快速成形制备的PLGA支架—胶原凝胶复合体构建组织工程软骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种原因造成的软骨缺损是临床上常见的问题,由于软骨的组织学和生物学特性限制了其自身的修复能力,目前尚缺乏有效的治疗措施。组织工程技术的发展为软骨缺损的修复提供了新的手段,利用具有特定空间结构的支架材料引导软骨细胞的增殖和基质分泌,最终形成类似正常软骨组织的结构,并行使功能。
     近年来软骨组织工程支架的研究侧重于对材料表面的设计以提高材料的生物性能。支架表面特性对细胞/支架复合起重要作用。目前有很多方法,如碱处理、等离子放电和表面改性等都可提高材料表面的生物相容性。在支架材料的研究中,复合材料是目前研究的热点,即将两种或两种以上具有互补理化性质的生物相容性可降解材料,按一定比例和方式组合,可设计出结构与性能优化的三维支架材料。以弥补单用人工合成或天然生物材料的缺陷。
     本研究的目的是构建具有理想空间结构的复合支架材料,即运用快速成形技术制备的PLGA支架材料结合胶原凝胶,探讨其作为组织工程支架材料的可行性。
     本研究包括以下几部分内容:
     1制备具有生物活性的PLGA支架材料
     将聚酯PLGA(LA/GA=50/50)充分溶解于1, 4-二氧六环有机溶剂形成无色透明液体。采用清华大学激光快速成形中心开发研制的低温挤出成形设备-生物材料快速成形机TissFormTM,经计算机辅助设计(CAD)结合低温挤出成形工艺,在低温成形室中固化堆积,得到冷冻的三维材料。低温快速成型的方法所制备的载体框架的孔隙结构、孔隙率、力学性能符合软骨组织工程载体框架的要求,可以作为软骨组织工程的支架材料。
     2兔关节软骨细胞分离培养及生物活性检测
     运用酶消化的方法获得软骨细胞,并观察原代及传代培养的细胞形态学变化。用甲苯胺蓝及免疫组化的方法鉴定软骨细胞。成功建立体外培养兔关节软骨细胞的实验方法。原代培养的软骨细胞呈多角形,传代3次后出现去分化。形态学、免疫组织化学染色显示细胞培养3代以内可以保持表型的稳定。本文建立的体外培养关节软骨细胞的方法简单可行。体外培养的第2代兔软骨细胞表型稳定,细胞增殖活力良好,适用于实验研究。
     3 PLGA及胶原改性材料与软骨细胞相容性的观察通过对原始及改性材料与软骨细胞相容性的观察,检测支架材料的生物活性。包括亲水性的测定,细胞计数,扫描电镜。实验证实,改性后材料亲水性及细胞黏附率较改性前支架均有显著性提高。
     4胶原凝胶包埋软骨细胞复合快速成形PLGA支架的接种方法
     通过将胶原凝胶包埋的软骨细胞接种到快速成形的PLGA材料上并进行体外培养观察,细胞计数检测细胞粘附情况,倒置显微镜观察细胞在支架内分布的均一性。结果显示,90%以上的细胞能够有效、均匀接种于支架材料上,所以,胶原凝胶包埋软骨细胞三维接种能有效提高种子细胞的接种效率,防止细胞流失。
     5裸鼠体内成软骨实验
     通过将胶原凝胶包埋的软骨细胞接种到快速成形PLGA材料的复合物植入裸鼠体内于不同时间点进行大体观察,组织学染色检查软骨形成情况。大体观察,有类软骨样组织形成,所形成的组织形态保持良好,具有一定的厚度,未见收缩。组织学结果显示软骨细胞在体内生长增殖良好,随时间延长材料逐渐降解软骨组织逐渐成熟。
     本实验证明低温快速成形技术制备的PLGA支架经胶原改性后具有良好的亲水性、降解性和生物相容性。凝胶包埋细胞接种支架材料的方法能够均匀、高效的将细胞固定于多孔材料中,提高细胞接种效率。同时,凝胶包埋的软骨细胞接种到快速成形的PLGA材料的复合物具有良好的成软骨能力。所以,胶原凝胶包埋快速成型PLGA支架材料可作为载体复合细胞进行软骨组织工程的研究。
Cartilage defects are a major problem in orthopedic surgery.Because the cartilage tissue itself lacks a blood supply to support repair and remodeling,once damaged,the cartilage has little capacity for spontaneous healing.Most of the current therapies to repair damaged cartilage have limititions.Progress in tissue engineering provided a new concept for tissue regeneration and transplantation.The scaffold can provide suitable spatial structure for cell proliferation and matrix secreting,thus facilitate tissue forming.
     Since the scaffold surface properties play an important role in determining how cells respond to the biomaterials,the development of tissue engineering has recently focoused on the surface design of biodegradable scaffolds.Several approaches,such as alkali hydrolysis treatment,plasma treatment,ion irradiation and surface coating have been developed to improve the bioactivity of the surface.
     The complex scaffolds were composed of two or more biomaterials to consist a 3-D scaffold with suitable structure and function. It makes up the disadvantages of using artificial synthetical material or natural materials alone. The purpose of this study was to develop a new complex scaffold for cartilage tissue engineering,which owns the advantages of high cell seeding efficiency,good ability to support chondrogenesis as well as adequate physical properities.rapid prototyping PLGA porous scaffold was chosed as framework, then chondrocytes suspended in collagen solution was seed in framework,and gelling process was performed.We believe rapid prototyping PLGA-collagen gel complex could act as a new scaffold for cartilage regeneration.
     This study includes the following parts:
     1 Fabricating PLGA scaffold with LDM techonology The structure of scaffold, porosity and mechanical property can meet with the requirement of scaffold for tissue-engineered cartilage.
     2 Isolation of chondrocytes and identification of cell phenotype. Articular chondrocytes were isolated from the cartilages with the methods of enzymatic digestion.The morphological changes and growth feature of primary cultured and subcultured chondrocytes were observed under the inverted microscope each day. Toluidine blue staining and immunocytochemist ry were used to indentify the chondrocytes. The primarily cultured chondrocytes were in olygonal shape, and became dedifferentiation after 3 passages. The chondrocytes maintained the morphology and immunochemical staining pattern within the first 3 passages. The method used in this work for isolation and culture of chondrocytes is simple and feasible. The chondrocytes cultured in viro maintained the specific chondrocytes phenotype in the first 3 passages. The growth of the second passage was robust and may be suitable for most experiment.
     3 The compatibility of original scaffold and hybrid scaffold.
     After examing water absorption capability of the scaffold, chondrocytes proliferation and differentiation on the scaffold were calculated and the results showed that rapid prototyping PLGA coating with collagen had a good biocompatibility for the attatchment and proliferation of the chondrocyte. It might be ideal biomaterials in tissue-engineered cartilage field.
     4 Seeding cell methods of seeding chondrocytes into scaffolds
     Mixture chondrocytes with collagen solution was incorporated into a PLGA 3D scaffold, and made into gel in the scaffold, then cultured invitro.Attachment of chondrocytes were evaluated by cell count.Distribution of chondrocytes into 3D scaffolds was observed by phase microscope.The results showed More than 90 percent of seeding chondrocytes were able to incorporated into PLGA scaffolds efficiently and uniformly, and prevent cell loss.
     5 cartilage tissue formation in nude mice
     The complexes of seeding of chondrocytes encapsulated in collagen gel into RP PLGA scaffolds were transplanted into the back of nude mice. The specimens harvested at the 4th week,8th week and 12th week were analyzed by observation, histology and tested the quantification of glycosaminoglycan in neo-cartilage.The allograft of chondrocytes proliferated successfully in the back of the nude mice, new cartilage could be seen by the end of 12 weeks and the scaffolds have suitable degradation。The cartilage formed with the scaffold degrading.
     Our research has demonstrated that the attachment , proliferation ,differentiation of chondrocytes on rapid prototyping PLGA coating with collagen.The methods of gel encapsulated cells incorporated to rapid prototyping PLGA can fix cells in scaffold uniformly and efficiently. Meanwhile the complex of gel encapsulated cells incorporated to rapid prototyping PLGA has the capability of cartilaginous tissue forming.Rapid prototyping PLGA-collagen gel was suitable scaffold to carry cells in the research of tissue-engineered cartilage.
引文
[1] Sittinger M, Bujia J, Rotter N, Reitzel D, Minuth W, Burmester GR: Tissue engineering and autologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques.Biomaterials 1996, 17:237-242
    [2] Risbud M: Tissue engineering: implications in the treatment of organ and tissue defects. Biogerontology 2001, 2:117-125
    [3] Vacanti CA, Langer R, Schloo B, Vacanti JP. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg. 1991 Nov;88(5):753-9
    [4] Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA. Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea.Ann Thorac Surg. 2003;76(6):1884-8
    [5] Vunjak Novakovic G,Obradovic B,Mzrtin I.Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering.Biotechnol Prog,1998,14(2):193
    [6] Benya PD, Shaffer JD.Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels [J].Cell, 1982, 30(1):215-224
    [7] Wakitani S,Kimura T,Hirooka A,et al.Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel[J].J Bone Joint Surg Br,1989,71(1):74-80
    [8] Marlovits S, HombauerM, TruppeM, et al.Changes in the ratio of typeI and type-II collagen expression duringmonolayer culture of humanchondrocytes [J]. J Bone Joint Surg (Br) , 2004, 86 ( 5) : 286 -295
    [9] Wakitani S, Goto T, Young RG, et al. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel [J]. Tissue Eng, 1998, 4 (4) : 429 - 444
    [10] WongMW, Qin L, Tai JK, et al. Engineered allogeneic chondrocyte pellet for reconstruction of fibrocartilage zone at bone-tendon junction-a preliminary histological observation [J]. Biomed Mater Res, 2004, 15: 70 (2) : 362 - 367
    [11] O’DriscollSW,Fitzsimmons JS.The role of periosteum in cartilage repair.Clin Orthop, 2001,(39):190-207
    [12] Wakitani S, Goto T, Prneda SJ, et al.Multipotent mesenchymal stem cells from adult rabbits synovial membrane [J]. J Bone Joint Surg(Am) , 2004, 76 (3) : 579 – 5921
    [13] Chu CR, Dounchis JS, YoshiokaM, et al1.Rib perichondrial auto grafts in full-thickness articular cartilage defects in rabbits [J]. Clin Orthop, 2001 (2) : 220 – 2291
    [14] O’Drisco ll SW , Fitzsimmons JS. The role of periosteum in cartilage repair. Clin O rthop, 2001; 391: 190
    [15] 王与荣, 韩发五, 赵建宁, 等. 自体骨膜移植修复关节软骨缺损. 中国修复重建外科杂志, 2000;14 (2):67
    [16] Hommigna GN , Bulstra SK, Bousmeestr PS, et al. Perichondral grafteing for cartilage lesions of the knee. J Bone Jo int Surg (Br),1990; 72 (6) : 1003
    [17] Friendenstein A J.Precursor cells of mechanocutes[J].Int Res Cytol,1976,47:327
    [18] Wakitani S,Goto T,Pineda SJ,et al.Mesenchymal cell-based repair oflarge,full-thickness defects of articular cartilage.J Bone Joint Surg Am 1994;76:579-92
    [19] Mackay AM,Beck SC,Murphy JM,etal.Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.Tissue Eng 1998;4(4):415-28
    [20] Nevo Z,Robinson D,Horowitz S,et al.The manipulated masenchymal stem cells in regenerated skeletal tissues.Cell Transplant.Jan 1998;7(1):63-70
    [21] Lee JW, Kim YH, Kim SH, et al. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications.Yonsei Med J 2004;45:41-7
    [22] Gao J, Dennis JE, Solchaga LA, et al. Repair of osteochondral defect with tissue engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge [J]. Tissue Eng, 2002, 8(5): 827 – 837
    [23] 单玉兴, 刘一, 徐莘香. 兔骨髓间质干细胞用于构建组织工程软骨组织的初步报告. 中国修复重建外科杂志, 2001; 15 (1): 49
    [24] Freed L,Martin I,Vunjak-Nobakovic G.Frontiers in tissue engineeering:in vitro modulation of chondrogenesis[J] Clin Orthop,1 999,367:46-58
    [25] Grande D, Breitbart A, Mason J, et al.Cartilage tissue engineering: Current limitation and solution [J]. Clin Orthop,1999, 267: 176-185
    [26] Johnstone B,Yoo J.Autologous mesenchymal progenitol cells in articular cartilage repair [J]Clin Orthop,1999,367: 156-162
    [27] Kramer J, Hegert C,Guan K,et al.Embryonic stem cell-derived chondrogenic differentiation in vitro:activation by BMP-2 and BMP-4. Mech Dev 2000;92(2):193-205
    [28] Nakayama N,Duryea D,Manoukian R,et al.Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cell.JCell Sci 2003;116:2015-28
    [29] Zuk PA, Zhu M, Mizuno H, et al. Tissue Eng, 2001, 7(2):211- 228.
    [30] Lee RH, Kim B, Choi I, et al. Cell Physiol Biochem, 2004, 14(4/6):311- 324
    [31] Ogawa R, Mizuno H, Watanabe A, et al. Biochem Biophys Res Commun, 2004, 313(4):871- 877
    [32] Quarto N, Longaker MT. Tissue Eng, 2006, 12(6):1405-1418.
    [33] Zuk PA, M. Zhu, H. Mizuno. Multilineage cells from human adipose tissue: Implications for cell based therapies [J]. Tissue Eng, 2001, 7: 211-226
    [34] Huang Ji,Zukpa,Jones N F,et al. Chondrogenic potential of multipotential cells from human adipose tissue[J] . Plast Reconstr Surg, 2004,113 (2) :585 - 594
    [35] Nathan S , Das D S , Thambyah A , et al. Cell – based Therapy in the repair of osteochondral defects : a novel use for adipose tissue[J] . Tissue Eng, 2003 ,9 (4) :733 - 744
    [36] 余方圆, 卢世璧, 袁 玫, 等. 脂肪干细胞向软骨细胞方向诱导的初步研究[J] . 中国矫形外科杂志, 2004 ,12 (10) :762 -764
    [37] Nawata M , Wakitani S , NAKAYA H , et al. Use of bone morphogenetic protein and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage[J] .Arthritis Rheum , 2005 ,52 (1):155 - 163
    [38] Fuchs J R , Hannouche D , Terada S , et al. Cartilage engineering fromovine umbilical cord blood mesenchymal progenitor cells[J].Stem Cells , 2005 ,23 (7) :958 - 964
    [39] Reubinoff BE,Peva MF,Fong CY,et al.Embryonic stem cell linesfromhuman blastocysts:somatic differentiation in vitro[J].Nature Biotechnology, 2000,18:399-404
    [40] Boyan BD,Lohuman CH,Romero J,Schwartz Z.Bone and cartilage tissue engineering[J].Clinics in plastic surger,1999,26(4):629
    [41] A.R. Haas, R.S. Tuan, Chondrogenic differentiation of murine C3H-10T1/2 multipotential mesenchymal cells: II. Stimulation by bone morphogenetic protein-2 requires modulation of N-cadherin expression and function, Differentiation 64 (1999) 77–89
    [42] Grande DA,Mason J,Light E,et al.Stem Cells as Platforms for Delivery of Genes to Enhance Cartilage Repair.J Bone Joint Sur 2003;85:111-16
    [43] Okamoto T,Yamamoto Y,Gotoh M,et al.Slow release of bone morphogenetic protein 2 from a gelatin sponge to promote regeneration of tracheal cartilage in a canine model.J Thorac Cardiovasc Sur 2004; 127:329-34
    [44] 戴刚,李起鸿,周强.相关生物因子对体外培养关节软骨细胞促增殖作用的研究[J].中华创伤杂志,2002,18:235-238
    [45] Suzuki T,Bessbo K,Fujimura K,et al.Regeneration of defects in the articular cartilage in rabbit temporomandibular joints by bone morpgogenetic protein-2.Br J Oral Maxillofac Surg 2002,40(3):201-6
    [46] Sellers RS,Zhang R,Glasson SS,et al.Repair of articular defects one year after treatment with recombinant human bone morphogentic protein-2,J Bone Joint Surg.Am 2000,82(2):151-60
    [47] J.C. Becker, M. Beckbauer, W. Domschke, H. Herbst, T. Pohle, Fibrin glue, healing of gastric mucosal injury, and expression of growth factors: results from a human in vivo study, Gastrointest. Endosc. 61 (2005)560–567
    [48] A.M. Mackay, S.C. Beck, J.M. Murphy, F.P. Barry, C.O. Chichester, M.F.Pittenger, Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow, Tissue Eng. 4 (1998) 415–428
    [49] H.Park, J.S. Temenoff, T.A. Holland, Y. Tabata, A.G. Mikos, Delivery of TGF-beta1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications, Biomaterials 26 (2005) 7095–7103
    [50] Q. Huang, J.C. Goh, D.W. Hutmacher, E.H. Lee, In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor beta1 and the potential for in situ chondrogenesis, Tissue Eng. 8 (2002) 469–482
    [51] J. Martel-Pelletier, J.A. Di Battista, D. Lajeunesse, J.P. Pelletier, IGF/IGFBP axis in cartilage and bone in osteoarthritis pathogenesis, Inflamm.Res. 47 (1998) 90–100
    [52] Tsukazaki T,Usa T,Matsumoto T.Effect of transforming growth factor-beta on the insulin-like growth factor-1 autocrine/paracrine axis in cultured rat articular chondrocytes.Exp Cell Res 1994;215(1):9-16
    [53] Chu CR,Kaplan LD,Fu FH,et al.Recovery of Articular cartilage Metabolisn Following Thermal stress Is Facilitated by IGF-1 and JNK Inhibitor.Ame J Sports Med 2004;32:191-6
    [54] R.C. Olney, J. Wang, J.E. Sylvester, E.B. Mougey, Growth factor regulation of human growth plate chondrocyte proliferation in vitro, Biochem. Biophys. Res. Commun. 317 (2004) 1171–1182
    [55] N. Isogai, T. Morotomi, S. Hayakawa, H. Munakata, Y. Tabata, Y. Ikada,H. Kamiishi, Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering anauricular cartilage construct, J. Biomed. Mater. Res. A. 74 (2005) 408-418
    [56] 刘刚,马平,胡蕴玉,等. IGFl 对兔关节软骨细胞增殖的影响及其形态学观察[J] . 中国矫形外科杂志,2002,10(12):1205-1207
    [57] Arevalo2Silva CA, Cao Y, Weng Y, et al. The effect of fibroblast growth factor and transforming growth factor2beta on porcine chondrocytes andtissue-engineered autologous elastic cartilage [J] . Tissue Eng,2001 ,7(1) :81-88
    [58] 陆宁,卢世璧,王继芳等.软骨缺损组织工程修复组织中细胞凋亡的初步研究[J].中国临床康复,2004,8(8):1430-2
    [59] Leong, K.F. et al. (2003) Solid freeform fabrication of three- Dimensional scaffolds for engineering replacement tissues and organs.Biomaterials 24, 2363–2378
    [60] Landis WJ, Jacquet R, Hillyer J, et al. The potential of tissue engineeering in orthopedics[J].Orthop Clin North Am,2005 ,36 (1):97-104
    [61] Lee CR, Grodzinsky AJ, Spector M. Biosynthetic response of passaged chondrocytes in a type Ⅱcollagen scaffold to mechanical compression [J]. J Biomed Mater Res A ,2003 ,64 (3) :560-569
    [62] Wakitani S, Goto T, Young R G, et al.Repair of large fullthickness articular cartilage defectswith allograft articular chondrocytes embedded in a collagen gel[J].Tissue Eng, 1998, 4 (4) : 429 – 444
    [63] Chaipinyo K, Oakes BW, van Damme MP. Effects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultured in collagen I gels. J Orthop Res. 2002;20(5):1070-8
    [64] Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K. Effects of cell density on proliferation and matrix synthesis of chondrocytesembedded in atelocollagen gel. Artif Organs. 2003;27(3):249-55
    [65] Jiang XG, XiNZ. Measurement of content and molecular weight of sodium alginate [J]. Shang hai Yi ke Da xue Xue bao (J Shang-hai Med U niv), 1990; 17 (1) : 61- 63
    [66] Cao ZS. Fabrication of drug carrier using sodium alginate [J].Guo wai Yi yao He cheng yao, Sheng hua yao, Z hi ji Fence (World Pharm ) , 1994; 15 (6) : 359- 360A
    [67] Hapiro L S, Cohen S. Novel alginate sponges for cell culture and transplantation [J]. Biomaterials, 1997; 18 (8) : 583- 590
    [68] Keith T. Paige, Linda G, Cima, M ichael J. Yaremchuk. De novo cartilage generation using calcium alginate chondrcyte constructs [J]. Plast Reconstr Surg , 1996; 97: 168-180
    [69] Paige KT, Cima L G, Yaremchuk MJ, Vacanfi JP, VacanfiCA. Injectable cartilage [J]. Plast Reconstr Surg, 1995; 96: 1390-1400
    [70] Fragonas E, Valente M, Pozzi Mucelli M, et al. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate [J]. Biomaterials, 2000, 21 (8) : 795 – 801
    [71] Caterson E J, LiW J, Nesti L J, et al.Polymer/ alginate amalgam for cartilage tissue engineering [J]. Ann N Y Acad Sci, 2002, 961: 134
    [72] Grigolo B, Roseti L, Fiorini M, et al.Transplantation of chondroocytes seeds on a hyaluronan derivative ( hyaffo Ⅱ) into cartilage defects in rabbits[J]. Biomaterials, 2001, 22 (17): 2417 – 2424
    [73] Gao J, Dennis J E, Solchaga L A, et al.Tissue-engineered fabrication of an osteochondroal composite graft using rat bone marrow-derived mesenchymal stem cells[J]. Tissue Eng, 2001, 7 (3): 363 – 371
    [74] Yoo H S, Lee E A, Yoon J J, et al. Hyaluronic acid modifiedbiodegradable scaffolds for cartilage tissue engineering [J]. Biomaterials, 2005, 26 (14) : 1925 – 1933
    [75] Campoccia Dabide,Doherty Patric,et al.Semisynthetic resorbable materials from hyaluronan esterification.Biomaterials 1998,19(23): 2101-2127
    [76] Jianbiao Ma,Hongjun Wang,He Binglin,et al.A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001,22(4):331
    [77] NettlesD L, Elder S H, Gilbert J A. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering [J]. Tissue Eng, 2002, 8 (6): 1009 -1016
    [78] Lahiji A, Sohrabi A, Hungerford D S, et al. Chitosan supports the expression of extracellularmatrix proteins in human osteoblasts and chondrocytes [J]. J Biomed Mater Res, 2000, 51 (4) : 495 – 586
    [79] Vacanti CA, Kim W, Upton J. Tissue-engineered growth of bone and cartilage.Transplant Proc,1993,25:1019-1022
    [80] Cao Y,Vacanti JP,Paige KT.Transplantation of chondrocyte utilizing a polymer cell construct to produce tissue engineered cartilage in the shape of human.Plast Reconstr Surg.1997,100:297-304
    [81] Liu Y,Chen F ,Liu W,et al. Repairing large porcine full–thinkness defects of artilage using autologous chondrocyte-engineered cartilage[J].Tissue 2002 ,8 (4) :709 – 721
    [82] Malda J, Woodfield TB, van der Vloodt F, et al. The effect of PEGT/PBT scaffold architecture on the compos ition of tis sue engineering cartilage.Biomaterials 2005;26(1):63-72
    [83] Bhattarai SR, Bhattarai N, Yi HK, et al. Novel biodegradable electrospun membrane: scaffold for tis sue engineering. Biomaterials 2004;25 (13):2595-2602
    [84] Deng Y, Zhao K, Zhang XF, Hu P, Chen GQ. Study on the three dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds.Biomaterials. 2002; 23(20):4049-56
    [85] 翟喜成,王英振.Pluronic F-127负载同种异体软骨细胞修复兔全厚关节软骨缺损的实验研究[J.中国矫形外科杂志,2003,11;1053-1055
    [86] Yang J,Shi G,Bei J,et al.Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture[J]. J Biomed Mater Res,2002,62:438-446
    [87] Maquet V,Martin D,Malgrange B,et al.Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds[J].J Biomed Mater Res,2000,52:639-651
    [88] Bhiati RS, Mukherjee DP, McCarthy KJ,et al. The growth of chondrocytes into a fibronectin-coated biodegradable scaffold [J]. J Biomed Mater Res,2001,56:74-82
    [89] Jeschke B,Meyer J,Jonczyk A,et al.RGD-peotides for tissue engineeering of articular cartilage[J].Biomaterials, 2002,23:3455- 3463
    [90] Lee HJ, Lee JS, Chansakul T,et al.Collagen mimetic peptideconjugated photopolymerizable PEG hudrogel. Biomaterials, 2006; 27(30):5268-76
    [91] Muller FA,Muller L,Hofmann I,et al.Cellulose-based scaffold materials for cartilage tissue engineering.Biomaterials 2006 27(21):3955-63
    [92] Park GE,Pattison MA,Park K,et al.Accelerated chondrocyte function onNaOH-treated PLGA scaffolds.Biomaterials,2005,26(16): 3075- 82
    [93] Cui YL,QiAD,Liu WG,et al.Biomimetic surface modification of poly(L-lactic acid)with chitosan and its effects on articular chondrocytes in vitro[J].Biomaterials,2003,24:3859-3868
    [94] Ameer GA,MahmoodTA,Langer R.J Orthop Res,2002;20(1):16-19
    [95] Lee CR,Grad S,Goma K,et al.Tiss Eng,2005;11(9-10):1562-1573
    [96] Ushida T,Furukawa K,Toita K,et al.Cell Transplant.2002;11(5): 489-494
    [97] 卢华定,蔡道章,冯智英,等.柱状分层的胶原--羟基磷灰石复合支架负载软骨细胞体外培养[J].中国修复重建外科杂志,2006,20(2):144-147
    [98] 李忠,杨柳,陈光兴,等.胶原凝胶包埋软骨细胞复合聚磷酸钙纤维/ 左旋聚乳酸支架异体移植修复兔关节软骨缺损[J]. 中华实验外科杂志,2005,22(3):266-268
    [99] 郭希民,王常勇,薄斌,等.骨髓间质干细胞复合生物陶瓷构建组织工程化人工软骨[J].中国修复重建外科杂志,2003,17(2): 147-151
    [100] 史德海,蔡道章,周长忍,等.壳聚糖与II 型胶原复合制作组织工程软骨支架及其性能研究[J].中国修复重建外科杂志,2005,19(4):278-282
    [101] Caterson EJ , Nes ti LJ , Li WJ .Three-dimens ional cartilage formation by bone marrow-derived cells seeded in polylactide/ alginate amalgam.J Biomed Mater Res 2001;57(3): 394-403
    [102] Zehbe R, Libera J, Gros s U, et al.Short-term human chondrocyte culturing on oriented collagen coated gelatine scaffolds for cartilage replacement. Biomed Mater Eng 2005;15(6):445-454
    [103] 范宏斌,胡蕴玉,李旭升,等.明胶- 硫酸软骨素- 透明质酸钠载体制备及复合骨髓基质干细胞成软骨的实验研究[J]. 中国骨与关节损伤杂志,2006,21(1):33-35
    [104] Yamane S, Iwasaki N, Majima T, et al. Feas ibility of chitosanbasedhyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 2005;26(6):611-619
    [105] Van Susante JLC,Pieper J,Buma P,et al.Linkage of chondroitinsulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro[J].Biomaterials,2001, 22:2359-2369
    [106] Sechriesr VK,Miao YJ,Niyibizi C,et al.GAG-augmented polysaccharide hydrogel:A novel biocompatible and biodegradable materials to support chondrogenesis[J].J Biomed Mater Res,2000, 49:534-541
    [107] Lindenhayn K,Perka C,Spitzer RS,et al.Retention of hyaluronic acid in alginate beads:Aspects for in vitro cartilage engineering[J].J Biomed Mater Res, 1999,44:149-155
    [108] Perka C,Spitzer RS,Lindenhayn K,et al.Matrix-mixed culture: New methodology for chondrocyte culture and preparation of cartilage transplants[J].J Biomed Mater Res,2000,49:305-311
    [109] 阎继红,刘玲蓉,李学敏,等.胶原-透明质酸-硫酸软骨素复合三维支架体外 构 建 组 织 工 程 软 骨 的 实 验 研 究 [J]. 中 国 修 复 重 建 外 科 杂志,2006,20(1):130-133
    [110] Yan J,Li X,Liu L,et al.Potential use of collagen-chitosan hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Artif Cell Blood Substit Biotechnol,2006,34(1):27-39
    [111] Hsu SH, Whu SW, Hsieh SC,et al. Evaluation of chitosan- alginate hyaluronate complexes modified by an RGD-containing protein as tissue engineering scaffolds for cartilage regeneration. Artif Organs 2004; 28(8):693-703
    [112] Chang CH, Liu HC, Lin CC, et al. Gelatin-chondroitin- hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials.2003,24(26):4853-8
    [113] Ibusuki S,Fujii Y,Iwamoto Y,et al. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng 2003; 9(2):371-384
    [114] Bezemer JM, Grijpma DW, Dijkstra PJ,et al.A controlled release system for proteins based on poly(ether seter) block- copolymers: polymer network characterization.J Control Release,2002,78:175-86
    [115] Deschamps AAClaase MB,Slerjster WJ,de Bruijn JD,et al.Design of segmented poly(ether seter)materials and structures for the tissue engineering of bone.J Control Release,2002,78:175-86
    [116] Woodfield TB,Malda J,de Wijn J,Peters F,et al.Design of porous scaffolds for cartilage tissue engineering using a three demensinal fiber-deposition technique.Biomaterials,2004,25(18):4149-61
    [117] Oh SH, Kang SG, Kim FS,et al.Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(cinylalcohol)blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials, 2003,24(22):4011-21
    [118] Gumbiner B M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell , 1996 , 84:345
    [119] Ikada Y. Surface modification of polymers for medical applications. Biomaterials , 1994 , 15 : 725
    [120] Hyn es RO. Integrins: Verastility, modulation and signaling in cell adhesion [J]. Cell , 1992 , 69:11-25
    [121] Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials, 2000,21(7): 667-681
    [122] 顾汉卿,徐国风.生物医学材料学.天津:科技翻译出版社,1993. 40-45
    [123] Kuo S M , Tsai S W , Huang L H et al . Plasma-modified nylon meshes as supports for cell culturing. Art Cell Blood Subs Immo Biotech, 1997,25 , 551
    [124] 顾汉卿,徐国风.生物医学材料[M].天津:科技翻译出版社,1993.40-71
    [125] Ma PX,Zhang R,XiaoG,Franceschi R.Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids)/hydroaptite composite scaffolds[J].J Biomed Mater Res,2001,54(2):284-293
    [126] Pietro Favia, Riccardo D’Agostino. Plasma treatments and plasma deposition of polymers for biomedical applications [J]. Surface and Coating Technology, 1998, 98: 1102 - 1106
    [127] Lin H, Sun W, Mosher DF.Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD- peptides [J], J.Biomed Mater Res, 1994, 28:329- 338
    [128] Mikos AG, Bao Y, Cima LG. Preparation of Poly (glycolic acid) bonded fiber structures for cell attachment and transplantation J. Biomed. Mater.Res.1993,27(2):183-189
    [129] Mikos AG, Thorsen AJ, Czerwonka LA. et al. Wetting of poly(L-lactic acid) and poly (DL-lactic-co-glycolic acid) foams for tissue culture. [J]. Biomaterials, 1994,15(1):55-58
    [130] Mooney D.J., Mazzoni C.L., Breuer C.K., McNamara K., Hern D., Vacanti J.P., Langer R. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomaterials. 1996. 17(2):115-24
    [131] Yoon Sung Nam, Tae Gwan Park. Biodegradable Polymeric microcellular foam by modified thermally induced phase separation method Biomaterials, 1999,20(19):1783-1790
    [132] Whang K, Thomas CH, Healy K E. A novel method to fabricatebioabsorbable scaffolds.Polymer, 1995, 36(4):837-842
    [133] Yang S,Leong K,Du Z,et al.The design of scaffolds for use in tissue engineering.Part 1.traditional factors.Tissue Eng,2001,7(6): 679-689
    [134] Mooney D,Baldwin D,Suh N,et al.Novel approach to fabricate porous spongs of poly(D,L-lactic acid)without the use of organic solventsBiomaterials. 1996,17(14):1417-1422
    [135] Yoo J,Cho K,Bae W S,el al. Transformation—toughened ceramic multilayers with compositional gradients [J].J. Arn. Cer Soc.1998,81(1):21-32
    [136] Xiong Z, Yan Y, Zhang R..Fabrication of porous poly(L一lactic acid)scaffolds for bone tissue engineering via precise extrusion. 200l, 45:773-779
    [137] Sherwood JK,Riley SL,Palazzolo R,et al.A three-dimensional osteochondral composire scaffold for articular cartilage repair [J]. Biomaterials,2002,23:4739-4751
    [138] 何川,邓廉夫,周来生,等。自体成骨细胞nBCG复合物修复犬胫骨骨缺损[J].中国矫形外科杂志,2003,11:1047-1049
    [139] Lander R, Pfister A, Hubner U, et al.Fabrication of soft tissue engineeering scaffolds by means of rapid prototyping techniques [J].J Mater Sci,2002,37:3107-3116
    [140] Kim HT, Zaffagnini S, Mizuno S, et al. A peek into the pos s ible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair. J Orthop Sports Phys Ther 2006; 36(10):765-773
    [141] Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior [J]. Biomaterial, 2003 ,24 :2267- 2275
    [142] Lin C Y, Kikuchi N, Hollister S J. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity[J].Journal of Biomechanics , 2004,37 :623 – 636
    [143] Sittinger M, Reitzel D, Dauner M, et al. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J Biomed Mater Res, 1996, 33(2): 57-63
    [144] Spain TL, Agrawal CM, Athanasion KA. New technique to extend the useful life of a biodegradable cartilage implant. Tissue Eng, 1998, 4(4):343-352
    [145] Freed LE, Grande DA, Lingbin Z, et al. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res, 1994, 28(8): 891-899
    [146] Chu CR, Coutts RD, Yoshioka M, et al. Articular cartilage repair using allogeneic perichondrocyte-seeded biodegradable porous polylactic acid (PLA): a tissue-engineering study. J Biomed Mater Res, 1995, 29(9): 1147-1154
    [147] Leong K F, Cheah C M. Solid freeform fabrication of three dimensional scaffolds for engineering replacement tissues and organs. [J] . Biomaterials, 2003, 24:2363 – 2378
    [148] Wang K, Thomas C H. A novel method to fabricate biodegradable scaffolds [J].Polymer, 1995, 36:837 – 842
    [149] Terry DE, Chopra RK, Ovenden J, et al. Differential use of alcian blue and toluidine blue dyes for quantification and isolation of anionic glycoconjugates f rom cell culture :application to proteoglycans and a high molecular weight glycoprotein synt hesized by articular chondrocytes [J] . A naly tical B iochem, 2000,285 :211
    [150] 张志光,郑卫平,苏凯,等. 兔关节软骨细胞的分离培养和形态学特征[J] . 中山大学报:医学科学版,2004,25(1):63
    [151] 王建 杨志明 解慧琪.离心管内组织工程软骨培养的研究。中华实验外科杂志,2003;20(11):1029-1030
    [152] 李雪盛,黄金中。培养状态下成人鼻中隔软骨细胞生物学特性的研究。临床耳鼻咽喉科杂志,2000,14:485-487
    [153] Park SS,Ward MJ.Tissue engineered cartilage for implantation and grafting.Facial Plast Surg,1995;11:278-283
    [154] Tamamura Y, Iwamoto M. Rapid phenotypic changes in passaged articular chondrocyte subpopulations [J]. Clin Calcium, 2004,14 (7):15
    [155] 赵铱民. 颌面赝复学[M]. 西安:世界图书出版社,2004:1-5
    [156] Gilding DK.Biodegradable polymers. In: Biocompatibility of Clinical Implant Materials.CRC Press, 1981, 209-232
    [157] Leong, K.F. et al. Solid freeform fabrication of three- dimensional scaffolds for engineering replacement tissues and organs.Biomaterials,2003,24, 2363–2378
    [158] 熊卓,颜永年,张仁佶,等. 骨组织工程聚左旋乳酸多孔框架 快速成形研究. 清华大学学报(自然科学版) , 2002,42 (2) : 157-160
    [159] Hsu SH, Chang SH, Yen HJ,et al. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs, 2006,30(1):42-55
    [160] Zuwei Ma, Zhengwei Mao, Changyou GAO. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids and Surfaces B: biointerface,2007, 137–157
    [161] Piepera J S. Crosslinked type Ⅱcollagen matrices: preparationcharacterization, and potential for cartilage engineering. Biomaterials, 2002, 23 :3183
    [162] Sandya S, Achan MA, Sudhakaran PR.Parallel changes in fibronectin and alpha5beta1 integrin in articular cartilage in type Ⅱc ollagen-induced arthritis. Indian J Biochem Biophys. 2007,44(1):14-8
    [163] Sato T, Chen G, Ushida T, et al. Tissue-engineered cartilage by in vivo culturing of chondrocytes in PLGA-collagen hybrid sponge. Mater Sci Eng C, 2001, 17 (1): 83-89
    [164] Ma Z, Cao C, Shen J. Surface modification of poly-L-lactic (PLLA) membrane by grafting acrylamide: an effective way to improve cytocompatibility for chondrocytes[J]. Biomater Sci PolymEd, 2003, 14(1) :13-25
    [165] Mizuno M, Shino M, Kobayashi D, et al. Osteogenesis by bone marrow stronal cells naintainde on type Ⅰcollagen matrix gels in vivo [J] .Bone, 1997, 20(2):101-107
    [166] Weiser L, Bhargara M, Attia E, et al. Effect of serum and platelet derived growth factor on chondrocyte grown in collagen gels [J]. Tissue Eng, 1999, 5(6):533-544
    [167] Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications[J] .Biomaterials ,2003 ,24 (24) :4337-4351
    [168] 吴俊,孙俊英. 软骨组织工程支架材料研究进展[J] . 中国矫形外科杂志,2004 ,12 :282-284
    [169] Lee CH ,Singla A ,Lee Y. Biomedical applications of collagen [J].Int J Pharm,2001 ,221 (1-2) :1-22
    [170] Takahashi T, Ogasawara T,Asawa Y,et al. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferationculture. Tissue Eng. 2007 Jul; 13(7):1583-92
    [171] 李忠,杨柳等.胶原凝胶包埋软骨细胞复合聚磷酸钙纤维/左旋聚乳酸支架异体移植修复兔关节软骨缺损 中华实验外科杂志,2005,22(3):266-268
    [172] KojimaK,BonassarLJ,IgnotzRA,SyedK,CortiellaJ,VacantiCA.Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea.Ann Thorac Sur 2003;76:1884-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700