碱木质素溶液行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,由于全球工业的迅猛发展,使石油资源短缺和环境污染的日趋严重,如何进行资源的可持续利用,如何高效利用生物质资源成为人类可持续发展理论研究的热点问题。木质素是世界上第二大生物质可再生资源,工业木质素来源于造纸废液,特别是从碱法制浆过程中产生的碱木质素,是一种天然的高分子表面活性剂,有很强的表面活性。目前,国内外的文献关于碱木质素的研究都专注于木质素的分子设计和化学改性,制备各种不同类型的碱木质素衍生物。由于碱木质素的改性过程和作为高分子助剂的使用时都是在水溶液中,碱木质素在水溶液中的良好的分散性能、表面活性以及在固/液界面上的吸附性对碱木质素的改性有着重要的影响,然而碱木质素的水溶性很差,仅可溶于碱性溶液中,给碱木质素的化学改性带来困难,所以对碱木质素溶液行为的研究是非常重要的。
     碱木质素在溶液中的分子构型、聚集行为和流变行为对指导碱木质素的化学改性和工业应用具有重要作用。通过研究pH值、溶剂和浓度对碱木质素在稀溶液中的分子构型、表面物化性能、亲水—疏水性和聚集形态的影响规律,建立其在水溶液中的分子构型模型,揭示碱木质素在水溶液中的聚集过程,增加对木质素结构和物化性质的理解;研究溶液性质的变化对碱木质素在溶液中粘度行为和流变行为的影响规律,促进对木质素在溶液中高分子特性的理解,对碱木质素在溶液中的化学改性和改性产品的应用提供理论依据。
     本文采用电位滴定法、Zeta电位仪、表面张力仪、稳态荧光仪、动态光散射仪(DLS)等表征方法研究了溶液pH值和溶剂对碱木质素在溶液中的分子构型的影响。实验结果表明溶液的pH值显著地影响碱木质素分子构型,结合不同pH值溶液中的碱木质素的ESEM形貌,推测出不同pH值溶液中的碱木质素的分子模型。碱木质素大分子随着溶液pH值的增加从低pH值(9~10)时的椭圆球形,变成较高pH值(10~11)的支链带状,然后成为高pH值(11~12)时的不规则层状。溶液的极性和溶解能力也显著地影响碱木质素的分子构型,随着DMF、丙酮和二氧六环在碱木质素溶液中添加量的增加,碱木质素的分子构型逐渐收缩成紧实的椭圆球形。
     采用紫外分光光度计、动态光散射仪(DLS)、Zeta电位仪、环境扫描电镜(ESEM)等研究了碱木质素的浓度、pH值和溶剂对碱木质素聚集行为的影响。实验结果表明,pH值为10、11和12的碱木质素溶液的临界聚集浓度CAC分别为0.26g/L、0.24g/L和0.22g/L。结合ESEM观察碱木质素聚集体的形貌图,认为球形中空囊泡构型是碱木质素聚集体在溶液中的主要存在形式。而且随着溶液的pH值增加,碱木质素溶液的临界聚集浓度CAC减小,碱木质素单分子和聚集体的流体力学直径增加,碱木质素聚集体从低pH值时的卷曲状态伸展开来,变成疏松的球形聚集体,聚集体内部的小型囊泡分布疏松。添加了甲醇、乙醇、正丙醇、丙酮、二氧六环和DMF的碱木质素溶液的临界聚集浓度CAC都变小,特别是添加丙酮后,临界聚集浓度CAC最小。从碱木质素在DMF溶剂中的粒径分布看出,碱木质素在DMF中的单分子、聚集体都是紧缩的实心椭圆球形,不再是水溶液中疏松的椭圆球形结构。
     本论文采用五种经典流变模型拟合碱木质素溶液流变曲线,确立拟合相关系数最高的Herschel-Bulkley模型为最优流变模型。分别研究了溶液的pH值、无机盐、低链醇和DMF、丙酮、二氧六环对碱木质素溶液粘度行为和流变行为的影响。结果表明随着溶液pH值的增加,碱木质素溶液的比浓粘度和表观黏度皆降低,溶液的假塑性和屈服值τH降低,流动性增强;在碱木质素溶液中添加3%的NaCl、Na_2SO_4和尿素使溶液的表观粘度和比浓粘度增加,溶液的假塑性和屈服值τH增加,流动性变差。而且Na_2SO_4增黏效果最明显,尿素效果最差。添加少量的甲醇、乙醇和正丙醇能降低碱木质素溶液的表观粘度和比浓粘度,溶液的假塑性和屈服值τH降低,流动性变优。然而添加大量的低链醇时,表观黏度增加,假塑性和屈服值τH增强。在碱木质素溶液中添加DMF、二氧六环和丙酮后,碱木质素溶液的表观黏度皆降低,假塑性和屈服值τH降低,溶液的流动性变优。同时,随着DMF、二氧六环和丙酮添加量的增加,碱木质素溶液的表观黏度增加,假塑性和屈服值τH增强。
     本论文以提纯的碱木质素为原料,对碱木质素在溶液中的分子构型和分子间的聚集行为,以及在碱木质素溶液的粘度行为和流变行为进行了深入研究。此研究不仅对碱木质素的化学改性和改性产品的应用具有重要的影响,而且碱木质素在溶液中物化性能的研究,对碱木质素结构和物化性能的理解有重要意义;同时,通过本文对碱木质素在溶液中的聚集行为的研究,有助于碱木质素在固/液和气/液界面上的吸附研究,促进改性碱木质素作为高分子助剂时的分散机理的研究。
Nowadays, environmental concerns have stimulated inetest in utilizing renewable resources in various industrial fields. As a promising renewable bio-resource, lignin has received increasing attention. The modified lignin-based products have been widely applied various industrial fields.The raw material of lignin-based products is mainly from the waste liquor of pulp and paper making.The soda pulping process is mainly adopted in the pulp and paper making industry nowdays in China, which produced the alkali soluble lignin. As a kind of natural anionic surfactant, alkali lignin (AL) not only reduce surface tension and solid/liquid interfacial tension of the solution, and also have the behavior of dissolving, scattered, wetting, emulsification and lubrication and so on.
     At present, the domestic and foreign researchers focused on the molecular design and chemical modification of alkali lignin, have prepared different types of alkali lignin derivatives. Because the modification process and the application of alkali lignin are both in aqueous solution, but alkali lignin cannot dissolve in neuter water, can dissolve in alkali solution, so the solution behavior of alkali lignin was researched. The molecular configurations ,the aggreagation behavior and the rheological behavior of alkai lignin have palyed importat role for chemical modification and industrial application. Meanwhile, deeped the understanding of the ligin structure, and provided theoretical direction for the adsorption between solid/ liquid interface and gas/ liquid interface.
     The influences of the pH value of the solution and solvents on the molecular conformation were investigated by means of surface tension, UV spectrometry, fluorescence spectrometry, dynamic light scattering (DLS) and environmental scanning electron microscope (ESEM) experiments. Results showed that the molecular conformation of AL is markedly influenced by the pH value of the solution. Based on the ESEM results, the model of the molecular conformations of AL in the dilute aqueous solutions with different pH values are proposed. The shapes of AL macromolecules turn from ellipsoidal aggregate shape to branched banding shape to branding shape, then to raggedly lamellar shape, with increasing pH values of the solutions. The molecular conformation of AL is also markedly influenced by the polarity and dissolving power of the solution. The addition of DMF、acetone and 1,4-dioxane in the aqueous solutions made the molecular conformations of AL shrinked from raggedly lamellar shape to ellipsoisal shape.
     The aggregation behaviours of AL at different pH values and solvents were investigated by means of UV spectrometry, surface tension, fluorescence spectrometry, dynamic light scattering (DLS) and environmental scanning electron microscope (ESEM) experiments. We have presented a new method to measure the CAC of AL in the solution, with which the state and dynamics of the formation of the AL micelles were revealed. Results showed that the CAC value of AL in the solution at pH value of 11 was 0.24g/L, before CAC, the AL molecules existed individually in the solution; when the concentration of AL solution exceeded CAC, the individual AL molecules started to aggregate and thus the micelles were formed and grew with increasing AL concentration. The ESEM showed that the spherical micelles were the main form of AL in the solution, and the spherical micelles were presumed to contain many compact-distribution small-sized vesicles. Therefore, the spherical hollow vesicular structure was regarded as the major form of AL micelles. The aggregation behaviour of AL is markedly influenced by the pH value of the solution and solvents. With the increase of the pH value, the CAC value of AL in the solution was reduced, the AL micelles stretched from compacted ellipsoidal shape to looser ellipsoidal shape. The addition of methanol, ethanol, propanol, DMF, acetone and 1,4-dioxane in the aqueous solutions made the the CAC value of AL in the solution was reduced, the CAC value of AL in solution was smallest as added acetone in the solution, the AL micelles shinked, and turned to compacted ellipsoidal shape. From the DLS of AL in DMF solvent showed that the single molecules and aggregates of AL in DMF solvent were compacted solid ellipsoidal shape, no longer the loose ellipsoidal shape.
     In this dissertation, five typical rheological models were used to fit rheological curve of AL solution, and Herschel-Bulkley model was determined the most suitable model for its highest fitting correlation coefficient. The effect of pH value, inorganic salts and solvents on the rheological property of AL solution were studied, results showed that with the increase of the pH value of AL solution, reduce viscosity and apparent viscosity both reduced, and the pseudoplastic property of AL solution also reduced, had the better liquidity but poor stability. In addition of NaCl, Na_2SO_4, urea in AL solution, reduce viscosity and apparent viscosity both increased, especially when Na_2SO_4 added, reduce viscosity and apparent viscosity increased, and the pseudoplastic property of AL solution also increased, so that the AL solution had better stability but poor liquidity. When added little methanol, ethanol and propanol in AL solution, reduce viscosity and apparent viscosity of AL solution both reduced, and the pseudoplastic property of AL solution reduced, especially the addition of propanol; with increasing dosage of methanol, ethanol and propanol, reduce viscosity and apparent viscosity of AL solution both increased, the pseudoplastic property of AL solution also increased, had better stability but poor liquidity. In addition of DMF, aceton, 1,4-dioxane in AL solution, apparent viscosity of AL solution reduced, reduced the yield value, and reduced the pseudoplastic property of AL solution.
     In this dissertation, the molecular conformation of AL in dilute solution and aggregation behavior were studied, and the viscosity behavior and rheological behavior were also investigated. The study played important role for the chemical modification and industrial application of AL, promoted the understanding of AL structure, and provided theoretical direction for the adsorption between solid/ liquid interface and gas/ liquid interface.
引文
[1]蒋挺大.木质素[M].北京:化学工业出版社,2008: 1-89
    [2]杨龙寿,张锦云.木质素资源的开发利用[J].化工进展,1994,(1): 47
    [3]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001: 69
    [4]杨东杰,邱学青,陈焕钦.木素磺酸盐系表面活性剂[J].化学通报,2001(7): 416-420
    [5]Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw[J]. Polym. Degrad. Stab.,2001,74: 307-319
    [6]Sangita Bhattacharjee, Siddhartha Datta, Chiranjib Bhattacharjee.Performance study during ultrafiltration of Kraft black liquor using rotating disk membrane module [J]. J. Cleaner Prod., 2006,14: 497-504
    [7]曾育才,张学先,刘小玲.造纸黑液木质素及其综合利用[J].广东化工,2005,10: 11-15
    [8]穆环珍,杨问波,黄衍初.造纸黑液木质素利用研究进[J].环境污染治理技术与设备,2001, 2(3): 26-30
    [9]兰家声.有关中小型造纸厂废水治理技术的研究开发情况[J].环境科学,1993,14(增刊):10-17
    [10]Lundquist K, Simomson R. Lignin reparation with very low carbohydrate content [J]. Svensk Papperstidn,1975, 78(11): 390-392.
    [11]何伟,沙萍,邰瓞生.工业碱木素的纯化方法-甲酚-硫酸法[J].中国造纸,1991(3):33- 37.
    [12]金永灿,吴梦然,邰瓞生,等.兴安落叶松木质素化学结构特性的研究[J].纤维素科学与技术, 1995, 3( 4 ): 28- 37
    [13]秦特夫.杉木和―三北‖一号杨磨木木质素化学官能团特征的研究[J] .林业科学, 1999, 35(3): 69-75
    [14]秦特夫.― I- 214杨‖心材、边材木质素的红外光谱、质子和碳- 13核磁共振波谱特征研究[J].林业科学研究, 2001, 14( 4) : 375 - 382
    [15]林鹿,C L C hen, J S Gratz,l等.草类木质素的氨化反应—草类制浆黑液中木质素的纯化与结构分子[J] .中国造纸学报,2001, 16: 96 - 100
    [16]谌凡更.龙须草碱木质素特性的研究[J] .纤维素科学与技术,1994, 2( 3 - 4) : 89 - 95.
    [17]李光日,付时雨,余惠生.芦苇硫酸盐浆残余木质素特性的研究[J] .纤维素科学与技术, 2000, 8( 3 ) : 28- 33
    [18]夏新兴,刘书钗,任维羡.竹材及其磺化化机浆木质素结构与发色基团特性研究[ J] .中国造纸学报, 1995, 10: 14 - 19
    [19]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术, 2003,11(1): 42-55.
    [20]Gosselink R J A, Snijder M H B., Kranenbarg A, et al. Characterisation and application of NovaFiber lignin[J]. Industrial Crops and Products, 2004, 20: 191-203
    [21]Freudenberg K. Lignin: Its Constitution and Formation from p-Hydroxycinnamyl Alcohols: Lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure[J]. Science, 1965, 148: 595-600
    [22]Creighton R H J, Hibbert H. Studies on lignin and related compounds.LXXVI Alkaline nitrobenzene oxidation of Corn stalks[J]. Journal of the American Chemical Society, 1944, 66: 37
    [23]薛菁雯,何伟,邰瓞生等.核交换法对禾草类木质素结构的研究[J] .纤维素科学与技术, 1997, 5 ( 4) : 33-38
    [24]谌凡更.麦草碱木质素烷基化反应的研究[J] .林产化学与工业,2001, 21( 2) : 39 - 44
    [25]Sun R C, Sun X F, P Fow ler, et al. Structural and physic-chemical characterization of lignins solubilized during alkalin eperoxide treatment of barley straw[J]. European Polymer Journal, 2002, 38: 1399-1407
    [26]Argyropoulos D S, Sun Y, Palus E. Isolation of residual kraft lignin in high yield and purity[J]. Journal of Pulp and Paper Science: 2002; 28 (2) : 50-54
    [27]Wu S, Argyropoulos D S. An improved method for isolating lignin in high yield and purity[J]. Journal of Pulp and Paper Science, 2003, 29 (7) : 235-240
    [28]袁成强,刘玉,陈嘉川等.麦草碱木素结构特征的研究[J].造纸科学与技术,2008,27(2):20-25
    [29]Schmidt J A, Rye C S, Gurnagul N. Lignin inhibits autoxidative degradation of cellulose[J]. Polym.Degrad. Stab., 1995, 49: 291-297.
    [30]Gosselink R J A, Ab?cherli A, Semke H, et al. Analytical protocols for characterisation of sulphur-free lignin[J]. Industrial Crops and Products, 2004, 19: 271-281
    [31]岳萱,乔卫红,申凯华,李宗石.曼尼希反应与木质素的改性[J].精细化工, 2001, 18(11): 670-673
    [32]郑雪琴,黄建辉,刘明华,等.碱木素磺化改性制备减水剂及其性能的研究[J].造纸科学与技术,2004,23(5): 29~32
    [33]尹忠,杨林.碱木素的磺化及在泥浆中的应用[J].西南石油学院报,1996,18(2): 91~94
    [34]姜庆梅.麦草碱木素缩合改性制备减水剂的方法[J].现代化工,2001,29(1): 328
    [35]王海燕,倪宁晖,李忠正,等.麦草碱木素复合臭氧氧化改性及应用性能的研究[J].中国造纸学报,2005,20(01): 101-105
    [36]邓国颂,邱学青,欧阳新平.麦草碱木素磺化工艺及其性能研究[J].中国造纸,2005,24(12): 29-33
    [37]梁文学,邱学青,杨东杰等.氧化磺化碱木素用作混凝土减水剂[J].中国造纸,2006,25(1): 73-75
    [38]邱学青,周明松,杨东杰,等.麦草碱木素高效水煤浆分散剂的应用性能[J].中国纸,2007, 26(02): 31-34
    [39]李风起,朱书全.添加剂对煤/水界面性质的影响与效能研究[J].选煤技术, 2001(1): 22-24
    [40]Yang D J, Qiu X Q, Zhou M S, et al. Properties of sodium lignosulfonate as dispersant of coal water slurry[J]. Energy Conversion and Management, 2007, 48(9): 2433-2438
    [41]谌凡更,卢卓敏,涂宾.麦草碱木质素烷基化反应的研究[J].林产化学与工业, 2001, 21(2): 39-43
    [42]田震,邱学青,王晓东.碱木质素性能及应用进展[J].精细化工,2001,18(2): 63-67
    [43]陈学榕,江茂生,高雨,等.碱木素纸张增强剂合成及应用[J].福建农林大学学报(自然科学版),2006,35(03): 101~106
    [44]陈均志,唐宏科.碱木素作为纸板施胶增强剂的研究[J].造纸科学与技术,2003, 22(01): 37-38
    [45]宋哲玉,杨桂迎,刘晓莲.碱木素胺化及作为沥青乳化剂的应用[J].西北轻工业学院学报,1997,15(1): 99-103
    [46]谢建中.碱木素在陶瓷工业中的应用[J].应用技术市场,1995,2: 88~92
    [47]陈俊平.碱木素阴离子型高分子絮凝剂的合成与应用[J].湖北工学院学报,1994,9(2): 90-93
    [48]吉田时行,进腾信一,大垣忠义等.界面活性剂[M],东京:工学图书株式会社,昭和62年: 29-31
    [49]曹晓蓉.水溶性高分子表面活性剂聚集行为[D].山东大学, 2007
    [50]王学川,赵军宁.高分子表面活性剂的合成及其应用进展[J].皮革科学与工程, 2004, 6: 24-30
    [51]Merrett F M. Fouling-release coatings prepared from alpha,omega-dihydroxypoly (dimethylsiloxane) cross-linked with (heptadecafluoro 1,1,2,2-tetrahydrodecyl) triethoxysilane[J].Journal of Polymer Science,1959. 24: 467-472
    [52]Tuzar Z, Kraatochvil P.Block and gragt copolymer micelles in solution[J]. Advances in Colloid and Interface Science, 1976, 6: 201-207
    [53]Riess G, Hurtrez G, Bahadur P. Block copolymers in Encyc1[J].Polymer Science Engineering, 1985,2: 324-329
    [54]McBain M E L, et al. Solubilization and Related Phenomena[M]. New York;Academic Press,1955
    [55]Hong K Z, Chan W H, Xia P f, et al. A novel reductive ring-opening reaction of isoazolidine to form functionalized 1,3-aminoalcohol[J].Chinese Chemical Letter, 2007, 28(5) : 591 - 596
    [56]王晓芳,倪华钢,王新平.含氟聚合物在溶液中的聚集行为与其固化后表面性质[J].高分子材料科学与工程,2008, 24(11): 5-10
    [57]Tuzar Z, Petrus V ,Kratochvil P, et al. Block and graft copolymer micelles in solution[J]. Advance in Colloid and Interface Science, 1976, 6: 201-232
    [58]王芳平,杜新贞,王春等.聚丙烯酸接枝辛基酚聚氧乙烯醚的合成、表征和胶束化[J].物理化学学报, 2008, 24(2): 350- 354
    [59]杜滨阳,梅爱雄,杨雍等.多嵌段共聚物( P4VP-b-PS-b-P4VP)n的胶束化行为研[J].高分子学报,2009, 8: 723 - 729
    [60]Rezanowich A, Goring D I A. Polyelectrolyte expansion of a lignin sulfonate microgel[J].Journal of Colloid Science, 1960, 15: 452-472
    [61]Kerr A J, Goring D A I. The Ultrastructural Arrangement of the Wood Cell Wall[J]. Cellulose Chemistry Technology, 1975, 9: 563-573
    [62]Goring D A I, Vuong R, Gancet C, et al. The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy[J]. Journal of Applied Polymer Science, 1979, 24: 931-936
    [63]Myrvold B O. A new model for the structure of lignosulphonates Part 1. Behaviour in dilute solutions[J]. Industrial Crops and Products, 2008, 27: 214-19
    [64]Benko J, Tappi J. The colloidal behaviour of kraft lignin and lignosulfonates[J].Colloids and Surfaces, 1964, 47: 508
    [65]Brown W J.In lignin: Properties and Materials[J]. Journal of Applied Polymer Science, 1967, 11: 2381-2386
    [66]Chernoberezhskii Y M, Atanesyan A A, Dyagileva A B, et al. Effect of concentration of sulfate lignin on the aggregation stability of its aqueous dispersions[J]. Colloid Journal, 2002, 64: 637-639
    [67]Fredheima G E, Braatenb S M, Christensenc B E. Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering[J]. Journal of Chromatography A, 2002, 942: 191-199
    [68]Lindstrom T.The colloical behavior of kraft lignin Part I: Association and gelation of kraft lignin in aqueous solutions[J]. Colloid Polymer Science, 1979, 257: 277-285
    [69]Sarkanen S, Teller D C, Hall J, et al. A brief history of lignin-containing polymeric materials culminating in X-ray powder diffraction analyses of kraft lignin-based thermoplastic polymer blends[J]. Macromolecules, 1981, 14: 426
    [70]Sarkanen S, Teller D C, Abramowski E, et al. Kraft lignin component conformation and associated complex configuration in aqueous alkaline solution[J].Macromolecules, 1982, 15: 1098
    [71]Douglas L, Woernert J, McCarthy L. Lignin 24: Ultrafiltration and light-scattering evidence for association of kraft lignins in aqueous solutions[J]. Macromolecules, 1988,21(7): 2160-2166
    [72]Norgren M, Edlund H,W?gberg L. Aggregation of lignin derivatives under alkaline conditions [J]. Langmuir, 2002, 18: 2859-2865
    [73]Norgren M, Edlund H. Stabilisation of kraft lignin solutions by surfactant additions[J]. Colloids and Surfaces A, 2001, 194 : 239-248
    [74]Cathala B, Saake B, Faix O, et al. Association behaviour of lignins and lignin model compounds studied by multidetector size-exclusion chromatography[J]. Journal of Chromatography A, 2003, 1020 : 229-239
    [75]Yan M F, Yang D J, Deng Y H, et al. Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution[J]. Colloids and Surfaces A, 2010, 371: 50-58
    [76]Rezanowich A, Yean W Q, Goring D A I. High resolution electron microscopy of sodium lignin sulfonate[J]. Journal of Applied Polymer Science, 1964, 8(4): 1801-1812
    [77]Sarkanen S, Teller D C, Stevens C R, et al. Associative interactions between kraft lignin components [J].Macromolecules, 1984, 17: 2588-2593
    [78]Dutta S, Garver T M, Sarkanen S. In Lignin: Properties and Materials[J]. American Chemical Society, 1989: 155-162
    [79]Afanansjiv N, Korobova E, Parfenova L. Structure of lignosulfonates macromolecules in solutions[A]. 1997ISWPC Proceedings. Canadian: Monteral,1997: 1-3
    [80]Garver T M, Callaghan P T. NMR velocimetry and spectroscopy at microscopic resolution in small reheometric device[J]. Macromolecules, 1991, 24: 420-430
    [81]Vainio U, Lauten R A, Serimaa R. Small-angle X-ray scattering and rheological characterization of aqueous lignosulfonate solutions[J]. Langmuir, 2008, 24: 7735-7743
    [82]MerALe G, Auerbach S, Burchard W, et al. Light scattering of acetylated lignin[J]. Journal of Applied Polymer Science, 1992, 45(3): 407-415
    [83]Milorad M, Ksenija R, Roger M. A comparative study of enzymatically and photochemically polymerized artificial lignin supramolecular structures using environmental scanning electron microscopy. Journal of Colloid and Interface Science, 2000, 231: 190-194
    [84]易聪华.木质素磺酸盐的缓蚀性能及作用机理研究[D].华南理工大学.2005
    [85]Lysogorskaya N P, Dem’yantseva Y E, ALyubin V V. On the inhomogeneity of aqueous alkaline solutions of sulfate lignin and wood resin [J]. Colloid Journal, 2002, 3(64): 384–385
    [86] Dem’yantseva Y E, Lysogorskaya N P, ALyubin V V, et al. A dynamic light scattering study of the temperature dependence of the size-distribution pattern and aggregation stability of sulfate lignin and wood resin in aqueous alkali solution[J]. Russian Journal of Applied Chemistry, 2002, 1(75): 149-151
    [87]Barakat A, Putaux J L, Cathala B, et al. Characterization of Arabinoxylan-Dehydrogenation Polymer (Synthetic Lignin Polymer) Nanoparticles[J]. Biomacromolecules, 2007, 8: 1236–1245
    [88]Barakat A, Gaillard C, Cathala B, et al. Supramolecular Organization of Heteroxylan-Dehydrogenation Polymers (Synthetic Lignin) Nanoparticles[J].Biomacromolecules 2008, 9: 487–493
    [89]周洪峰.磺化木质素溶液行为的研究.东华大学硕士学士论文[D],2010,93-95
    [90]林海燕,罗学刚.醇溶木质素溶胶流变特性的研究[J].林产化学工业,2005, 25(1): 19-23.
    [91]Qiu X Q, Kong Q, Zhou M S, et al. Aggregation behavior of sodium lignosulfonate in water solution[J]. J. Phys. Chem. B, 2010,114: 15857—15861
    [92]刘琼,吴文辉,陈颖,等.荧光探针法研究疏水改性聚丙烯酰胺溶液的疏水缔合行为[J].功能高分子学报, 2005, 18(1): 22-27
    [93]郑博,李贺先,王国昌,等.水-甲醇混合体系的超分子复合作用[J].物理化学学报,2008, 24(8): 1503-1506
    [94]张国林,马建标,王亦农.聚L-丙氨酸-聚乙二醇嵌段共聚物的胶束化行为研究[J].高等学校化学学报, 2006, 27(4): 767-770
    [95]李新宝,徐丽,孟校威,等.稳态荧光探针法测定三聚季铵盐表面活性剂的胶束聚集数[J].物理化学学报, 2005, 21(2): 1403-1406
    [96]周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究[D].华南理工大学博士学位论文,2007
    [97]张树彪,乔卫红,李宗石.木质素分散剂相对分子质量分布的测定[J].色谱,2000,18(3): 277-279
    [98]谌凡更,李静,张旭峰.凝胶渗透色谱法测定木素磺酸盐相对分子质量分布[J].分析化学,2001,29(11): 1363-1364
    [99]Dutta P, Dey J, Ghosh G, et al. Self-association and microenvironment of random amphiphilic copolymers of sodium N-acryloyl-L-valinate and N-dodecylacrylamide in aqueous soluiton [J]. Polymer, 2009, 50: 1516-1525
    [100]Ariane B, Anne A P, Pascale L P, et al. The control of dendritic cell maturation by pH-sensitive polyion complex micelles[J]. Biomaterial, 2009, 30: 233-241
    [101]李星科,姜启兴,夏文水.壳聚糖的流变学性质及应用研究[J].食品工业学,2011,32(2): 65-70
    [102]潘雁,程镕时.高分子混合物溶液在极稀浓度区的粘度异常行为[J].高分子,2000,4(4): 518-520
    [103]张庆,赵晓琳.水煤浆的流变学属性[J].化学工程,1994,22(1): 53-60
    [104]唐国俊.流变学进展[M].广州:华南理工大学出版社.1993
    [105]Raffi M T, Jamel F A, Sun D J, et al. Wedgewood. Rheological behaviour of oil-based heavy oil, coal and water multiphase slurries[J]. Fuel, 1998, 77, (3): 209-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700