatas, A.2008. The novel gene yvfI in Bacillus subtilis is essential for bacilysin biosynthesis. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 94,471-479.
    Kramer, N.E., Smid, E.J., Kok, J., de Kruijff, B., Kuipers, O.P., Breukink, E..2004. Resistance of Gram-positive bacteria to nisin is not determined by Lipid Ⅱ levels. Fems Microbiology Letters 239,157-161.
    Kumar, S., Nei, M., Dudley, J., Tamura, K.2008. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. BRIEFINGS IN BIOINFORMATICS 9, 299-306.
    Lavine, M.D., Strand, M.R.2002. Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology 32,1295-1309.
    Lehrer, R.I., Ganz, T.2002. Defensins of vertebrate animals. Current Opinion in Immunology 14,96-102.
    Lemaitre, B., Hoffmann, J.2007. The host defense of Drosophila melanogaster. Annual Review of Immunology 25,697-743.
    Levy, S.B., Marshall, B.2004. Antibacterial resistance worldwide:causes, challenges and responses. Nature Medicine 10, S122-S129.
    Li, B., Yu, J.P.J., Brunzelle, J.S., Moll, G.N., van der Donk, W.A., Nair, S.K.2006. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 311,1464-1467.
    Lili, X., van der Donk, W.2005. Post-translational modifications during lantibiotic biosynthesis. Current Opinion in Chemical Biology 8(5),498-507
    Liu, W., Hansen, J.N.1991. Conversion of Bacillus-subtilis 168 to a subtilin producer by competence transformation. Journal of Bacteriology 173,7387-7390.
    Lorin, C., Saidi, H., Belaid, A., Zairi, A., Baleux, F., Hocini, H., Belec, L., Hani, K., Tangy, F. 2005. The antimicrobial peptide Dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334, 264-275.
    Lubelski, J., Khusainov, R., Kuipers, O.P.2009. Directionality and Coordination of Dehydration and Ring Formation during Biosynthesis of the Lantibiotic Nisin. Journal of Biological Chemistry 284,25962-25972.
    Lubelski, J., Rink, R., Khusainov, R., Moll, G.N., Kuipers, O.P.2008. Biosynthesis, immunity, regulation, mode of action and engineering of the model lantibiotic nisin. Cellular and Molecular Life Sciences 65,455-476.
    Lucas, R., Grande, M.J., Abriouel, H., Maqueda, M., Ben Omar, N., Valdivia, E., Martinez-Canamero, M., Galvez, A.2006. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food and Chemical Toxicology 44,1774-1781.
    Mader, J.S., Hoskin, D.W.2006. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opinion on Investigational Drugs 15,933-946.
    Maffioli, S.I., Potenza, D., Vasile, F., De Matteo, M., Sosio, M., Marsiglia, B., Rizzo, V., Scolastico, C., Donadio, S.2009. Structure Revision of the Lantibiotic 97518. Journal of Natural Products 72,605-607.
    Magetdana, R., Thimon, L., Peypoux, F., Ptak, M.1992. Surfactin iturin-a interactions may explain the synergistic effect of surfactin on the biological properties of iturin-a. Biochimie 74, 1047-1051.
    Mah, J.H., Kim, K.S., Park, J.H., Byun, M.W., Kim, Y.B., Hwang, H.J.2001. Bacteriocin with a broad antimicrobial spectrum, produced by Bacillus sp isolated from kimchi. Journal of Microbiology and Biotechnology 11,577-584.
    Martin,I., Ruysschaert, J.M., Sanders, D., Giffard, C J.1996. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. European Journal of Biochemistry 239,156-164.
    Martinez, B., Bravo, D., Rodriguez, A.2005. Consequences of the development of nisin-resistant Listeria monocytogenes in fermented dairy products. Journal of Food Protection 68, 2383-2388.
    Mazzotta, A.S., Modi, K., Montville, T.J.2000. Nisin-resistant (Nis(r)) Listeria monocytogenes and Nis(r) Clostridium botulinum are not resistant to common food preservatives. Journal of Food Science 65,888-890.
    Mkrtchyan, H., Gibbons, S., Heidelberger, S., Zloh, M., Limaki, H.K.2010. Purification, characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus acidophilus n.v. Er 317/402 strain Narine. International Journal of Antimicrobial Agents 35,255-260.
    Montville, T.J., Rogers, A.M., Okereke, A.1992. Differential sensitivity of clostridium-botulinum strains to nisin is not biotype-associated. Journal of Food Protection 55, 444-448.
    Montville, T.J., Winkowski, K., Ludescher, R.D.1995. Models and mechanisms for bacteriocin action and application. International Dairy Journal 5,797-814.
    Morgan, S., Ross, R.P., Hill, C.1995. Bacteriolytic activity caused by the presence of a novel lactococcal plasmoid encoding lactococcin-a, lactococcin-b, and lactococcin-M. Applied and Environmental Microbiology 61,2995-3001.
    Morisset, D., Berjeaud, J.M., Marion, D., Lacombe, C., Frere, J.2004. Mutational analysis of mesentericin Y105, an anti-Listeria bacteriocin, for determination of impact on bactericidal activity, in vitro secondary structure, and membrane interaction. Applied and Environmental Microbiology 70,4672-4680.
    Motta, A.S., Cannavan, F.S., Tsai, S.M., Brandelli, A.2007a. Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Archives of Microbiology 188,367-375.
    Motta, A.S., Lorenzini, D.M., Brandelli, A.2007b. Purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp isolated from the Amazon Basin. Current Microbiology 54,282-286.
    Nascimento, J.S., Ceotto, H., Nascimento, S.B., Giambiagi-deMarval, M., Santos, K.R.N., Bastos, M.C.F.2006. Bacteriocins as alternative agents for control of multiresistant staphylococcal strains. Letters in Applied Microbiology 42,215-221.
    Nishie, M., Shioya, K., Nagao, J., Jikuya, H., Sonomoto, K.2009. ATP-dependent leader peptide cleavage by NukT, a bifunctional ABC transporter, during lantibiotic biosynthesis. Journal of Bioscience and Bioengineering 108,460-464.
    Novak, J., Chen, P., Kirk, M., Barnes, S., Jablonsky, M.J., Holaday, S.K., Krishna, N.R., Baker, J., Caufield, P.W.1997. Structure and activity of the lantibiotic mutacin II. Evidence for two domains? Protein Engineering 10,87-87.
    O'Sullivan, L., Morgan, S.M., Ross, R.P., Hill, C.2002. Elevated enzyme release from lactococcal starter cultures on exposure to the lantibiotic lacticin 481, produced by Lactococcus lactis DPC5552. Journal of Dairy Science 85,2130-2140.
    O'Sullivan, L., O'Connor, E.B., Ross, R.P., Hill, C.2006. Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. Journal of Applied Microbiology 100,135-143.
    O'Sullivan, L., Ross, R.P., Hill, C.2002. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84,593-604.
    Ohno, A., Ano, T., Shoda, M.1993. Production of the antifungal peptide antibiotic, iturin by Bacillus-subtilis nb22 in solid-state fermentation. Journal of Fermentation and Bioengineering 75, 23-27.
    Oscariz, J.C., Pisabarro, A.G.2000. Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. Journal of Applied Microbiology 89,361-369.
    Ozcengiz, G., Alaeddinoglu, N.G., Demain, A.L.1990. Regulation of biosynthesis of bacilysin by Bacillus-subtilis. Journal of Industrial Microbiology 6,91-100.
    Paik, H.D., Bae, S.S., Park, S.H., Pan, J.G.1997. Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp tochigiensis. Journal of Industrial Microbiology & Biotechnology 19,294-298.
    Paik, S.H., Chakicherla, A., Hansen, J.N.1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. Journal of Biological Chemistry 273, 23134-23142.
    Patch, J.A., Barron, A.E.2003. Helical peptoid mimics of magainin-2 amide. Journal of the American Chemical Society 125,12092-12093.
    Pena, W.E.L., de Massaguer, P.R., Teixeira, L.Q.2009. Microbial modeling of thermal resistance of alicyclobacillus acidoterrestris cra7152 spores in concentrated orange juice with nisin addition. Brazilian Journal of Microbiology 40,601-611.
    Piard, J.C., Kuipers, O.P., Rollema, H.S., Desmazeaud, M.J., Devos, W.M.1993. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by lactococcus-lactis. Journal of Biological Chemistry 268,16361-16368.
    Razafindralambo, H., Popineau, Y., Deleu, M., Hbid, C., Jacques, P., Thonart, P., Paquot, M. 1997. Surface-active properties of surfactin iturin A mixtures produced by Bacillus subtilis. Langmuir 13,6026-6031.
    Reddy, K.V.R., Yedery, R.D., Aranha, C.2004. Antimicrobial peptides:premises and promises. International Journal of Antimicrobial Agents 24,536-547.
    Reviriego, C., Fernandez, L., Rodriguez, J.M.2007. A food-grade system for production of pediocin PA-1 in nisin-producing and non-nisin-producing lactococcus lactis strains:Application to inhibits listeria growth in a cheese model system. Journal of Food Protection 70,2512-2517.
    Richard, C., Canon, R., Naghmouchi, K., Bertrand, D., Prevost, H., Drider, D.2006. Evidence on correlation between number of disulfide bridge and toxicity of class Ⅱa bacteriocins. Food Microbiology 23,175-183.
    Riley, M.A., Wertz, J.E.2002. Bacteriocins:Evolution, ecology, and application. Annual Review of Microbiology 56,117-137.
    Risoen, P.A., Ronning, P., Hegna, I.K., Kolsto, A.B.2004. Characterization of a broad range antimicrobial substance from Bacillus cereus. Journal of Applied Microbiology 96,648-655.
    Rodriguez, J.M.1996. Antimicrobial spectrum, structure, properties and mode of action of nisin, a bacteriocin produced by Lactococcus lactis-Review. Food Science and Technology International 2,61-68.
    Romero, D.A., Klaenhammer, T.R.1993. Transposable elements in lactococci-a review. Journal of Dairy Science 76,1-19.
    Rose, N.L., Sporns, P., McMullen, L.M.1999. Detection of bacteriocins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Applied and Environmental Microbiology 65,2238-2242.
    Rubio-Terres, C., Garau, J., Grau, S., Martinez-Martinez, L.2010. Cost of bacteraemia caused by methicillin-resistant vs. methicillin-susceptible Staphylococcus aureus in Spain:a retrospective cohort study. Clinical Microbiology and Infection 16,722-728.
    Salle, A.J., Jann, G.J.1945. Subtilin-an antibiotic produced by Bacillus-subtilis.1. Action on various organisms. Proceedings of the Society for Experimental Biology and Medicine 60,60-64.
    Schagger, H., Vonjagow, G.1987. Tricine sodium dodecyl-sulfate polyacrylamide-gel electrophoresis for the separation of proteins in the range from 1-kda to 100-kDa. Analytical Biochemistry 166,368-379.
    Schillinger, U., Hufnagel, K., Becker, B., Holzapfel, W.H.2001. Application of nisin in combination with protective cultures to inhibit Listeria monocytogenes in two mild delicatessen salads. Archiv Fur Lebensmittelhygiene 52,116-119.
    Schneider, J., Taraz, K., Budzikiewicz, H., Deleu, M., Thonart, P., Jacques, P.1999. The structure of two fengycins from Bacillus subtilis S499. Zeitschrift Fur Naturforschung C-a Journal of Biosciences 54,859-866.
    Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.Q., Smith, W., Cullor, J.S.1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry 267,4292-4295.
    Seydlova, G., Svobodova, J.2008. Review of surfactin chemical properties and the potential biomedical applications. Central European Journal of Medicine 3,123-133.
    Shai, Y., Oren, Z.2001. From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22,1629-1641.
    Sharma, N., Kapoor, G., Gautam, N., Neopaney, B.2009. Characterization of a partially purified bacteriocin of Bacillus sp MTCC 43 isolated from Rhizosphere of radish (Raphanus sativus) & its application as a potential food biopreservative. Journal of Scientific & Industrial Research 68,881-886.
    Shelburne, C.E., An, F.Y., Dholpe, V., Ramamoorthy, A., Lopatin, D.E., Lantz, M.S.2007. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. Journal of Antimicrobial Chemotherapy 59,297-300.
    Smith, L., Zachariah, C., Thirumoorthy, R., Rocca, J., Novak, J., Hillman, J.D., Edison, A.S. 2003. Structure and dynamics of the lantibiotic mutacin 1140. Biochemistry 42,10372-10384.
    Stein, T.2005. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Molecular Microbiology 56,845-857.
    Stein, T., Borchert, S., Conrad, B., Feesche, J., Hofemeister, B., Hofemeister, J., Entian, K.D. 2002a. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. Journal of Bacteriology 184,1703-1711.
    Stein, T., Borchert, S., Kiesau, P., Heinzmann, S., Kloss, S., Klein, C., Helfrich, M., Entian, K.D.2002b. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Molecular Microbiology 44,403-416.
    Stein, T., Heinzmann, S., Dusterhus, S., Borchert, S., Entian, K.D.2005. Expression and functional analysis of the subtilin immunity genes spaIFEG in the subtilin-sensitive host Bacillus subtilis MO1099. Journal of Bacteriology 187,822-828.
    Steller, S., Vollenbroich, D., Leenders, F., Stein, T., Conrad, B., Hofemeister, J., Jacques, P., Thonart, P., Vater, J.1999. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chemistry & Biology 6,31-41.
    Stover, A.G., Driks, A.1999a. Control of synthesis and secretion of the Bacillus subtilis protein YqxM. Journal of Bacteriology 181,7065-7069.
    Stover, A.G., Driks, A.1999b. Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. Journal of Bacteriology 181,1664-1672.
    Tabbene, O., Ben Slimene, I., Bouabdallah, F., Mangoni, M.L., Urdaci, M.C., Limam, F.2009. Production of Anti-Methicillin-Resistant Staphylococcus Activity from Bacillus subtilis sp Strain B38 Newly Isolated from Soil. Applied Biochemistry and Biotechnology 157,407-419.
    Tagg, J.R., Dajani, A.S., Wannamaker, L.W.1976. Bacteriocins of gram-positive bacteria. Bacteriological Reviews 40,722-756.
    Tahiri, I., Desbiens, M., Kheadr, E., Lacroix, C., Fliss, I.2009. Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiology 26,783-793.
    Teixeira, M.L., Cladera-Olivera, F., dos Santos, J., Brandelli, A.2009. Purification and characterization of a peptide from Bacillus licheniformis showing dual antimicrobial and emulsifying activities. Food Research International 42,63-68.
    Thomma, B., Cammue, B.P.A., Thevissen, K.2002. Plant defensins. Planta 216,193-202.
    Tosato, V., Albertini, A.M., Zotti, M., Sonda, S., Bruschi, C.V.1997. Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology-Uk 143, 3443-3450.
    Valdesstauber, N., Scherer, S.1994. Isolation and characterization of linocin m18, a bacteriocin produced by brevibacterium linens. Applied and Environmental Microbiology 60, 3809-3814.
    Van den Hooven, H.W., Lagerwerf, F.M., Heerma, W., Haverkamp, J., Piard, J.C., Hilbers, C.W., Siezen, R.J., Kuipers, O.P., Rollema, H.S.1996. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis:Location of the thioether bridges. FEBS Letters 391,317-322.
    Viedma, P.M., Lopez, A.S., Ben Omar, N., Abriouel, H., Lopez, R.L., Valdivia, E., Belloso, O.M., Galvez, A.2008. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. International Journal of Food Microbiology 128,244-249.
    Vollenbroich, D., Pauli, G., Ozel, M., Vater, J.1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Applied and Environmental Microbiology 63,44-49.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J.1991.16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173,697-703.
    Weller, D.M.1988. Biological-control of soilborne plant-pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology 26,379-407.
    White, R.L., Burgess, D.S., Manduru, M., Bosso, J.A. Comparison of three different in vitro methods of detecting synergy:time-kill, checkerboard, and E test. Antimicrobial Agents and Chemotherapy,1996,40:1914-1918.
    Wiedemann, I., Bottiger, T., Bonelli, R.R., Wiese, A., Hagge, S.O., Gutsmann, T., Seydel, U., Deegan, L., Hill, C., Ross, P., Sahl, H.G.2006. The mode of action of the lantibiotic lacticin 3147-a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Molecular Microbiology 61,285-296.
    Wildman, K.A.H., Lee, D.K., Ramamoorthy, A.2003. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry 42,6545-6558.
    Willey, J.M., van der Donk, W.A.2007. Lantibiotics:Peptides of diverse structure and function. Annual Review of Microbiology 61,477-501.
    Wilson, N.J., Boniface, K., Chan, J.R., McKenzie, B.S., Blumenschein, W.M., Mattson, J.D., Basham, B., Smith, K., Chen, T., Morel, F., Lecron, J.C., Kastelein, R.A., Cua, D.J., McClanahan, T.K., Bowman, E.P., Malefyt, R.D.2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunology 8,950-957.
    Wu, S.M., Jia, S.F., Sun, D.D., Chen, M.L., Chen, X.Z., Zhong, J., Huan, L.D.2005. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4. Current Microbiology 51,292-296.
    Xie, L.L., van der Donk, W.A.2004. Post-translational modifications during lantibiotic biosynthesis. Current Opinion in Chemical Biology 8,498-507.
    Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J., Oppenheim, J.J.2004. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annual Review of Immunology 22,181-215.
    Yang, L., Harroun, T.A., Weiss, T.M., Ding, L., Huang, H.W.2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophysical Journal 81,1475-1485.
    Yao, S.Y., Gao, X.W., Fuchsbauer, N., Hillen, W., Vater, J., Wang, J.S.2003. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Current Microbiology 47,272-277.
    Yazgan, A., Ozcengiz, G., Marahiel, M.A.2001. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin. Biochimica Et Biophysica Acta-Gene Structure and Expression 1518,87-94.
    Yeaman, M.R., Yount, N.Y.2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews 55,27-55.
    Zanetti, M.2004. Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology 75,39-48.
    Zhang, X.G., Ni, W.J., van der Donk, W.A.2005. Synthesis of nonproteinogenic amino acids to probe lantibiotic biosynthesis. Journal of Organic Chemistry 70,6685-6692.
    Zheng, G., Slavik, M.F.1999a. Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Letters in Applied Microbiology 28,363-367.
    Zheng, G.L., Hehn, R., Zuber, P.2000. Mutational analysis of the sbo-alb locus of Bacillus subtilis:Identification of genes required for subtilosin production and immunity. Journal of Bacteriology 182,3266-3273.
    Zheng, G.L., Yan, L.Z., Vederas, J.C., Zuber, P.1999b. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. Journal of Bacteriology 181,7346-7355.
    Zimmermann, N., Jung, G.1997. The three-dimensional solution structure of the lantibiotic murein-biosynthesis-inhibitor actagardine determined by NMR. European Journal of Biochemistry 246,809-819.
    Zorko, M., Langel, U.2005. Cell-penetrating peptides:mechanism and kinetics of cargo delivery. Advanced Drug Delivery Reviews 57,529-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700