大功率LED模块温度湿度加速寿命试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于大功率发光二极管(LED)的半导体照明被认为是新型的下一代光源,其具有低能耗、高效和长寿命等优点。但是,由于大功率LED光源在实际应用中出现了诸多可靠性问题,阻碍了LED光源的大规模应用。大功率LED光源要想取代传统照明光源,必须解决可靠性问题。因此,大功率LED可靠性的问题正受到日益广泛的关注和研究。
     本论文主要采用试验、数值模拟与理论分析相结合的方法来研究大功率白光LED的可靠性问题。引起大功率LED可靠性问题的主要原因是大功率LED技术还不是很成熟,有很多结构设计、材料选择和加工工艺上的缺陷。在实际使用中一旦遇到恶劣的环境,这些缺陷就会被放大,使LED较早失效。所以本论文主要从材料性能、温度和湿度对LED可靠性的影响、失效分析等方面进行可靠性问题的研究,具体的工作主要包括以下几个方面:
     用试验和模拟两种方法研究了荧光粉/硅胶复合材料的热导率。对荧光粉体积分数从0到40%的荧光粉/硅胶复合材料在30℃到150℃下的热导率进行了测试。并率先利用概率密度函数和Monte Carlo方法,依据荧光粉颗粒的实际粒径分布,得到了荧光粉/硅胶复合材料的理论建模,利用理论计算得到硅胶和荧光粉颗粒之间的界面热阻,将界面热阻引入模型,对不同大小荧光粉颗粒与硅胶界面上的温度阶跃进行了比较和研究。
     通过对荧光粉/硅胶复合材料进行在85℃高温和85℃/85%RH高温高湿条件下的老化试验,得到了荧光粉/硅胶复合材料的激发光谱和发射光谱随时间的变化规律,分析了温度和湿度对荧光粉/硅胶复合材料性能的影响机制。
     利用差示扫描量热仪对硅胶进行了等温和动态条件下的固化试验,建立了硅胶的固化动力学模型。基于有限元软件ABAQUS,建立了能够进行固化仿真模拟的非线性瞬态传热模型,该模型解决了对硅胶固化过程模拟计算的问题,和试验结果吻合得较好。
     对硅胶进行了多频条件下的动态力学性能测试,由硅胶在多频下的动态力学温度谱分析了硅胶的粘弹性性质,得到了玻璃化转变温度和激活能等重要参数,根据时温叠加原理构建了硅胶储能模量的主曲线。
     通过制备在荧光粉层中具有不同荧光粉含量的LED,采用试验和模拟两种方法研究了荧光粉层对结温的影响,得到了荧光粉含量与结温之间的对应关系。
     通过采用高环境温度和大电流的试验条件,对一系列不同结构的LED器件进行了加速试验,研究了温度对LED器件可靠性的影响。对失效的LED器件,使用显微形貌观察、开封检测和热重分析等分析手段进行了失效分析,揭示了LED器件在高温条件下的失效模式和失效机制。
     通过对大功率LED进行在热冲击和温度循环条件下的可靠性试验,研究了大功率LED在快速温度变化下的可靠性和失效模式,对LED在热冲击和温度循环下的瞬态温度场和应力应变进行了精确的建模仿真,利用失效分析和模拟结果相结合的方法,揭示了LED在快速温度变化下的失效机制。
     通过对暖白光和正白光大功率LED进行在一系列温度和湿度下的工作寿命试验,得到了LED的寿命数据。分析了温度和湿度对LED工作寿命的影响,揭示了温度和湿度对LED工作寿命影响的机制,并建立了LED在温度和湿度下的寿命模型。
It has been widely accepted that high power light emitting diodes (LEDs) will be the next generation light source due to their excellent performance in terms of high efficiency, low power consumption, and long life. However, the reliability problems exist in the application of LEDs, while have hindered large-scale application of LED devices. Thus, the reliability is becoming an essential barrier for LED devices to substitute the traditional light sources, and great attentions have been paid to the reliability of high power LED devices at present.
     In this dissertation, the reliability issues of the high power LEDs are mainly studied by means of experiment, simulation, and theoretical analysis. The defects in material selection, structural design and manufacturing technology are the main reasons that will cause reliability problems for LEDs. In harsh environments, these defects will be developed and then lead to degradation and may let earlier failure of LEDs. Therefore, the key issues in the material properties, the effects of thermal and humidity stresses on the reliability for LEDs, and failure analysis are studied in this dissertation, and some contributions are achieved as bellow:
     The effective thermal conductivity of silicone/phosphor composites is studied experimentally and numerically. Thermal conductivity measurements are conducted from 30 to 150℃for the composites with phosphor volume fraction up to 40%. In numerical study, a finite element model with empirical particle size distribution and random particle position is constructed by using probability density function and Monte Carlo method, with the interfacial thermal resistance layer between phases also introduced into the model. The temperature jumps across the interfaces between phosphor and silicone are investigated, and the temperature jumps at the interface are compared between different size phosphors.
     High humidity and high temperature test (85℃/85%RH) and thermal aging test (85℃) are performed on silicone/phosphor composites. The luminescence properties, photoluminescent excitation spectra and emission spectra, of silicone/phosphor composites during the 85℃stress and the 85℃/85%RH stress are obtained. The mechanism of high temperature and high humidity effects on the luminescence properties of phosphor/silicone composite is investigated.
     The curing reaction processes of the silicone under isothermal and nonisothermal conditions are performed using a differential scanning calorimetry (DSC). The curing reaction kinetics model for silicone is derived. A nonlinear transient heat transfer finite element model based on commercial finite element software, ABAQUS, is developed to simulate the curing process of silicone. Good agreement between experimental data and numerical analysis by the curing model is obtained.
     Dynamic mechanical analysis is adopted to study the dynamic mechanical properties of the transparent silicone resins for LEDs packaging. The viscoelastic behavior of silicone is obtained from multi-frequencies dynamic mechanical temperature spectra. Glass transition and the activation energy of it are analyzed. A master curve of storage modulus ia generalized according to time-temperature superposition principle.
     The effects of the phosphor layer on the junction temperature and temperature in packaging for the white phosphor-conversion light-emitting diodes are investigated using special LED devices with varying phosphor concentrations. The relationship of phosphor concentration and junction temperature are obtained by experiments and simulation.
     To investigate the high temperature effects on the reliability of LEDs, the accelerated tests for LEDs with different structure are performed under high environment temperature and high current density. The failure modes and failure mechanisms for LEDs under high temperature are obtained by failure analysis. The failure analysis methods include microtopography, decapping, and thermal gravimetric analysis.
     To evaluate the reliability and failure modes of LEDs under rapid temperature changes, thermal shock testing and thermal cycle testing are performed, respectively. The dynamic thermo-mechanical responses of the LED under thermal cycling and thermal shock loading are investigated by thermo-mechanical finite element modeling and analysis. The failure mechanisms of LED under thermal shock are investigated by comparison and synthesizing the results of failure analysis and thermal-mechanical simulation.
     A series of life tests for warm white and nature white high power LEDs, respectively, under different temperature and humidity induced stresses are performed. The lifetime data about LED under different stresses are obtained. The temperature and humidity effects on the operating life of LEDs are investigated. The mechanisms of degradation for LEDs under temperature and humidity stress are obtained. An operating life model for LED under temperature and humidity induced stresses is also obtained.
引文
[1]刘恩科,朱秉升,罗晋生.半导体物理学.(第四版).北京:国防工业出版社,1994
    [2]Holonyak J.N., Bevacqua S.F. Coherent (visible) light emission from Ga(Asl-xPx) junctions. Applied Physics Letters,1962,1(4):82-83
    [3]Craford M.G., Shaw R.W., Herzog A.H., Groves W.O. Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. Journal of Applied Physics,1972,43(10):4075-4083
    [4]Craford M.G. Recent developments in light-emitting-diode technology. IEEE Transactions on Electron Devices,1977,24(7):935-943
    [5]Logan R.A., White H.G, Wiegmann W. Efficient green electroluminescence in introgen-doped GaP p-n junctions. Applied Physics Letters,1968,13(4):139-141
    [6]Logan R.A., White H.G, Wiegmann W. Efficient green electroluminescence junctions in GaP. Solid State Electronics,1971,14(1):55-70
    [7]Rupprecht H., Woodall J.M., Petit GD. Efficient visible electroluminescence at 300K from Ga1-xAlxAs p-n junctions grown by liquid-phase epitaxy. Applied Physics Letters, 1967,11(3):81-83
    [8]Schubert E.F. Light-emitting diodes. (2nd ed). New York:Cambridge University Press, 2006
    [9]Fletcher R.M., Kuo C.P., Osentowski T. D., Huang K. H., Craford M.G, Robbins V.M. The growth and properties of high performance AlGalnP emitters using a lattice mismatched GaP window layer. Journal of Electronic Materials,1991,20(12): 1125-1130
    [10]Huang K.H., Yu J.G., Kuo C.P., Fletcher R.M., Osentowski T.D., Stinson L.J., Craford M.G Twofold efficiency improvement in high performance AlGalnP light-emitting diodes in the 555-620 nm spectral region using a thick GaP window layer. Applied Physics Letters,1992,61(9):1045-1047
    [11]Nakamura S., Mukai T., Senoh M., Naruhito I. Thermal annealing effects on p-type Mg-doped GaN films. Japanese Journal of Applied Physics Part 2,1992,31:L139-L142
    [12]Yamada M., Mitani T., Narukawa Y., Shioji S., Niki I., Sonobe S., Deguchi K., Sano M., Mukai T. InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode. Japanese Journal of Applied Physics Part 1,2002,41(2):L1431-L1433
    [13]Chang S.J., Lin Y.C., Su Y.K., Chang C.S., Wen T.C., Shei S.C., Ke J.C., Kuo C.W., Chen S.C., Liu C.H. Nitride-based LEDs fabricated on patterned sapphire substrates. Solid State Electronics,2003,47(9):1539-1542
    [14]Fujii T., Gao Y., Sharma R., Hu E.L., Denbaars S.P., Nakamura S. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters,2004,84(6):855-857
    [15]Huang H.W., Chu J.T., Kao C.C., Hseuh T. H., Lu T. C., Kuo H.C., Wang S.C., Yu C.C. Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface. Nanotechnology,2005,16(9):1844-1848
    [16]Kish F.A., DeFevere D.A., Vanderwater G.R., Trott GR., Weiss R.J., Jr. Major J.S. High luminous flux semiconductor wafer-bonded AlGaInP/GaP large-area emitters. Electronics Letters,1994,30(21):1790-1792
    [17]Hofler GE., Carter-Coman C., Krames M.R., Gardner N.F., Kish F.A., Tan T.S., Loh B., Posselt J., Collins D., Sasser G. High-flux, high-efficiency tranparent-substrate AlGaInP/GaP light-emitting diodes. Electronics Letters,1998,34(18):1781-1782
    [18]Kish F.A., Steranka F.M., DeFevere D.C., Vanderwater D. A., Park K.G., Kuo C.P., Osentowski T. D., Peanasky M.J., Yu J.G., Fletcher R.M., Steigerwald D.A., Craford M.G., Robbins V.M. Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes. Applied Physics Letters,1994,64(21):2839-2841
    [19]Wierer J.J., Steigerwald D.A., Krames M.R., O'Shea J.J., Ludowise M.J., Christenson G., Shen Y.C., Lowery C., Martin P.S., Subramanya S., Gotz W., Gardner N.F., Kern R.S., Stockman S.A. High-power AlGaInN flip-chip light-emitting diodes. Applied Physics Letters,2001,78(22):3379-3381
    [20]Shchekin O.B., Epler J.E., Trottier T.A., Margalith T., Steigerwald D.A., Holcomb M.O., Martin P.S., Krames M.R. High performance thin-film flip-chip InGaN/GaN light-emitting diodes. Applied Physics Letters,2006,89(7):071109, doi:10.1063/1.2337007
    [21]Krames M.R., Ochiai-Holcomb M., Hofler G.E., Carter-Coman C., Chen E.I., Tan I.H., Grillot P., Gardner N.F., Chui H.C., Huang J.W., Stockman S.A., Kish F.A., Craford M.G., Tan T.S., Kocot C.P., Hueschen M., Posselt J., Loh B., Sasser G., Collins D. High-power truncated-inverted-pyramid AlGaInP-GaP light-emitting diodes exhibiting>50% external quantum efficiency. Applied Physics Letters,1999,75(16): 2365-2367
    [22]Craford M.G, Holonyak J., Kish F.A. In pursuit of the ultimate lamp. Scientific American,2001,284(2):62-67
    [23]Sugawara H., Itaya K., Hatakoshi G. Characteristics of a distributed Bragg reflector for the visible-light spectral region using InGaAlP and GaAs:comparison of transparent and loss-type structures. Journal of Applied Physics,1993,74(5):3189-3193
    [24]Itaya K., Sugawara H., Hatakoshi G. InGaAlP visible light laser diodes and light-emitting diodes. Journal of Crystal Growth,1994,138(1-4):768-775
    [25]Zukauskas A., Shur M.S., Gaska R. Introduction to solid-state lighting. New York: John Wiley,2002
    [26]Kroemer H. A proposed class of heterojunction injection lasers. Proceedings of the IEEE,1963,51(12):1782-1783
    [27]Ishiguro H., Sawa K., Nagao S., Yamanaka H., Koike S. High efficiency GaAlAs light-emitting diodes of 660 nm with a double heterostructure on a GaAlAs substrate. Applied Physics Letters,1983,43(11):1034-1036
    [28]Chang S.J., Chang C.S., Su Y.K., Chang P.T., Wu Y.R., Huang K.H., Chen T.P. AlGaInP yellow-green light-emitting diodes with a tensile strain barrier cladding layer. IEEE Photonics Technology Letters,1997,9(9):1199-1201
    [29]Hu N.C., Wu C.C., Chen S.F., Hsiao H.C. Implementing dynamic daylight spectra with light-emitting diodes. Applied Optics,2008,47(19):3423-3432
    [30]Uchida Y, Taguchi T. Lighting theory and luminous characteristics of white light-emitting diodes. Optical Engineering,2005,44(12):124003, doi:10.1117/ 1.2131071
    [31]Schubert E.F., Kim J.K. Solid-state light source getting smart. Science,2005,308(5726): 1274-1278
    [32]Nakamura S., Pearton S., Fasol G The blue laser diode:GaN based light emitters and lasers. (2nd ed). Berlin:Springer,1997
    [33]Kaufmann U., Kunzer M., Kohler K.H., Obloh P.W., Schlotter P., Schmidt R., Wagner J., Ellens A., Rossner W., Kobusch M. Ultraviolet pumped tricolor phosphor blend white emitting LEDs. Physica Status Solidi A,2001,188(1):143-146
    [34]Mueller-Mach R., Mueller G.O., Krames M.R. Phosphor materials and combinations for illumination-grade white PCLEDs. Third International Conference on Solid State Lighting, SPIE 5187,2004:115-122
    [35]Mueller-Mach R., Mueller G.O., Krames M.R., Trottier T. High-power phosphor-converted light-emitting diodes based on Ⅲ-Nitrides. IEEE Journal of Selected Topics in Quantum Electronics,2002,8(2):339-345
    [36]Summers C.J., Wagner B.K., Menkara H. Solid state lighting:diode phosphors. Third International Conference on Solid State Lighting, SPIE 5187,2004. doi:10.1117/12.514075
    [37]Wu H., Zhang X., Guo C., Xu J., Wu M., Su Q. Three-band white light from InGaN-based blue LED chip precoated with green/red phosphors. IEEE Photonics Technology Letters,2005,17(6):1160-1162
    [38]Taguchi T. Overview:present status and future prospect of system and design in white LED lighting technologies. Fourth International Conference on Solid State Lighting, SPIE 5530,2004, doi:10.1117/12.567101
    [39]Nayama S., Itoh K. Case study on combination of fluorescent materials for white LED to obtain high color rendering indexes. Journal of Light and Visual Environment,2006, 30(1):39-42
    [40]Kobashi K., Taguchi T. Warm white LEDs lighting over Ra=95 and its applications. In: Light-Emitting Diodes:Research, Manufacturing, and Applications XI. SPIE 6486, 2007. doi:10.1117/12.698197
    [41]Jordan R.C., Bauer J., Oppermann H. Optimized heat transfer and homogeneous color converting for ultra high brightness LED package. Photonics in the Automobile II, SPIE 6198,2006,619801-619812
    [42]Collins W.D., Krames M.R., Verhoeckx G.J., Leth N.J.M. Using electrophoresis to produce a conformal coated phosphor-converted light emitting semiconductor. Patent Application Publication,2002,0187571 A1
    [43]Fujita S., Yoshihara S., Sakamoto A., Yamamoto S., Tanabe S. YAG glass-ceramic phosphor for white LED (Ⅰ):background and development. Fifth International Conference on Solid State Lighting, SPIE,2005,5941:594111. doi:10.1117/12.614668
    [44]Tanabe S., Fujita S., Yoshihara S., Sakamoto A., Yamamoto S. YAG glass-ceramic phosphor for white LED (Ⅱ):luminescence characteristics. Fifth International Conference on Solid State Lighting, SPIE,2005,5941:594112. doi:10.1117/12.614681
    [45]Yamada K., Imai Y, Ishii K. Optical simulation of light source devices composed of blue LEDs and YAG phosphor. Journal of Light and Visual Environment,2003,27(2): 70-74
    [46]Narendran N., Gu F., Freyssinier-Nova J.P., Zhu Y. Extracting phosphor-scattered photons to improve white LED efficiency. Physica Status Solidi,2005,202(6): R60-R62
    [47]Zhu Y., Narendran N., Gu Y. Investigation of the optical properties of YAG:Ce phosphor. Sixth International Conference on Solid State Lighting, SPIE 6337,2006, 63370S
    [48]Arik M., Setlur A., Weaver S., Haitko D., Petroski J. Chip to system levels thermal needs and alternative thermal technologies for high brightness LEDs. Journal of Electronic Packaging,2007,129(3):328-338
    [49]Narendran N. Improved performance white LED. Fifth International Conference on Solid State Lighting, SPIE 5941,2005,45-50
    [50]刘胜,刘宗源,陈明祥,罗小兵,王恺,甘志银.大功率白光发光二极管的封装结构和封装方法.发明专利,申请号:200710044964.6
    [51]赖寒.十城万盏:要乐观积极,更要实事求是.中国光电,2010,7:8-11
    [52]于占涛.LED路灯:路漫漫其修远兮.中国光电,2010,7:18-19
    [53]Koh S., Driel W.V., Zhang G.Q. Degradation of light emitting diodes:a proposed methodology. Journal of Semiconductors,2011,32(1):014004
    [54]Tan L.X., Li J., Liu S. et al. Effect of defects on thermal and optical performance of high power LEDs. The 4th International Forum on Solid State Lighting,2007,304-309
    [55]Zhou S.J., Zhang Q., Cao B., Liu S. Evaluation of GaN-based blue light emitting diodes based on temperature/humidity accelerated tests.11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP),2010, 930-934
    [56]Luo X.B., Wu B.L., Liu S. Effects of moist environments on LED module reliability. IEEE Transactions on Device and Materials Reliability,2010,10(2):182-186
    [57]Wu B.L., Luo X.B., Liu S., Effect mechanism of moisture diffusion on LED reliability. Electronic System-Integration Technology Conference (ESTC),2010,1-5
    [58]Meneghesso G, Meneghini M. Zanoni E. Recent results on the degration of white LEDs for lighting. Journal of Physics D:Applied Physics,2010,43(35):354007. doi: 10.1088/0022-3727/43/35/354007
    [59]Moe C.G, Reed M.L., Garrett G.A., Sampath A.V., Alexander T., Shen H., Wraback M., Bilenko Y., Shatalov M., Yang J., Sun W., Deng J., Gaska R. Current-induced degradation of high performance deep ultraviolet light emitting diodes. Applied Physics Letters,2010,96(21):213512. doi:10.1063/1.3435485
    [60]Meneghini M., Trevisanello L., Podda S. Stability and performance evaluation of high brightness light emitting diodes under DC and pulsed bias conditions. Sixth International Conference on Solid State Lighting, SPIE 6337,2006,63370R. doi:10.1117/12.683803
    [61]Hu J.H., Yang L.Q., Shin M.W. Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes. Journal of Physics D:Applied Physics,2008, 41(3):035107. doi:10.1088/0022-3727/41/3/035107
    [62]Yang S.C., Lin P., Wang C.P., Bang H.S., Chen C.L., Chiang P.F., Lee A.T., Chu M.T. Failure and degradation mechanisms of high-power white light emitting diodes. Microelectronics Reliability,2010,50(7):959-964
    [63]Cao X.A., Arthur S.D. High-power and reliable operation of vertical light-emitting diodes on bulk GaN. Applied Physics Letters,2004,85(18):3971-3973
    [64]Tsai C.C., Wang J., Chen M.H., Hsu Y.C., Lin Y.J., Lee C.W., Huang S.B., Hu H.L., Cheng W.H. Investigation of Ce:YAG doping effect on thermal aging for high power phosphor-converted white light emitting diodes. IEEE Transactions on Device and Materials Reliability,2009,9(3):367-371
    [65]Barton D.L., Osinski M., Perlin P.G. Eliseev P., Lee J. Single-quantum well InGaN green light emitting diode degradation under high electrical stress. Microelectronics Reliability,1999,39(8):1219-1227
    [66]Hu J.Z., Yang L.Q., Kim L., Moo W.S. The ageing mechanism of high-power InGaN/GaN light-emitting diodes under electrical stresses. Semiconductor Science Technology,2007,22(12):1249-1252
    [67]Yang S.C., Lin P., Fu H.K., Wang C.P., Chen T.T., Lee A.T., Huang S.B., Chu M.T. Characterization investigation and evaluation of ESD robustness of high power light-emitting diodes. American Physical Society, APS March Meeting,2010,55(2)
    [68]Driel W.D.V., Li X.P., Chen J. Solid state lighting reliability:form components to system, CHINASSL2010 proceeding,2010,203-207
    [69]Meneghesso G., Chini A., Maschietto A., Zanoni E., Malberti P., Ciappa M. Electrostatic discharge and electrical overstress on GaN/InGaN light emitting diodes. Electrical Overstress/Electrostatic Discharge Symposium, EOS/ESD'01,2001,247-252
    [70]Meneghini M., Tazzoli A., Butendeich R., Hahn B., Meneghesso G., Zanoni E. Soft and hard failures of InGaN-Based LEDs submitted to electrostatic discharge testing. IEEE Electronic Device Letters,2010,31(6):579-581
    [71]Ai W.W., Guo X., Liu B., Song Y.P., Liu Y., Shen G.D. Research and progress in reliability of GaN-based LED. Semiconductor Technology,2006,31(3):161-165
    [72]Kang J.M., Kim J.W., Choi J.H., Kim D.H., Kwon H.K. Life-time estimation of high-power blue light-emitting diode chips. Microelectronics Reliability,2009, 49(9-11):1231-1235
    [73]Chen Z.Z., Liu P., Qi S.L., Lin L., Pan H.P., Qin Z.X., Yu T.J., He Z.K., Zhang G.Y. Junction temperature and reliability of high-power flip-chip light emitting diodes. Materials Science in Semiconductor Processing,2007,10(4-5):206-210.
    [74]Meneghini M., Rigutti L., Trevisanello L., Cavallini A., Meneghesso G, Zanoni E. A model for the thermal degradation of metal/(p-GaN) interface in GaN-based LEDs. Journal of Applied Physics,2008,103:063703. doi:10.1063/1.2885703
    [75]Arik M.T., Weaver S. Chip scale thermal management of high brightness led packages. Fourth International Conference on Solid State Lighting, SPIE 5530,2004:214-223
    [76]Trevisanello L., Meneghini M., Mura G, Vanzi M., Pavesi M., Meneghesso G, Zanoni E. Accelerated life test of high brightness light emitting diodes. IEEE Transactions on Device and Materials Reliability,2008,8(2):304-311
    [77]Ishizaki S., Kimura H., Sugimoto M. Lifetime estimation of high power LEDs. Journal of Light & Visual Environment,2007,31(1):11-18
    [78]Meneghini M., Trevisanello L., Sanna C., Mura G, Vanzi M., Meneghesso G, Zanoni E. High temperature electro-optical degradation of InGaN/GaN HBLEDs. Microelectronics Reliability,2007,47(9-11):1625-1629
    [79]Meneghini M., Trevisanello L.R., Zehnder U., Meneghesso G, Zanoni E. Reversible degradation of ohmic contacts on p-GaN for application in high brightness LEDs. IEEE Transactions on Electron Devices,2007,54(12):3245-3251
    [80]Keppens A., Ryckaert W.R., Deconinck G, Hanselaer P. High power light-emitting diode junction temperature determination from current-voltage characteristics. J. Appl. Phys.,2008,104:093104. doi:10.1063/1.3009966
    [81]Keppens A., Ryckaert W.R., Deconinck G, Hanselaer P. Modeling high power light-emitting diode spectra and their variation with junction temperature. J. Appl. Phys., 2010,108:043104. doi:10.1063/1.3463411
    [82]Lee C.Y., Su A., Liu Y.C., Fan W.Y., Hsieh W.J. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor. Sensors, 2009,9:5068-5075
    [83]Meneghini M., Trevisanello L.R., Penzo R., Benedetti M., Zehnder U., Strauss U., Meneghesso G, Zanoni E. Reversible degradation of GaN LEDs related to passivation. 45th annual IEEE International Proceedings, Reliability Physics Symposium,2007, 457-461
    [84]Meneghesso G, Levada S., Zanoni E. Failure mechanism of GaN-Based LEDs related with instabilities in doping profile and deep levels. IEEE 42nd Annual. Reliability Physics Symposium Proceedings,2004,474-478
    [85]Fang Z.Q., Reynolds D.C., Look D.C. Changes in electrical characteristics associated with degradation of InGaN blue light emitting diodes. Journal of Electronic Materials, 2000,29(4):448-451
    [86]Matukas J., Palenskis V., Vysniauskas J., Saulys B., Pralgauskaite S., Pincevicius A. Noise characteristics and reliability of high power white light emitting diodes based on nitrides. Sixth International Conference on Advanced Optical Materials and Devices, SPIE 7142,2008:71420H. doi:10.1117/12.816513
    [87]Tian Y.C., Li W.J., Chen J., Liu L., Liu G, Tkachuk A., Tian J., Xiong Y., Gelb J., Hsu G, Yun W.B. High resolution hard x-ray microscope on a second generation synchrotron source. Review of Scientific Instruments,2008,79(10):103708. doi:10.1063/1.3002484
    [88]Wang J.J., Zou D.Q., Lu M.F., Ren W., Liu S. Evaluation of interfacial fracture toughness of a flip-chip package and a bimaterial system by a combined experimental and numerical method. Engineering Fracture Mechanics,1999,64(6):781-797
    [89]王东,孙晓红,赵维平,李明飞.激光闪射法测试耐火材料导热系数的原理与方法.计量与测试技术,2009,36(3):38-42
    [90]Zeng J., Fu R. Numerical simulation of thermal conductivity of particle filled epoxy composites. Journal of Electronic Packaging,2009,131(4):041006. doi:10.1115/1.4000210
    [91]Sanada K., Tada Y, Shindo Y Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compositess Part A,2009,40(6-7): 724-730
    [92]Yue C., Zhang Y, Hu Z., Liu J., Cheng Z. Modeling of the effective thermal conductivity of composite materials with FEM based on resistor networks approach. Microsystem Technologies,2010,16(4):633-639
    [93]Hasselman D.P.H., Johnson L.F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials,1986,21(6): 508-515
    [94]Benveniste Y. Effective thermal conductivity of composites with a thermal contact resistance between the constituents:nondilute case. Journal of Applied Physics,1987, 61(8):2840-2843
    [95]Every A.G., Tzou Y., Hasselman D.P.H., Raj R. The effect of particle size on the thermal conductivity of ZnS/diamond composites. Acta Metallurgica et Materialia, 1992,40(1):123-129
    [96]Nan C.W., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997,81(10):6692-6699
    [97]Smith P.A., Torquato S. Computer simulation results for bounds on the effective conductivity of composites media. Journal of Applied Physics,1998,65(3):893-900
    [98]Cai W.Z., Tu S.T., Tao GL. Thermal conductivity of PTFE composites with three-dimensional randomly distributed fillers. Journal of Thermoplastic Composite Materials,2005,18(3):241-253
    [99]Pitchumani R., Yao S.C. Evaluation of transverse thermal diffusivity of unidirectional fiber-reinforced composites. International Journal of Heat and Mass Transfer,1991, 35(9):2185-2194
    [100]Wang J., Yi X.S. Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Composites Science and Technology,2004,64(10-11):1623-1628
    [101]COMSOL Multiphysics 3.5. COMSOL Multiphysics help document
    [102]Hasselman D.P.H., Donaldson K.Y., Geiger A.L. Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminium matrix composite. Journal of American Ceramic Society,1992,75(11):3137-3140
    [103]Hsu Y.C., Tsai C.C., Chen M.H., Lo Y.T., Hsu Y.C., Cheng W.H. Decay mechanisms of lumen and chromaticity for high-power phosphor-based white-light-emitting diodes in thermal aging.58th Electronic Components and Technology Conference,2008, 779-782
    [104]Blasse G, Bril A.J. Investigation of some Ce3+ activated phosphors. Journal of Chemical Physics,1976,47(12):5139-5245
    [105]Jacobs R.R, Krupke W.F, Weber M.J. Measurement of excited state absorption loss for Ce3+ in Y3A15O12 and implications for tunable 5d→4f rare earth lasers. Applied Physies Letters,1978,33(5):410-412
    [106]陈都.纳米YAG:Tb3+绿光荧光粉的制备和YAG:ce3+黄光荧光粉的性能改善:[博士论文].厦门大学,2007
    [107]刘振海,畠山立子,陈学思.聚合物量热测定.(第一版).北京:化学工业出版社,2001
    [108]Vyazovkin S. Alternative description of process kinetics. Thermochimica Acta,1992, 211:181-187
    [109]Sestak J., Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta,1971,3(1):1-12
    [110]Borchardt H.J., Daniels F. The application of differential thermal analysis to the study of reaction kinetics. Journal of American Chemical Society,1957,79(1):41-46
    [111]Gorbatchev V.M. Some aspects of Sestak's generalized kinetic equation in thermal analysis. Journal of Thermal Analysis and Calorimetry,1980,18(1):193-197
    [112]周光泉,刘孝敏.粘弹性理论.(第一版).合肥:中国科学技术大学出版社,1996
    [113]Chen D.Z., Tang C.Y., Chan K.C., Tsuia C.P., Yub P.H.F., Leungc M.C.P., Uskokovic P.S. Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Composites Science and Technology,2007,67(7-8):1617-1626
    [114]Vistasp M.K., Wang Q. Multi-frequency dynamic mechanical thermal analysis of moisture uptake in E-glass/vinylester composites. Composites Part B:Engineering, 2004,35(4):299-304
    [115]田传军,张希艳,邹军,王妍彦.温度对大功率LED照明系统光电参数的影响.发光学报,2010,31(1):96-100
    [116]Zachau M., Becker D., Berben D., Fiedler T., Jermann F., Zwaschka F. Phosphors for solid state lighting. Proceedings of SPIE 6910,2008,691010. doi:10.1117/12.760066
    [117]倪海勇.白光LED用氮化物及氮氧化物荧光粉研究进展.材料研究与应用,2008,2(4):486-489
    [118]Krames M.R., Shchekin O.B., Mueller-Mach R., Mueller Gerd O., Zhou L., Harbers G, Craford G.M. Status and future of high-power light-emitting diodes for solid-state lighting. Journal of Display Technology,2007,3(2):160-175
    [119]Dingle R., Wiegmann W., Henry C.H. Quantum states of confined carriers in very thin AlGaAs-GaAs-AlGaAs heterostructure. Physical Review Letters,1974,33(14): 827-830
    [120]Arik M., Weaver S., Becker C., Zanoni E. Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes.2003 International Electronic Packaging Technical Conference and Exhibition, 2003,1:611-619
    [121]Chen Q., Luo X.B., Liu S. Junction temperature testing system of LED design and measurement.7th China International Forum on Solid State Lighting,2010,313-316
    [122]Meneghini M., Trevisanello L.R., Meneghesso G, Zanoni E. A review on the reliability of GaN-based LEDs. IEEE Transactions on Device and Materials Reliability,2008,8(2): 323-331
    [123]杨江辉.热湿对LED模块可靠性的影响:[硕士学位论文].华中科技大学,2009
    [124]沈兴.差热、热重分析与非等温固相反应动力学.(第一版).北京:冶金工业出版社,1995
    [125]Wu C.B., Jin Y.H., Li W. Synthesis and characterization of a silicone resin with silphenylene units in Si-O-Si backbones II. High Performance Polymers,2010,22(8): 959-973
    [126]Wang Q.Z., Shi T., Xie Z.M. Study on thermal stability of the condensation-type RTV silicone rubber vulcanized by polysilazane. Acta Polymerica Sinica,1994,5:573-577
    [127]Sun J., Huang Y., Cao H., Gong G. Synthesis of heat-resistant silicone resin and studies on its thermal and curing properties. Journal of Aeronautical Materials,2005,25(1): 25-29
    [128]Jovanovic J.D., Govedarica M.N., Dvornic P.R. The thermogravimetric analysis of some polysiloxanes. Polymer Degradation Stability,1998,61(1):87-93
    [129]Kim P.S., Park S.J., Choi H.W., Kim K.H., Yoon H.H. Co-precipitation synthesis and photoluminescence of YAG:Ce phosphors. Molecular Crystals and Liquid Crystals, 2009,499:92-99
    [130]Li X., Liu H., Wang J.Y., Cui H., Han F. YAG:Ce nano-sized phosphor particles prepared by a solvothermal method. Materials Research Bulletin,2004,39(12): 1923-1930
    [131]刘明治.可靠性试验.(第一版).北京:电子工业出版社,2004
    [132]Liu S., Zhu J.S., Zou D.Q., Benson J. Study of delaminated plastic packages by high temperature moir'e and finite element method, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A,1997,20(4):505-512
    [133]Liu S., Zhu J.S., Hu J.M., Pao Y.H. Investigation of crack propagation in ceramic/conductive epoxy/glass systerm. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A,1995,18(3):627-633
    [134]Liu S., Mei Y.H. Behavior of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption, and wave soldering. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A,1995,18(3):634-645
    [135]Song X., Liu S. A performance prediction model for a piezoresistive transducer pressure sensor. International Conference on Electronic Packaging Technology, ICEPT,2003, 30-35
    [136]Liu S., Ren W., Li P.G. Reliability study of a flip-chip-on-silicon BGA (FSBGA) package. International Conference on Electronic Packaging Technology, ICEPT,2003, 407-415
    [137]Tian Y., Wang C., Lum I., Mayer M., Jung J.P., Zhou Y. Investigation of ultrasonic copper wire wedge bonding on Au/Ni plated Cu substrates at ambient temperature. Journal of Materials Processing Technology,2008,208(1-3):179-186
    [138]Manyakhin F., Kovalev A., Yunovich A.E. Aging mechanisms of InGaN/AlGaN/GaN light-emitting diodes operating at high currents. MRS Internet Journal of Nitride Semiconductor Research,1998,3(53):1-6
    [139]Zheng D.S., Qian K.Y., Luo Y. Life test and failure mechanism analyses for high power LED high power LED. Semiconductor Optoelectronic,2005,26(2):87-127
    [140]Ishizaki S., Kimura H., Sugimoto M. Lifetime estimation of high power white LEDs. Journal of Light & Visual Environment,2007,31(1):11-18
    [141]林亮,陈志忠,陈挺,童玉珍,秦志新,张国义.白光LED的加速老化特性.发光学报,2005,26(5):617-620
    [142]余菲,金雷.GaN发光二极管的老化数学模型及寿命测试方法.先进技术研究通报,2011,5(3):55-58
    [143]Yanagisawa T., Shi T. Estimation of the degradation of InGaN/AlGaN blue light-emitting diodes. Microelectronics Reliability,1997,37(8):1239-1241
    [144]Grillot P.N., Krames M.R., Zhao H., Teoh S.H. Sixty thousand hour light output reliability of AlGaInP light emitting diodes. IEEE Transaction on Device and Materials Reliability,2006,6(4):564-574
    [145]乐淑萍,肖慧荣,易江林.GaN基白光LED电流加速老化特性研究.南昌航空工业学院学报(自然科学版),2007,21(1):10-13
    [146]Blischke W.R., Murthy D.N.P. Reliability:modeling, prediction, and optimization. Hoboken:John Wiley & Sons,2000
    [147]Peck D.S. Comprehensive model for humidity testing correlation.24th Annual of Reliability Physics Symposium,1986,44-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700