基于多断面信息的城市道路网交通流预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展,城市汽车保有量不断增加给城市道路交通系统造成极大的考验,交通事故、交通拥堵、环境和能源等问题不断加剧,极大地降低人们出行的便利性。智能交通系统(ITS)是解决城市道路交通问题的有效手段之一,其中交通流预测是ITS的基础性研究内容,为交通控制和诱导提供基础理论支持和数据支持。通过向出行者提供实时有效的交通信息,诱导出行者的出行行为,尽可能充分利用交通基础设施,解决或缓解交通拥堵等问题。深入分析和掌握道路交通流变化规律,提高交通流预测的实时性、可靠性和自适应性成为目前关注和研究的热点。
     本课题以城市道路网断面交通流为研究对象,对各断面交通流时间空间特性和时空预测理论进行深入研究和探索,主要研究内容和成果包括:
     城市道路网交通流不仅随时间变化,同时也受空间因素的影响。在分析交通流空间变化特性基础之上,重点研究城市交通流空间相互作用的影响因素,如距离、交通状态等,结合城市地理学相关理论,对交通流空间相互作用的延迟特性进行深入分析,给出基于时滞的交通流互相关性算法,通过实测数据验证计算法的正确性。
     交通流时空预测模型充分考虑到交通流时间和空间变化特性,如果将所有断面作为整体进行分析和预测,将极大地增加模型的计算复杂度。对比各种聚类分析方法。本文给出基于交通流互相关性的路网断面分组算法,该算法基于平均相关性、主成分分析和k-means,无需初始化聚类参数,如聚类数、聚类中心等,具有较强的灵活性和自适应性。
     本文系统研究单点和多点交通流预测理论,基于过程神经网络模型的预测方法,提出在线自适应复合交通流时空预测(OAHST)模型。OAHST模型基于并行化思想,对单一预测模型进行扩展。OAHST是一个多输入单输出模型,将断面分为主断面和辅助断面,分别估算各断面交通流变化规律进行交通流预测,根据跟断面间的关联关系,对主断面的预测结果进行修正。
     在初始交通流统计样本较为丰富的情况下,建立在线自适应RBF网络预测模型。构建神经网络的难点在于网络结构的确定,即隐节点基本信息,适当的隐节点数可以降低神经网络的计算复杂度,提高学习训练的收敛速度。论文深入研究神经网络序贯学习算法,对其进行改进和优化,提出两阶段混合自适应学习算法(TSMALA算法)。TSMALA基于隐节点贡献度大小,动态增加和删除隐节点,对RBF网络结构进行自适应调整,高效快速地对外界变化做出响应。
     在初始交通流统计样本较小的情况下,建立在线自适应最小二乘支持向量机LS-SVM预测模型。最小二乘支持向量机(LS-SVM)是对支持向量机(SVM)的优化,将所有样本作为支持向量,增加预测过程的计算复杂度,使LS-SVM的解缺乏稀疏性,测速度相对缓慢。本文重点分析支持向量,给出支持向量增加、删除、替换的训练算法,通过动态更新支持向量,严格限制支持向量和训练样本的数量,使预测模型能够对外界的变化及时快速地做出响应。
     根据实际工作需求,在论文研究成果基础之上研发基于时空预测技术的城市道路交通流诱导系统作为实际案例研究。根据业务流程设计相关系统功能的算法流程,通过案例演示应用系统的主要功能模块和操作界面等。
     本文深入分析交通流时间和空间变化特性,基于过程神经网络模型的预测原理,提出并行化交通流时空复合预测(OAHST)模型,OAHST模型单独考虑预测模块输入维,建立交通流数据滑动窗口,依据当前输入样本动态确定预测模型的输入。针对初始样本的大小,分别给出基于最小二乘支持向量机和径向基神经网络的交通流预测模型,在一定程度上提高模型的自适应程度。在理论研究的基础之上开发基于时空复合预测模型的城市道路交通诱导系统。通过理论与实践相结合的方法,实现课题的研究目标,为解决城市道路交通问题和智能交通系统的发展进行有益的探索。
With the development of social economy, the gross quantity of urban cars climbs rapidly, bringing great pressure for the urban road transport system. Traffic problems, such as, traffic accidents, traffic jam, environment, energy and so on, are getting more and more series. All of these greatly reduce the conveniences of people traveling. The Intelligent Transport System (ITS) is a effective method to solve urban road traffic problems. One of the basic works is traffic flow prediction, which provides theoretical and data support for ITS, gives real-time effective traffic information for travelers and induces their travel behaviors. So it is great helpful to make full use of transportation infrastructures and solve or relieve traffic problems. In recent years, it is a hot spot to deeply analyze and get the changing law, improve the real time, reliability and self-adaptability of traffic flow prediction.
     This thesis takes urban road transport network as study objects, explores the spatial-temporal characteristics of the traffic flow and spatial-temporal prediction theory deeply. Its main study contents and results are given as follows.
     The urban road traffic flow changes over time, which is affected by space factors. Based on the analysis of the traffic flow spatial variations, some influence factors on the traffic flow spatial interaction, such as distance, traffic states and so on, are analyzed emphatically. Meanwhile, delay characteristics of traffic flow spatial interaction is analyzed in detail referring to the urban geography theories. A computing formula of traffic flow spatial correlation based on delay characteristics is given. The validity of this formula is verified through quantitative analysis.
     After comparing some clustering methods, a new clustering algorithm of road cross-sections based on the spatial correlation of road traffic flow is given
     Spatial-temporal prediction considers spatial-temporal variation characteristics of the traffic flow, which makes multiple cross-sections as its study objects. So, if all of cross-sections are analyzed and predicted, it will greatly increase the computational complexity. After comparing some clustering methods, a new clustering algorithm of road cross-sections based on the spatial correlation of the road traffic flow is given, which introduces average correlation, principal component analysis and k-means. It doesn't need to initialize clustering parameters, such as clustering number, clustering centers and so on, so it is highly flexible and self-adaptive.
     The thesis explores traffic flow prediction of single and multiple cross-sections. Referring to the idea of process neural network prediction model, the Online Adaptive Hybrid Spatial-temporal Short-term prediction model (OAHST model) is proposed. OAHST model is a single-input-multiple-output model, which divides the road cross-sections into main cross-section and assisting cross-sections. It first predicts the traffic flow variation of each cross-section, and finally the predicting result of the main cross-section is revised according to the correlativity between cross-section traffic flow.
     Under the condition rich initial traffic flow samples, an online self-adaptive RBF network prediction algorithm is constructed. In the process of establishing the neural network, Determining the network structure is a difficult point, that is basic information of hidden nodes of neural network. Appropriate number of hidden nodes can make computational complexity model lower, improve the training convergence speed. After deeply exploring the sequential learning algorithm of the neural network and Radial Basis Function neural network (RBFNN), the Two-Stage Mixed self-adaptive Learning Algorithm of the RBFNN (TSMALA) is proposed, which dynamically determines the network structure. In TSMALA, RBFNN dynamically adds and deletes hidden nodes according to the importance of hidden nodes. This can make the prediction model respond to external changes quickly and efficiently.
     Under the condition of less initial samples, the online self-adaptive least squares support vector machine prediction algorithm is established. Least squares support vector machine (LS-SVM) is the optimization of support vector machine (SVM). It makes all samples as support vectors, which lead to increases the computational complexity of the model, make the results of the model lack sparsity and slow down its testing speed. Based on these and exploring support vectors, the online self-adaptive LS-SVM prediction model (OALS-SVM) is proposed, which dynamically adds, deletes support vectors, strictly limits the number of support vectors, and makes the prediction model respond to external changes quickly and efficiently.
     According to the real requirements, urban road traffic flow guiding system is developed as the case study based on the researching results. At last, the main algorithms and several operation interfaces are presented.
     The thesis deeply explores spatial-temporal variation characteristics of traffic flow, referring to the idea of the process neural network prediction model, a novel spatial-temporal hybrid prediction model (OAHST model) is proposed. OAHST model considers the input dimensions individually, establishes the moving data window of traffic flow, and dynamically determines the inputs of the prediction model according to the input samples. Based on different size of the Initial samples, two prediction algorithms of the single cross-section is proposed, which are based on LS-SVM and RBFNN respectively. These greatly improve the self-adaptability and flexibility of the model. By the way of combining theory with practice, the aims of the research are achieved. It is a useful exploration process for solving urban road traffic problems and developing the ITS.
引文
[1]肖鑫.15座城市因交通拥堵每天损夫近10亿[M].2010
    [2]张晓丽.基于非参数回归的短时交通流量预测方法研究[D].天津:天津大学.2007
    [3]朱茵,陆化普,李瑞敏.智能交通系统概论[M]:中国铁道出版社.2004
    [4]Smith Brian L., Williams Billy M, Keith Oswald R. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C:Emerging Technologies.2002,10 (4):303-321
    [5]王凡.基于支持向量机的交通流预测方法研究[D].大连:大连理工大学.2010
    [6]Ahmaed Mohamed S. Cook Allen R. Analysis of freeway traffic time-series data by using Box-Jenkins technique.[J]. Transportation Research Record.1979:9
    [7]Nihan Nancy L., Holmesland Kjell O. Use of the box and Jenkins time series technique in traffic forecasting[J]. Transportation.1980,9 (2):125-143
    [8]Davis Gary A., Nihan Nancy L. Using time-series designs to estimate changes in freeway level of service, despite missing data[J]. Transportation Research Part A:General.1984,18 (5-6) 431-438
    [9]Benjamin Julian. A time-series forecast of average daily traffic volume[J]. Transportation Research Part A:General.1986,20 (1):51-60
    [10]H. Kopanezou, Th. Trivellas. Time series model for daily traffic volume forecasting[C][M]. London, England.1989:6
    [11]Changkyun Kim, G. Hobeika Antonie. Short-term demand forecasting model from real-time traffic data [C][J]. Proceedings of the Infrastructure Planning and Management.1993:11
    [12]Dieter Wild. Short-term forecasting based on a transformation and classification of traffic volume time series[J]. International Journal of Forecasting.1997,13 (1):63-72
    [13]Williams Billy M., Durvasula Priya K., Brown Donald E. Urban Freeway Traffic Flow Prediction:Application of Seasonal Autoregressive Integrated Moving Average and Exponential Smoothing Models [J]. Journal of the Transportation Research Board.1998:132-141
    [14]Lee Sangsoo, Fambro Daniel B. Application of Subset Autoregressive Integrated Moving Average Model for Short-Term Freeway Traffic Volume Forecasting [J]. Journal of the Transportation Research Board.1999:179-188
    [15]Lingras Pawan, Sharma Satish C., Osborne Philet al. Traffic Volume Time-Series Analysis According to the Type of Road Use[J]. Computer-Aided Civil and Infrastructure Engineering. 2000,15 (5):365-373
    [16]Cetin Mecit, Comert Gurcan. Short-Term Traffic Flow Prediction with Regime Switching Models [J]. Journal of the Transportation Research Board.2006:23-31
    [17]孙湘海,刘潭秋.基于SARIMA模型的城市道路短期交通流预测研究[J].公路交通科技.2008(01):129-133
    [18]陈岳明,萧德云.基于跳转模型的路网交通流预测[J].控制与决策.2009(08)1177-1180
    [19]王臻,张兴强.基于ARIMA-FNN的道路交通事故最优加权组合预测模型[J].交通信息与安全.2010,28(3)
    [20]窦慧丽,刘好德,吴志周等.基于小波分析和ARIMA模型的交通流预测方法[J].同济大学学报(自然科学版).2009,37(4):486-489,494
    [21]陈元朵.基于群决策理论和神经网络的干道延误控制模型分析[J].城市建设理论研究(电子版).2012(17)
    [22]温凯歌,杨照辉.基于CMAC强化学习的交叉口信号控制[J].计算机工程.2011,37(17):152-154
    [23]何兆成,佘锡伟,杨文臣等.结合Q学习和模糊逻辑的单路口交通信号自学习控制方法[J].计算机应用研究.2011,28(1):199-202
    [24]曹洁,李振宸,任冰.基于神经网络模糊控制的单交义口信号控制[J].兰州理工大学学报.2010,36(1):86-90
    [25]贺丹,欧阳若飞,李致锦.基于模糊神经网络的交义口信号控制与仿真[J].现代计算机(专业版).2009(8):14-16,49
    [26]郭庚麒,曹成涛,徐建闽.城市道路状况概率神经网络判别方法[J].计算机工程与应用.2009,45(13):214-216,219
    [27]Abdi Javad, Moshiri Behzad, Abdulhai Baheret al. Forecasting of short-term traffic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm[J]. Engineering Applications of Artificial Intelligence.2012,25 (5):1022-1042
    [28]Khashei Mehdi, Bijari Mehdi. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting[J]. Applied Soft Computing.2011,11(2):2664-2675
    [29]Khashei Mehdi, Bijari Mehdi. An artificial neural network (p, d, q) model for timeseries forecasting[J]. Expert Systems with Applications.2010,37(1):479-489
    [30]Park Byungkyu, Messer Carroll, Urbanik Ii Thomas. Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network[J]. Transportation Research Record: Journal of the Transportation Research Board.1998,1651 (-1):39-47
    [31]Smith B. L., Demetsky M. J. Short-Term Traffic Flow Prediction:Neural Network Approach[J]. Transportation Research Record.1994 (1453):98-104
    [32]S Dougherty M., R Cobbett M. Short-term inter-urban traffic forecasts using neural networks[J]. International Journal of Forecasting.1997,13 (01)
    [33]Zhong Zhu Zhaosheng Yang. Dynamic Prediction of Traffic Flow by Using Backpropagation Neural Network[M]:Traffic and Transportation Studies. American Society of Civil Engineers(ASCE).1998:548-555
    [34]Chang Edmond Chin-Ping. Traffic Estimation for Proactive Freeway Traffic Control [J]. Transportation Research Board.1999,1679:81-86
    [35]Yuan Zhenzhou, Li Weiyi, Liu Haidong. The Forecast of Dynamic Traffic Flow[M]:ASCE. 2000:79
    [36]Byungkyu Park Carroll J. Messer Thomas. Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network [J]. Transportation Research Board.1998,1651: 39-47
    [37]Messai N., Thomas P., El Moudni A.et al. Feed-forward and RTRL neural networks for the macroscopic traffic flow prediction and monitoring:the potential of each other[M].2003:199-204
    [38]Zhang Xiao-Li, He Guo-Guang. Forecasting Approach for Short-term Traffic Flow based on Principal Component Analysis and Combined Neural Network[J]. Systems Engineering-Theory & Practice.2007,27 (8):167-171
    [39]纪冬梅,虞学群.用于短时交通流预测的小波分析与神经网络复合模型[J].2011
    [40]黄勃文,林赐云,李静等.基于核自组织映射-前馈神经网络的交通流短时预测[J].吉林大学学报(工学版).2011(04):938-943
    [41]刘宁,陈昱颋,虞慧群等.基于Elman神经网络的交通流量预测方法[J].华东理工大学学报(自然科学版).2011(02):204-209
    [42]Chan Kit Yan, Dillon T. S., Singh J.et al. Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg-arquardt Algorithm[J]. Intelligent Transportation Systems, IEEE Transactions on}, title={Neural-Network-Based Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential Smoothing and Levenberg#x2013;Marquardt Algorithm.2012,13 (2):644-654
    [43]Chan K. Y., Dillon T. S., Singh J.et al. Traffic flow forecasting neural networks based on exponential smoothing method[C]. Industrial Electronics And Applications ICIEA, Th IEEE Conference On.2011:376-381
    [44]Qin Li Ming, Zhang Hai Tao. Near Optimal Learning Rate BP Algorithm and its Application in Traffic Forecast[J]. Applied Mechanics and Materials.2011,121-126:4513-4517
    [45]C Yin J., F Dong, N Wang N. A new sequential learning algorithm for radial basis function network with application to dynamic system identification[J]. Journal of Dynamics of Continuous, Discrete & Impulsive System, Series B. Suppl.2006:3019-3023
    [46]Yin Jianchuan, Dong Fang, Wang Nini. A Novel Sequential Learning Algorithm for RBF Networks and Its Application to Dynamic System Identification[M],2006:827-834
    [47]Wu Chun-Hsin, Wei Chia-Chen, Su Da-Chunet al. Travel-time prediction with support vector regression[J]. IEEE Transaction on Intelligent Transportation Systems.2004,5 (12):276-281
    [48]Ren Jiang-Tao, Ou Xiao-Ling, Zhang Yiet al. Research on network-level traffic pattern recognition[C]. IEEE 5th International Conference on Intelligent Transportation Systems.2002: 500-504
    [49]杨兆升,王媛,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版).2006,36(6):881-884
    [50]欧阳俊,陆锋,刘兴权等.基于多核混合支持向量机的城市短时交通预测[J].中国图象 图形学报A.2010,15(11):1688-1695
    [51]Ma Junshui, Theiler James, Perkins Simon. Accurate On-line Support Vector Regression[J]. Neural Computation.2003,15 (11):2683-2703
    [52]Li Ming-Wei, Hong Wei-Chiang, Kang Hai-Gui. Urban traffic flow forecasting using Gauss-SVR with cat mapping, cloud model and PSO hybrid algorithm[J]. Neurocomputing. 2013,99 (0):230-240
    [53]Hong Wei-Chiang, Dong Yucheng, Zheng Feifenget al. Forecasting urban traffic flow by SVR with continuous ACO[J]. Applied Mathematical Modelling.2011,35 (3):1282-1291
    [54]Hong Wei-Chiang, Dong Yucheng, Zheng Feifenget al. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model[J]. Applied Mathematics and Computation.2011,217(15): 6733-6747
    [55]Duan Ganglong, Liu Peng, Chen Penget al. Short-term traffic flow prediction based on rough set and support vector machine[C]. Fuzzy Systems and Knowledge Discovery (FSKD),2011 Eighth International Conference on.2011:1526-1530
    [56]Wei-Chiang Hong. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J]. Neurocomputing.2011,74 (12-13):2096-2107
    [57]Zhang Ning, Zhang Yunlong, Lu Haiting. Seasonal Autoregressive Integrated Moving Average and Support Vector Machine Models[J]. Transportation Research Record:Journal of the Transportation Research Board.2011,2215 (-1):85-92
    [58]赵婷婷,张毅.城市路网交通流的空间互相关性[j].清华大学学报:自然科学版.2011,51(3):313-317
    [59]Whittaker Joe. Garside Simon. Lindveld Karel. Tracking and predicting a network traffic process[J]. International Journal of Forecasting.1997,13 (1):51-61
    [60]Williams Billy M. Multivariate vehicular traffic flow prediction-evaluation of arimax modeling[J]. Transportation Research Record.2001,1776
    [61]任其亮.时空路网交通拥堵预测与疏导据决策方法研究[D]:西南交通大学.2005
    [62]姚智胜.基于实时数据的道路网短时交通流预测理论与方法研究[D]:北京交通大学.2007
    [63]Wang Yibing, Papageorgiou Markos. Real-time freeway traffic state estimation based on extended Kalman filter:a general approach[J]. Transportation Research Part B:Methodological. 2005,39 (2):141-167
    [64]Vlahogianni Eleni I., Karlaftis Matthew G., Golias John C. Spatio-Temporal Short-Term Urban Traffic Volume Forecasting Using Genetically Optimized Modular Networks[J]. Computer-Aided Civil and Infrastructure Engineering.2007,22 (5):317-325
    [65]Hu Cheng, Xie Kunqing, Song Guojieet al. Hybrid Process Neural Network based on Spatio-Temporal Similarities for Short-Term Traffic Flow Prediction[M].2008:253-258
    [66]He Shan, Hu Cheng, Song Guo-Jieet al. Real-Time Short-Term Traffic Flow Forecasting Based on Process Neural Network[M]:Springer Berlin/Heidelberg.2008:560-569
    [67]Min Xinyu, Hu Jianming, Chen Qiet al. Short-term traffic flow forecasting of urban network based on dynamic STARIMA model[M].2009:461-466
    [68]Xinyu Min, Jianming Hu, Zuo Zhang. Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model[M].2010:1535-1540
    [69]Vlahogianni Eleni I. Enhancing Predictions in Signalized Arterials with Information on Short-Term Traffic Flow Dynamics[J]. Journal of Intelligent Transportation Systems.2009,13(2): 73-84
    [70]Vlahogianni Eleni I. Spatial Dependencies with Variable Temporal windows in Short-Term urban Traffic Flow[J]. Advances in Computer Science and Engineering.2008,2(1):15-32
    [71]Deng Shuo, Hu Jianming, Wang Yinet al. Urban Road Network Modeling and Real-Time Prediction Based on Householder Transformation and Adjacent Vector[M]:Springer Berlin Heidelberg.2009:899-908
    [72]Chen Xiqun, Li Ruimin, Lu Huapuet al. Spatio-Temporal Evolution of Traffic Congestions on Urban Freeways[M]:ASCE.2009:272
    [73]Zhang Ke, Xue Guangtao. A Real-time Urban Traffic Detection Algorithm Based on Spatio-temporal OD Matrix in Vehicular Sensor Network[J]. Wireless Sensor Network (USA). 2010,2(9):668-674
    [74]宋国杰,程胡,谢昆青等.面向实时短时交通流预测的过程神经元网络建模[J].交通运 输工程学报.2009,9(5):73-76
    [75]王殿海,严宝杰.交通流理论[M].北京:人民交通出版社.2002
    [76]马俊.交通流理论基础[M].北京:中国人民公安大学出版社.2004
    [77]Board Transportation Research. Highway Capacity Manual[M].2010
    [78]刘焰,杨亚芬.交通过程学[M].北京:机械工业出版社.2004
    [79]王炜,过秀成.交通工程学[M].南京:东南大学出版社.2000
    [80]任福田.新编交通工程学导论[M].北京:中国建筑工业出版社.2011
    [81]李星毅.基于相似性的交通流分析[D]:北京交通大学.2010
    [82]黄润生,黄浩.混沌及其应用[M].武汉:武汉大学出版社.2005
    [83]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社.2001
    [84]许小可.基于非线性分析的海杂波处理与目标检测[D]:大连海事大学.2008
    [85]Tobler W. Celluar geography[A][M]. Olsson G. Gale S. Philosophy in Geography[C]. Dordrecht:Reidel.1979
    [86]E. James Preston.地理学思想史[M]:北京:商务印书馆.1982
    [87]周一星.城市地理学[M].北京:商务书馆.1995
    [88]陈彦光,刘继生.基于引力模型的城市空间互相关和功率谱分析--引力模型的理论证明、
    函数推广及应用实例[J].地理研究.2002,21(6):742-752
    [89]Smith Brian L., Williams Billy M., Oswald R. Keith. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C:Emerging Technologies.2002,10 (4):303-321
    [90]蒋宗礼.人工神经网络导论[M].北京:高等教育出版社.2001
    [91]Vlahogianni Eleni I., Karlaftis Matthew G., Golias John C. Spatio-Temporal Short-Term Urban Traffic Volume Forecasting Using Genetically Optimized Modular Networks[M]: Blackwell Publishing Inc.2007:317-325
    [92]何新贵,梁久祯.过程神经网络的训练及其应用[J].中国工程科学.2001,5(4):31-35
    [93]何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学.2000,2(12):40-44
    [94]丁刚,钟诗胜.基于过程神经网络的时间序列预测及其应用研究[J].控制与决策.2006, 21(9):1037-1041
    [95]许少华,何新贵,李盼池.自组织过程神经网络及其应用研究[J].计算机研究与发展.2003,40(11):1612-1615
    [96]关守平,吕欣,张艳蕊.基于过程神经网络的短期负荷预测[J].东北大学学报(自然科学版).2007,28(10):1450-1453
    [97]葛利,印桂生.基于小波和过程神经网络的时序聚类分析[J].电机与控制学报.2011,15(12):78-82
    [98]Cui Licheng, Zhang Weishi, Zhai Huaweiet al. An improved seedless clustering algorithm based on the average correlation[J]. Journal of Information and Computational Science.2012,9 (8):2287-2294
    [99]Kennel Matthew B., Brown Reggie, Abarbanel Henry D. I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Phys. Rev. A.1992, 45:3403-3411
    [100]董春娇.多状态下城市快速路交通流短时预测理论与方法研究[D]:北京交通大学2011
    [101]Rao C. R., Mitra S. K. Generalized inverse of matrices and its applications[M]. New York: Wiley.1971
    [102]Serre D. Matrices:Theory and Applications[M]. New York:Springer.2002
    [103]Ferrari S., Stengel R. F. Smooth function approximation using neural networks[J]. Neural Networks, IEEE Transactions on.2005,16 (1):24-38
    [104]Ortega James M. Matrix theory[M]. New York:Plenum Press.1987
    [105]Li Zhu, Lei Qin, Kouying Xueet al. A Novel BP Neural Network Model for Traffic Prediction of Next Generation Network[M].2009:32-38
    [106]Castro-Neto Manoel, Jeong Young-Seon, Jeong Myong-Keeet al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications.2009,36 (3,Part2):6164-6173
    [107]Wang Wenjian, Men Changqian, Lu Weizhen. Online prediction model based on support vector machine[J]. Neurocomputing.2008,71 (4-6):550-558
    [108]王宏涛.径向基函数和神经网络技术在逆向工程中的应用研究[D]:南京航空航天大学.2006
    [109]Davis Philip J. interpolation and Approximation[M]. New York:Blaisdell.1993
    [110]Powell M. J. D. Radial basis functions for multivariable interpolation:a review[M]. New York, NY, USA:Clarendon Press.1987:143-167
    [111]Moody John, Darken Christian J. Fast Learning in Networks of Locally-Tuned Processing Units[J]. Neural Computation.1989,1 (2):281-294
    [112]徐秉铮,张百灵,韦岗.神经网络理论与应用[M].广州:华南理工大学出版社.1994
    [113]尹建川.径向基函数神经网络及其在船舶运动控制中的应用研究[D]:大连海事大学.2007
    [114]侯木舟.基于构造型前馈神经网络的函数逼近与应用[D]:中南大学.2009
    [115]杨俊.基于核主成分分析和径向基神经网络的文本分类研究[D]:中国科学技术大学.2009
    [116]吴宗敏.径向基函数、散乱数据拟合与无网格偏位方程数值解[J].工程数学学报.2002,19(2):1-12
    [117]魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社.2005
    [118]许吕.锅炉典型非线性过程的神经网络建模和控制研究[D]:东南大学.2005
    [119]Darken C., Moody J. Fast adaptive k-means clustering:some empirical results[M].1990: 233-238
    [120]徐秉承.神经网络理论与应用[M].广州:华南理工大学出版社.1999
    [121]毕革新.递归神经网络的动态系统辨识及其在船舶运动控制中的应用研究[D]:大连海事大学.2009
    [122]Yang Wen, Yang Dongyuan, Zhao Yaliet al. Traffic flow prediction based on wavelet transform and Radial Basis Function network[M].2010:969-972
    [123]Bucur L., Florea A., Petrescu B. S. An adaptive fuzzy neural network for traffic prediction[M].2010:1092-1096
    [124]Chen Hong, Yuan Yu Wei, Sun Juanet al. The Model of Short-Time Traffic Flow Prediction on High-Grade Highway[J]. Advanced Materials Research.2011, Vol 255-260:4128-4132
    [125]张敬磊,王晓原.交通流灰色RBF网络非线性组合预测方法[J].数学的实践与认识.2011,Vol 41(No 19)
    [126]Affonso C., Sassi R. J., Ferreira R. P. Traffic flow breakdown prediction using feature reduction through Rough-Neuro Fuzzy Networks[M].2011:1943-1947
    [127]Huang Guang-Bin, Saratchandran Paramasivan, Sundararajan Narasimhan. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE Transactions on Systems, Man, and Cybernetics.2004,34:2284-2292
    [128]邓万宇,郑庆华,陈琳等.神经网络极速学习方法研究[J].计算机学报.2010,33(2):279-287
    [129]Zhang Runxuan, Huang Guang-Bin, Sundararajan N.et al. Improved GAP-RBF network for classification problems[J]. Neurocomputing.2007,70 (16-18):3011-3018
    [130]Li Kang, Peng Jian-Xun, Bai Er-Wei. Two-Stage Mixed Discrete-Continuous Identification of Radial Basis Function (RBF) Neural Models for Nonlinear Systems[J]. Circuits and Systems I: Regular Papers, IEEE Transactions on.2009,56 (3):630-643
    [131]Du Dajun, Li Kang. Fei Minrui. A fast multi-output RBF neural network construction method[J]. Neurocomputing.2010,73 (10-12):2196-2202
    [132]Montazer Gh. A., Sabzevari Reza, Ghorbani Fatemeh. Three-phase strategy for the OSD learning method in RBF neural networks[J]. Neurocomputing.2009,72 (7-9):1797-1802
    [133]Xianwen Zhu, Furong Li. Traffic Flow Prediction Based on Artificial Life and RBF Nerual Network[J]. Energy Procedia.2011,11 (0):1250-1254
    [134]Montazer Gh. A., Sabzevari Reza, Khatir H. Gh. Improvement of learning algorithms for RBF neural networks in a helicopter sound identification system[J]. Neurocomputing.2007,71 (1-3):167-173
    [135]Huang Guang-Bin, Zhu Qin-Yu. Siew Chee-Kheong. Extreme learning machine:Theory and applications[J]. Neurocomputing.2006,70 (1-3):489-501
    [136]Lian Jianming, Lee Yonggon, Sudhoff S. D.et al. Self-Organizing Radial Basis Function Network for Real-Time Approximation of Continuous-Time Dynamical Systems[J]. Neural Networks, IEEE Transactions on.2008,19 (3):460-474
    [137]Huang Guang-Bin, Saratchandran P., Sundararajan N. A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation[J]. Neural Networks, IEEE Transactions on.2005,16 (1):57-67
    [138]Bortman M., Aladjem M. A Growing and Pruning Method for Radial Basis Function Networks[J]. Neural Networks, IEEE Transactions on.2009,20 (6):1039-1045
    [139]张雨浓,肖秀春,陈扬文等Hermite前向神经网络隐节点数口自动确定[J].浙江大学学报(工学版);JOURNAL OF ZHEJIANG UNIVERSITY(ENGINEERING SCIENCE).2010,44 (2)
    [140]Zhang Mingjun, Yang Jie. Shang Yunchaoet al. Robot visual planar locating method based on improved RBF network[M].2009:1740-1744
    [141]Er Meng Joo, Wu Shiqian, Lu Juweiet al. Face recognition with radial basis function (RBF) neural networks[J]. Neural Networks. IEEE Transactions on.2002,13 (3):697-710
    [142]R. R. Sokal F. J. Rohlf. Biometry:The Principles and Practice of Statistics in Biological Research[M]:W.H. Freeman & Co, New York, USA.1995
    [143]Akaike H. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on.1974,19 (6):716-723
    [144]王凡.基于支持向量机的交通流预测方法研究[D]:大连理工大学.2010
    [145]张学工.统计学习理论的本质[M].北京:清华大学出版社.2000
    [146]段华.支持向量机增量学习算法研究[D]:上海交通大学.2008
    [147]Suykens J. A. K., Vandewalle J. Least Squares Support Vector Machine Classifiers[M]: Springer Netherlands.1999:293-300
    [148]Adankon Mathias M., Cheriet Mohamed. Model selection for the LS-SVM. Application to handwriting recognition[J]. Pattern Recognition.2009,42 (12):3264-3270
    [149]comak Emre, Arslan Ahmet. A Biomedical Decision Support System Using LS-SVM Classifier with an Efficient and New Parameter Regularization Procedure for Diagnosis of Heart Valve Diseases[M]:Springer Netherlands.2012:549-556
    [150]Wang Rui, Wang Ai-Min. Song Qiang. Research on the Alkalinity of Sintering Process Based on LS-SVM Algorithms[M]:Springer Berlin/Heidelberg.2012:449-454
    [151]Suykens J. A. K., Lukas L., Van Dooren P.et al. Least Squares Support Vector Machine Classifiers:a Large Scale Algorithm[J].1999
    [152]Cheng-Feng Gao. Tian-Lun Chen. Tian-Shi Nan. Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine[J]. Communications in Theoretical Physics.2007,48 (1):117
    [153]Rui-Rui Xu, Tian-Lun Chen, Cheng-Feng Gao. Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization[J]. Communications in Theoretical Physics.2006,45 (4):641
    [154]Van Gestel T., Suykens J. A. K., Baestaens D. E.et al. Financial time series prediction using least squares support vector machines within the evidence framework[J]. Neural Networks. IEEE Transactions on.2001,12 (4):809-821
    [155]Suykens J. A. K., De Brabanter J., Lukas L.et al. Weighted least squares support vector machines:robustness and sparse approximation[J]. Neurocomputing.2002,48(1-4):85-105
    [156]Peng Xinjun. Wang Yifei. A normal least squares support vector machine (NLS-SVM) and its learning algorithm[J]. Neurocomputing.2009,72 (16-18):3734-3741
    [157]Suykens J. A. K., Lukas L., Vandewalle J. Sparse approximation using least squares support vector machines[M].2000:757-760
    [158]de Kruif B. J., de Vries T. J. A. Pruning error minimization in least squares support vector machines[J]. Neural Networks, IEEE Transactions on.2003,14 (3):696-702
    [159]Kuh A., De Wilde P. Comments on "Pruning Error Minimization in Least Squares Support Vector Machines[J]. Neural Networks. IEEE Transactions on.2007,18 (2):606-609
    [160]Zeng Xiangyan. Chen Xue-Wen. SMO-based pruning methods for sparse least squares support vector machines[J]. Neural Networks. IEEE Transactions on.2005,16(6):1541-1546
    [161]Jiao Licheng. Bo Liefeng, Wang Ling. Fast Sparse Approximation for Least Squares Support Vector Machine[J]. Neural Networks, IEEE Transactions on.2007,18 (3):685-697
    [162]Cawley Gavin C., Talbot Nicola L. C. Improved sparse least-squares support vector machines[J]. Neurocomputing.2002,48 (1-4):1025-1031
    [163]Li Guoqi. Wen Changyun, Huang Guang-Binet al. Error tolerance based support vector machine for regression[J]. Neurocomputing.2011,74 (5):771-782
    [164]Liu Jingli, Li Jianping, Xu Weixuanet al. A weighted Lq adaptive least squares support vector machine classifiers-Robust and sparse approximation[J]. Expert Systems with Applications,2011,38 (3):2253-2259
    [165]Quan Tingwei, Liu Xiaomao, Liu Qian. Weighted least squares support vector machine local region method for nonlinear time series prediction[J]. Applied Soft Computing.2010,10(2): 562-566
    [166]Keerthi S. S., Shevade S. K. SMO Algorithm for Least-Squares SVM Formulations[J]. Neural Computation.2003,15 (2):487-507
    [167]Chu Wei. Ong Chong Jin, Keerthi S. S. An improved conjugate gradient scheme to the solution of least squares SVM[J]. Neural Networks. IEEE Transactions on.2005,16(2):498-501
    [168]Liang Xun, Chen Rong-Chang, Guo Xinyu. Pruning Support Vector Machines Without Altering Performances[J]. Neural Networks, IEEE Transactions on.2008,19(10):1792-1803
    [169]Liang Xun. An Effective Method of Pruning Support Vector Machine Classifiers[J]. Neural Networks, IEEE Transactions on.2010,21 (1):26-38
    [170]Tang He-Sheng, Xue Song-Tao, Chen Ronget al. Online weighted LS-SVM for hysteretic structural system identification[J]. Engineering Structures.2006,28 (12):1728-1735
    [171]Li Li-Juan, Su Hong-Ye, Chu Jian. Generalized Predictive Control with Online Least Squares Support Vector Machines[J]. Acta Automatica Sinica.2007,33 (11):1182-1188
    [172]Gu Yanping, Zhao Wenjie, Wu Zhansong. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems[J]. Journal of Process Control.2011,21(7):1040-1048
    [173]Zhao Yong-Ping, Sun Jian-Guo. Du Zhong-Huaet al. Online independent reduced least squares support vector regression[J]. Information Sciences.2012
    [174]Agarwal Sumeet, Saradhi V. Vijaya, Karnick Harish. Kernel-based online machine learning and support vector reduction[J]. Neurocomputing.2008,71 (7-9):1230-1237
    [175]Ge Zhiqiang, Song Zhihuan. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach[J]. Control Engineering Practice.2008,16 (12):1427-1437
    [176]Cauwenberghs Gert. Poggio Tomaso. Incremental and Decremental Support Vector Machine Learning[M].2000
    [177]Liang Zhizheng, Li Youfu. Incremental support vector machine learning in the primal and applications[J]. Neurocomputing.2009,72 (10-12):2249-2258
    [178]Ralaivola Liva, D Alche-Buc Florence. Incremental Support Vector Machine Learning:A Local Approach[M]:Springer Berlin/Heidelberg.2001:322-330
    [179]Scholkopf B., Mika S., Burges C. J. C.et al. Input space versus feature space in kernel-based methods[J]. Neural Networks, IEEE Transactions on.1999,10(5):1000-1017
    [180]Orabona Francesco, Castellini Claudio, Caputo Barbaraet al. On-line independent support vector machines[J]. Pattern Recognition.2010,43 (4):1402-1412
    [181]Ljung L. System identification:theory for the user[M]. Sweden:Prentice Hall PTR.1999
    [182]北京大学数学系.高等代数(第二版)[M].北京:高等教育出版社.1987
    [183]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社.1997
    [184]李文勇.城市交通出行诱导系统规划及关键技术研究[D]:东南大学.2006
    [185]K Tamura, M Hirayama. Toward realization of VICS-Vehicle Information and Communication System[C]. Ottawa. Ont, Can:Publ by IEEE. Ottawa, Ont, Can:Publ by IEEE. 1993:72-77
    [186]Nakahara T., Yumoto N. ITS development and deployment in Japan[C]. Intelligent Transportation System,1997. ITSC'97., IEEE Conference on. Intelligent Transportation System,
    1997. ITSC'97., IEEE Conference on.1997:631-636
    [187]Nagaoka K. Travel time system by using vehicle information and communication system (VICS)[C]. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC.1999:816-819
    [188]杨兆生.城市交通流诱导系统理论与模型[M].北京:人民交通出版社.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700