远距离下保护层开采卸压特性及钻井抽采消突研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部部分矿区地质构造复杂,瓦斯灾害特别是煤与瓦斯突出十分严重,威胁了矿井的安全生产,制约了煤炭资源的开发。针对这些矿区构造复杂、煤层渗透性差及煤层群开采的特点,论文以消除煤与瓦斯突出危险性、降低煤层瓦斯含量为切入点,对远距离下保护层开采及钻井抽采卸压瓦斯、消除煤与瓦斯突出危险性进行了系统研究。
     构建了采场相似模型和数值分析模型,研究了远距离下保护层开采的卸压特性:(1)下保护层开采期间,被保护层可实现充分卸压,其透气性系数大幅度提高,为抽采卸压瓦斯提供了条件;(2)针对双保护层开采条件,揭示了工作面风巷、机巷内错40~50m区域的被保护层均为膨胀区,是布置钻井的合理位置;(3)提出了远距离双保护层开采的重复卸压模型,首采保护层回采后形成的采空区具有“缓冲效应”,减弱了次采保护层开采期间上覆煤层的卸压程度。
     建立了地面钻井稳定性分析的力学模型,研究得出:(1)邻近岩层的强度相差越大,对钻井的挤压、剪切作用越大;(2)在套管和井壁之间留设间距后,套管上的最大剪切应力平均降低50.8%,减小了套管剪切破坏的概率;(3)生产套管长度越大,其挠度值越大,抗弯曲变形能力越强。对此,设计了防剪切破断的钻井井身结构:生产套管采用贯穿井身的整管,与固井套管或井壁之间留设“缓冲容移间距”,筛管段采用了“套管强化技术”,有效提高了钻井稳定性。
     揭示了地面钻井抽采卸压瓦斯规律:(1)阐明了工作面回采距离(表征上覆煤层和裂隙带的透气性)是影响钻井产气率的关键参数;(2)得出了保护层工作面回采期间地面钻井产气率“快增慢减”的变化机制,并确定了钻井的最佳布井参数;(3)建立了卸压煤层及采空区的瓦斯流量计算模型,为钻井抽采卸压瓦斯消突效果的评价提供了依据;(4)提出了钻井下段增阻提高卸压瓦斯抽采量的方法。
     远距离下保护层开采及钻井抽采消突技术在神华集团乌兰煤矿进行了工程试验,结果表明地面钻井抽采卸压瓦斯消突效果显著:试验区钻井的总产气量为1512.96×10~4m~3,机巷侧、风巷侧钻井的最大布井间距分别为150m和169m,被保护层的残余瓦斯含量分别降低至3.63m~3/t和3.14m~3/t,抽采率分别达到65.8%和68.0%,彻底消除了煤层的突出危险性。
In Western China, there are some mining areas with complex geological structureand significant hazards of gas, coal and gas outburst. The outburst hazard not onlythreatens safety of mine gravely, but also makes it difficult to explore coal resourcesin some regions. Aiming at the characteristics of the complex structure, poor coalseam permeability and multi-seam mining in the mining area, with the purpose ofeliminating the danger of outburst and decreasing the gas content of coal seam, thispaper makes a systematic research on the mining of the lower distant protective layer,the technology of pressure-relieved gas drainage using surface boreholes andeliminating the potential dangers of coal and gas outburst.
     By constructed the model of similar materials experiments of stope andnumerical simulation, we have studied the depressurization effect of protected coalseam under the mining condition of lower distant protective layer:(1)Duringextraction of the lower distant layer, the stress of protected layer could be reducedsufficiently, and gas permeability coefficient could be increased substantially,providing favorable condition for gas drainage;(2)As the double protective seammining,40~50m area of intake entry and return entry of mining face in protectedcoal seams is dilated area, which is the proper location of surface boreholes;(3)Repeat depressurization mode is found that the gob of the extracted seam below thegassy one provides a "Buffering Effect" for the overlying coal seam which makes thedepressurization of the overlying seam weaken.
     The results from mechanical model for analysis of the stability of surfaceborehole are:(1)The greater the difference between the strength of adjacent strata is,the bigger the squeezing and shearing stress in the casing become;(2)Under thecondition of leaving the space between the casing and borehole wall, the max shearingstress of casing decreased by50.8%evenly, and the probability of failure of casingwas reduced significantly;(3)The longer the production casing is, the bigger thedeflection value is and the greater anti-bending ability the casing gets. Based on theabove results, we designed a structure of surface borehole against shearing andrupturing. There leaves the "buffer spacing" between the cementing casing orborehole wall and the production casing which is whole-tube and screen section washandled by "casing enhancement technology", effectively improving the stability ofsurface borehole.
     The law of pressure relief methane drainage using surface borehole had beendemonstrated:(1)Illustrated the distance from working face to borehole (showing themethane permeability coefficients of overlying coal seam and fractured zone), is thekey influencing factor of gas production rate of borehole;(2)Revealed the changingmechanism of "fast increase-slowly decrease" of the gas production rate of boreholeduring the protective coal seam mining, and determined the best layout parameters ofsurface boreholes;(3)Built a mathematical model for determining the gas flow rate ofoverlying coal seam and gob, which can provide a basis of assessment for gasdrainage of overlying coal seam;(4)Proposed the method of improving gas drainageform overlying pressure released seams with increasing the lower borehole resistance.
     The research results mentioned above have been carried out in WuLan CoalMine of ShenHua Group, which show that the effect of eliminating outburst byextracting pressure relieved gas with surface boreholes is remarkable. The pure gasdrainage quantity of boreholes in the testing area has totally reached1512.96×10~4m~3.The max spacing of borehole near the intake entry and the return entry are150mand169m respectively. The remaining gas quantities of the protected coal seams areeliminated to3.63m~3/t and3.14m~3/t, and the gas drainage rates are65.8%and68.0%,respectively, completely eliminating the outburst danger of the coal.
引文
[1]王显政.中国煤炭工业发展面临的机遇与挑战[J].中国煤炭,2010,36(7):5-7.
    [2]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [3] Lama, R. D., Bodziony, J. Management of outburst in underground coal mines[J].International Journal of Coal Geology,1998,35(1-4):83-115.
    [4]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [5] Xu, T., Tang, C.A., Yang, T.H., etc. Numerical investigation of coal and gas outbursts inunderground collieries[J]. International Journal of Rock Mechanics&Mining Sciences,2006,43(6):905-919.
    [6]黄旭超,孙东玲.我国煤矿煤与瓦斯突出现状及预警技术的研究[J].煤炭科学技术,2011,39(7):61-63.
    [7]付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策[J].采矿与安全工程学报,2007,24(3):253-259.
    [8]李恒堂.中西部地区煤炭资源开发必须解决的几个战略性问题[J].煤田地质与勘探,2004,32(增刊):45-48.
    [9] Díaz Aguado, M. B., González Nicieza, C. Control and prevention of gas outbursts in coalmines,Riosa–Olloniego coalfield, Spain[J]. International Journal of Coal Geology,2007,69(4):253-266.
    [10]国家安全生产监督管理总局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [11]程远平,俞启香.中国煤矿区域性瓦斯治理技术的发展[J].采矿与安全工程学报,2007,24(4):383-390.
    [12]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [13]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [14]邓喀中.开采沉陷中的岩体结构效应[M].徐州:中国矿业大学出版社,1998.
    [15]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [16]苏仲杰.采动覆岩离层变形机理研究[D].阜新:辽宁工程技术大学,2001.
    [17] Lunarzewski, L. W. Gas emission prediction and recovery in underground coal mines[J].International Journal of Coal Geology,1998,35(1-4):117-145.
    [18] Jaeger, J. C., Cook, N.G.W. Fundamentals of Rock Mechanics[M]. London:Chapman andHall,1979.
    [19] Somerton, W. H., S ylemezoglu, I.M., Dudley, R.C. Effect of stress on permeability ofcoal[J]. International Journal of Rock Mechanics&Mining Science,1975,12(5-6):129-145.
    [20] Yavuz, H. An estimation method for cover pressure re-establishment distance and pressuredistribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics&Mining Sciences,2004,41(2):193-205.
    [21] Peng, S. S., Chiang, H.S. Longwall Mining[M]. New York:Wiley Interscience Publication,1984.
    [22] Deb, D. Analysis of coal mine roof fall rate using fuzzy reasoning techniques[J].International Journal of Rock Mechanics&Mining Science,2003,40(2):251-257.
    [23] Airuni, A. T. Relationship between the gas release of the overlying and underlyingprotective coal seams and the degassing caused by these[J]. Annales des Mines deBelqique,1979,(5):481-503.
    [24] Whittles, D. N., Lowndes, I.S., Kingman, S.W., etc. Infulence of geotechnical factors on gasflow experienced in a UK longwall coal mine panel[J]. International Journal of RockMechanics&Mining Sciences,2006,43(3):369-387.
    [25]马占国,涂敏,马继刚,等.远距离下保护层开采煤岩体变形特征[J].采矿与安全工程学报,2008,25(3):253-257.
    [26]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [27]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [28] Hu, G. Z., Wang, H.T., Li, X.H., etc. Numerical simulation of protection range in exploitingthe upper protective layer with a bow pseudo-incline technique[J]. Mining Science andTechnology,2009,19(1):58-64.
    [29]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):122-126.
    [30] Sun, P. D. Numerical simulations for coupled rock deformation and gas leak flow in parallelcoal seams[J]. Geotechnical and Geological Engineering,2004,22(1):1-17.
    [31] Karacan, C.., Ruiz, F.A., Cotè, M., etc. Coal mine methane: A review of capture andutilization practices with benefits to mining safety and to greenhouse gas reduction[J].International Journal of Coal Geology,2011,86(2-3):121-156.
    [32] Packham, R., Cinar, Y., Moreby, R. Simulation of an enhanced gas recovery field trial forcoal mine gas management [J]. International Journal of Coal Geology,2011,85(3-4):247-256.
    [33]刘林.煤层群多重保护层开采防突技术的研究[J].矿业安全与环保,2001,28(5):1-4.
    [34]罗勇,祁琦.煤层群多重开采上保护层防突研究[J].防灾减灾工程学报,2005,25(3):244-250.
    [35]罗勇,沈兆武.煤层群内多重保护层开采的防突试验研究[J].地质灾害与环境保护,2005,16(3):315-319.
    [36] Palchik, V. Localization of mining-induced horizontal fractures along rock layer interfacesin overburden: field measurements and prediction[J]. Environmental Geology,2005,48(1):68-80.
    [37] Palchik, V. Experimental investigation of apertures of mining-induced horizontalfractures[J]. International Journal of Rock Mechanics&Mining Science,2010,47(3):502-508.
    [38] Diamond, W. P., Ulery, J.P., Kravits, S.J. Determining the Source of Longwall Gob Gas:Lower Kittanning Coalbed, Cambria County, PA:Report of Investigations9430[R].Washington, D.C.: Bureau of Mines,1992.
    [39] Karacan, C.. Reservoir rock properties of coal measure strata of the Lower MonongahelaGroup, Greene County (Southwestern Pennsylvania), from methane control and productionperspectives [J]. International Journal of Coal Geology,2009,78(1):47-64.
    [40] Karacan, C.., Goddman, G.V.R. Probabilistic modeling using bivariate normaldistributions for identification of flow and displacement intervals in longwall overburden[J].International Journal of Rock Mechanics&Mining Sciences,2011,48(1):27-41.
    [41] Xu, N. Z., Han, L. Pressure-relief effect of coal rock body of long distance lower protectiveseam mined based on FLAC3D[J]. Journal of Coal Science and Engineering,2010,16(4):341-346.
    [42] Qu, Q. D., Xu, J.L., Xue, S. Improving methane extraction ratio in highly gassy coal seamgroup by increasing longwall panel width[J]. Procedia Earth and Planetary Science,2009,1(1):390-395.
    [43]汪有清,戴广龙,童云飞.远距离被保护煤层消突技术的研究[J].矿业安全与环保,2006,33(1):4-6.
    [44]赵阳升,段康廉.我国地面钻孔瓦斯抽放与利用[J].山西煤炭,1993,(1):40-43.
    [45] Maksimovic, S. D., Kissell, F.N. Three coal mine gob degasification studies using surfaceboreholes and a bleeder system:Report of Investigation8459[R]. Washington D.C.:Bureauof Mines,1980.
    [46]周德昶.地面钻井抽采瓦斯技术的发展方向[J].中国煤层气,2007,4(1):18-23.
    [47]申宝宏,刘见中,张泓.我国煤矿瓦斯治理的技术对策[J].煤炭学报,2007,32(7):673-679.
    [48]吴财芳,曾勇,秦勇.煤与瓦斯共采技术的研究现状及其应用发展[J].中国矿业大学学报,2004,33(2):137-140.
    [49]李树刚,钱鸣高.我国煤层与甲烷安全共采技术的可行性[J].科技导报,2000,(6):39-41.
    [50]何辉,牛朝旭.晋城煤业集团瓦斯治理方法初探[J].煤矿安全,2004,35(4):1-3.
    [51]梁子明,张斌,吴宏斌.地面钻孔抽放邻近层(含采空区)瓦斯的尝试[J].煤矿安全,1999,(11):32-34.
    [52]秦跃平,姚有利,刘长久.铁法矿区地面钻孔抽放采空区瓦斯技术及应用[J].辽宁工程技术大学学报,2008,27(1):5-8.
    [53]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(1):78-81.
    [54] Han, J. Z., Sang, S.X., Cheng, Z.Z., etc. Exploitation technology of pressure relief coalbedmethane in vertical surface wells in the Huainan coal mining area[J]. Mining Science andTechnology,2009,19(1):25-30.
    [55] Addis, M. A. Reservoir depletion and its effect on wellbore stability evaluation[J].International Journal of Rock Mechanics&Mining Science,1997,34(3-4):1-17.
    [56]曾德智,林元华,张莉,等.非均匀地应力下套管受力影响因素研究[J].石油抽采工艺,2006,28(5):7-9.
    [57]马景槐.考虑岩层各向异性性质的井眼稳定性分析[J].新疆石油学院学报,2001,13(1):61-65.
    [58]刘扬,何秀清,王彦兴.井下套管弯曲变形的数值模拟[J].大庆石油学院学报,2005,29(5):35-36.
    [59]王路超,徐兴平.基于ANSYS的割缝筛管强度分析[J].石油矿场机械,2007,36(4):41-43.
    [60] Xu, H. J., Sang, S.X., Fang, L.C., etc. Failure characteristics of surface vertical wells forrelieved coal gas and their influencing factors in Huainan mining area[J]. Mining Scienceand Technology,2011,21(1):83-88.
    [61] Whittles, D. N., Lowndes, I.S., Kingman, S.W., etc. The stability of methane captureboreholes around a long wall coal panel[J]. International Journal of Coal Geology,2007,71(2-3):313-328.
    [62] Addis, M. A., B. Wu. The role of the intermediate principal stress in wellbore stabilitystudies: Evidence from hollow cylinder tests[J]. International Journal of Rock Mechanics&Mining Science,1993,30(7):1027-1030.
    [63]李日富,梁运培,欧聪,等.采空区瓦斯地面抽采钻井稳定性因素分析[J].矿业安全与环保,2008,35(3):11-17.
    [64]梁运培,胡千庭,郭华,等.地面采空区瓦斯抽放钻孔稳定性分析[J].煤矿安全,2007,38(3):1-4.
    [65]刘玉洲,陆庭侃,于海勇.地面钻孔抽放采空区瓦斯及其稳定性分析[J].岩石力学与工程学报,2005,24(增1):4982-4987.
    [66] Liu Y.Z., L., X.H. Safety analysis of stability of surface gas drainage boreholes above goafareas[J]. Journal of Coal Science and Engineering,2007,13(2):149-153.
    [67]孙海涛,林府进,张军.地面钻井剪切变形破坏模型及其空间规律分析[J].采矿与安全工程学报,2011,28(1):72-76.
    [68]孙海涛,刘东燕,梁运培,等.地面抽采钻井剪切变形破坏的关键层影响效应[J].重庆大学学报,2009,32(5):550-555.
    [69]孙海涛,张燕.地面瓦斯抽采钻孔变形破坏影响因素及防治措施分析[J].矿业安全与环保,2010,37(2):79-85.
    [70]孙海涛,郑颖人,胡千庭,等.地面钻井套管耦合变形作用机理[J].煤炭学报,2011,36(5):823-829.
    [71] Sang, S. X., Xu, H.J., Fang, L.C., etc. Stress relief coalbed methane drainage by surfacevertical wells in China [J]. International Journal of Coal Geology,2010,82(3-4):196-203.
    [72] Karacan, C.. Forecasting gob gas venthole production performances using intelligentcomputing methods for optimum methane control in longwall coal mines[J]. InternationalJournal of Coal Geology,2009,79(4):131-144.
    [73] Palchik, V. Use of gaussian distribution for estimation of gob gas drainage wellproductivity[J]. Mathematical Geology,2002,34(6):743-765.
    [74]胡千庭,梁运培,林府进.采空区瓦斯地面钻孔抽采技术试验研究[J].中国煤层气,2006,3(2):3-6.
    [75] Karacan, C.., Esterhuizen, G.S., Schatzel, S.J., etc. Reservoir simulation-based modelingfor characterizing longwall methane emissions and gob gas venthole production[J].International Journal of Coal Geology,2007,71(2-3):225-245.
    [76] Karacan, C.., Luxbacher, K. Stochastic modeling of gob gas venthole productionperformances in active and completed longwall panels of coal mines[J]. InternationalJournal of Coal Geology,2010,84(2):125-140.
    [77] E. De Souza. Mine Ventilation[C]. Lisse:A.A. Balkema Publishers,2002.
    [78] Diamond, W. P., Jeran, P.W., Trevits, M.A. Evaluation of Alternative Placement ofLongwall Gob Gas Ventholes for Optimum Performance:Report of Investigations9500[R].Washington D.C.:Bureau of Mines,1994.
    [79] Huang, H. Z., Sang, S.X., Fang, L.C., etc. Optimum location of surface wells for remotepressure relief coalbed methane drainage in mining areas[J]. Mining Science andTechnology,2010,20(2):230-237.
    [80] Moore, T. D., Maurice Deul, J.R., Kissell, F.N. Longwall gob degasification with surfaceventilation boreholes above the Lower Kittanning Coalbed:Report of Investigations8195[R]. Washington D.C.:Bureau of Mines,1976.
    [81] Diamond, W. P. Methane control for underground coal mines:Report of Investigations9395[R]. Washington D.C.:Bureau of Mines,1994.
    [82]陈金华.地面钻井抽采上覆远距离煤层卸压瓦斯的试验研究[J].矿业安全与环保,2010,37(2):23-26.
    [83] Ayruni, A., Iofis, M., Palchik, V. Method of determination the height of zone of gasconducting cracks [P]. USSR:1209897,1986.
    [84]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [85]谢文兵,陈百祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [86] Fumagalli, E. Statical and Geomechanical Models[M]. New York:Springer,1973.
    [87] Itasca.UDEC User's Guide(Version3.1)[M]. Minneapolis:Itasca Consulting Group Inc.,2000.
    [88]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:煤炭工业出版社,1965.
    [89]杜计平,汪理全.煤矿特殊开采方法[M].徐州:中国矿业大学出版社,2003.
    [90]李国君,刘长久.铁法矿区地面垂直采空区井技术[J].中国煤层气,2005,2(4):7-10.
    [91]井多胜,徐传田.地面钻孔抽放瓦斯技术的试验[J].煤炭技术,2006,25(6):84-85.
    [92]赵洵众.流体力学与流体机械[M].北京:煤炭工业出版社,1995.
    [93]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [94]肖跃军,赵利,靳毅斌.建筑经济[M].北京:煤炭工业出版社,1998.
    [95] Zuber, M. D. Production characteristics and reservoir analysis of coalbed methanereservoirs[J]. International Journal of Coal Geology,1998,38(1-2):27-45.
    [96]刘泽功,袁亮,戴广龙,等.采场覆岩裂隙特征研究及在瓦斯抽放中应用[J].安徽理工大学学报(自然科学版),2004,24(4):10-15.
    [97]郭玉森,林柏泉,吴传始.围岩裂隙演化与采动卸压瓦斯储运的耦合关系[J].采矿与安全工程学报,2007,24(4):414-417.
    [98]谢识予,朱弘鑫.高级计量经济学[M].上海:复旦大学出版社,2005.
    [99]石必明,俞启香,王凯.远程保护层开采上覆煤层透气性动态演化规律试验研究[J].岩石力学与工程学报,2006,25(9):1917-1921.
    [100]涂敏,缪协兴,黄乃斌.远程下保护层开采被保护煤层变形规律研究[J].采矿与安全工程学报,2009,23(3):253-257.
    [101]胡殿明,林柏泉.煤层瓦斯赋存规律及防治技术[M].徐州:中国矿业大学出版社,2006.
    [102]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [103]周光炯,严宗毅,许世雄,等.流体力学[M].北京:高等教育出版社,1994.
    [104]郭楚文,李意民,陈更林,等.工程流体力学[M].徐州:中国矿业大学出版社,2002.
    [105] Liu H.B., Chen. Y. P., Song J.C., etc. Pressure relief, gas drainage and deformation effectson an overlying coal seam induced by drilling an extra-thin protective coal seam[J]. MiningScience and Technology,2009,19(6):724-729.
    [106] Liu, Y. K., Zhou, F.B., Liu, L., etc. An experimental and numerical investigation on thedeformation of overlying coal seams above double-seam extraction for controlling coalmine methane emissions[J]. International Journal of Coal Geology,2011,87(2):139-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700