草原红牛及其改良群体遗传与营养互作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过饲养试验、消化代谢试验、比较屠宰试验、血液生化试验和分子生物学试验,采用多因子试验设计,利用40头草原红牛及杂交牛,系统研究了遗传基础和营养水平对饲料利用效率、肉用性能、血液指标、基因表达的影响及遗传与营养的互作效应。研究结果验证了动物营养代谢的基本规律;发现了可用于肉用性状标记辅助选择的遗传标记和饲料利用效率相关的血液生化指标;探讨了营养代谢差异性的分子生物学机制;建立了遗传与营养互作模型,初步揭示了遗传基础与营养、基因型(主要候选基因)与营养互作的基本规律及其对具体性状指标的互作效应;深化并丰富了比较动物营养学的内涵;填补了草原红牛相关研究的空白。
     研究结果表明,肉用性状和饲料营养利用效率受遗传和营养的双重影响,互作效应显著。杂交牛的日增重和饲料转化率随着营养水平的提高而显著提高(P<0.05),草原红牛的反应有所差别;高营养条件下草原红牛的能量沉积量和沉积率高于杂交牛(P<0.01),低营养条件下相反(P<0.05);草原红牛高营养组的能量沉积极显著高于低营养组(P<0.01),杂交牛为显著(P<0.05)。杂交牛的粗蛋白沉积高于草原红牛(P<0.05),高营养组的粗蛋白沉积显著高于低营养组(P<0.05);草原红牛的饲料利用率、增重效率、主要屠宰性状低于杂交牛(P<0.05)。高营养有利于增加眼肌面积和大理石评分,并降低肌肉剪切力值。
     血液生化指标存在遗传群体差异和营养水平的差异。杂交牛在高、低营养水平下的尿素氮浓度均比草原红牛低(P<0.05),同种群内的高营养组高于低营养组,遗传和营养对转氨酶有互作效应(P<0.01)。血液IGF-Ⅰ含量群体间差异极显著(P<0.01),杂交牛高于草原红牛;营养水平间差异显著(P<0.05),营养水平提高,含量增加。血液酶活性、IGF-1和GH与肉质性状、屠宰性状间存在相关关系。在不同遗传群体和不同营养条件下,GPT、GOT、LDH、AKP、Amy、IGF-Ⅰ活性与大理石花纹、肉骨比、眼肌面积等存在不同程度相关。
     两个群体中8个微卫星位点均有多态性,其中IDVGA44位点多态性较丰富,是最理想的选择标记。相关分析表明,BM2113等位基因C对净肉重和净肉率有正面影响;IDVGA46等位基因C对胴体重、屠宰率、净肉重和净肉率有负面影响;TGLA44等位基因E对体重、胴体重以及净肉重有正面影响。MSTN基因第一外显子SNP位点序列分析表明,杂交牛群体中呈现多态,该片段282处发生了单碱基突变(C/A),导致编码的苯丙氨酸突变为亮氨酸;SNP位点基因型效应的最小二乘分析表明,杂交牛9个肉用指标均差异显著或极显著。不同基因型之间分析表明,由C→A突变所产生的B等位基因对杂交牛的日增重具有显著影响。
     H-FABP基因5’调控区SNP位点序列在142处发生了G/A转换。方差分析表明:营养因素、遗传基础和H-PABP基因对消化代谢、屠宰和肉质性状均有影响。其中营养因素对消化代谢起主要作用;屠宰性状主要与遗传基础有关;肌纤维直径受遗传基础影响较大,大理石花纹主要受营养影响,肌肉剪切力主要受H-FABP基因影响。高营养条件下,营养因素对性状的表现起决定作用;低营养条件下,基因型对消化代谢和肉质性状的决定作用和基因效应明显。高营养条件下,基因型对剪切力影响较大;低营养条件下,基因型对大理石纹和肌纤维直径有决定作用。
     IGF-Ⅰ基因表达量存在遗传群体间和营养水平间的差异。草原红牛在不同营养条件下IGF-Ⅰ基因表达量差异极显著且与营养水平正相关,杂交牛有明显差异但不显著。低营养条件下草原红牛IGF-Ⅰ表达量低于杂交牛,高营养条件下相反。不同营养条件下,IGF-Ⅰ基因表达量对血液生化指标有明显影响,在不同群体间与尿素氮、血糖、IGF-Ⅰ、GH、A/G、P、AKP、Amy、CHE存在不同程度的正相关或副相关。不同营养条件下,IGF-Ⅰ表达量对消化代谢、肉质和屠宰性状有较大影响。草原红牛低营养时IGF-Ⅰ表达量与粗蛋白和能量沉积的呈现高度正相关,高营养时为中度负相关;与大理石花纹、肉色、失水率及滴水损失有相关,高营养水平时与肌纤维直径和大理石花纹有相关;与眼肌面积和日增重呈中等弱相关。杂交牛低营养时IGF-Ⅰ表达量与消化代谢指标均呈正相关,高营养时均为负相关;与日增重、眼肌面积和剪切力的相关随营养水平的提高而增强;与失水率和大理石花纹低营养条件下呈中度正相关,高营养时呈中度负相关。不同遗传基础条件下,IGF-Ⅰ表达量对消化代谢、肉质和屠宰性状也有较大影响。低营养条件下,草原红牛IGF-Ⅰ表达量与粗蛋白和能量沉积呈高度正相关,而杂交牛这两个性状正相关降低但与干物质、粗纤维和能量消化量的正相关大幅度提高;与两个群体眼肌面积的相关性完全相反;与草原红牛大理石纹、失水率、滴水损失、肉色呈正相关,与杂交大理石花纹和失水率呈正相关、滴水损失和肉色呈负相关。高营养条件下,IGF-Ⅰ表达量仅与草原红牛粗脂肪消化量为正相关,与两个群体中其它消化代谢指标均为不同程度的负相关,与杂交牛眼肌面积和日增重的相关性远远大于草原红牛。
     营养与基因型、营养与遗传基础对部分消化代谢、屠宰性状、肉质性状、IGF-Ⅰ基因的表达量和血液含量存在互作效应。两种方式均对干物质消化有显著影响,对滴水损失几乎都没有互作效应;营养与遗传基础互作对能量消化影响显著,对蛋白质消化量、眼肌面积、失水率的互作效应明显大于营养与基因型的互作,对IGF-Ⅰ基因的表达量的互作效应显著。营养与基因型互作对大理石花纹有显著影响,脂肪消化量主要受营养与基因型互作的影响,对剪切力值的互作效应显著且远远大于营养与遗传基础的互作。
A series of experiments were conducted to study the influences of genetic background and nutrition on feed efficiency, performance, blood index, gene expression as well as the interaction effect of genetic background and nutrition. Forty heads of china red cattle and its crossed herds were introduced, and multi-factor design was employed. Results of the study identified the basic regulation of nutritional metabolism in animals. Genetic markers could be used for marker assisted selection (MAS) and blood index related to beef traits and feed efficiency were found. Mechanisms of molecular biology for the differences of nutrient metabolism were discussed. Models of interaction between genetics and nutrition were established. Basic regulars of interaction between genetics and nutrition, genotype and nutrition, as well as the interaction effect on certain traits were revealed primarily. Concept of comparative animal nutrition (CAN) was deepened and flourished. Gaps of relevant studies in red cattle were filled.
     From the results of this study, performance and feed efficiency were influenced by genetic and nutritional factors at the same time. Daily gain (DG) and feed efficiency decreased with the increase of nutritional level of diets in red cattle while crossed herds were on the contrary. Energy retention and the efficiency in red cattle were higher than that in crossed herds under higher nutrition level (P<0.01), while it was on the contrary under lower nutrition level (P<0.05). Energy retention in red cattle under higher level of nutrition was higher than that of lower nutrition (P<0.01). Protein retention in crossed herds was higher than red cattle (P<0.05), and increased with nutrition level. Higher nutrition level contributed to eye muscle area, marbling score and lower shear force.
     Blood index varied among genetic and nutritional treatments. Urine nitrogen in crossed herds were higher than red cattle under two nutrition groups (P<0.05). It was higher in higher level groups than that of lower level groups within genetic herds. Interaction existed between genetics and nutrition on nitrogen transfer enzyme (P<0.01). There were differences of IGF-I among genetic herds (P<0.01). It was higher in crossed herds than that of red cattle. There were significant differences among groups of nutrition (P<0.05) and it increased with nutrition level. Correlation existed among GH, IGF-Ⅰ, and enzyme to slaughter traits and beef quality traits. There were correlations among GPT, GOT, LDH, AKP, Amy and IGF-Ⅰto marbling, eye muscle area and ratio of meat and bone in different degrees.
     Genetic variance and beef quality performance in red cattle and crossed herds were analyzed with microsatellite makers. All the 8 microsatellite loci were highly polymorphic in two herds and IDVGA44 was the best selection marker. Correlation analysis indicated that C allele of BM2113 locus has positive effect on lean meat weight and lean meat percentage. C allele of IDVGA46 locus has negative effect on carcass weight, slaughter rate, lean meat weight and lean meat percentage. E allele of TGLA44 locus has positive effect on some slaughter traits such as body weight, carcass weight and lean meat weight. Results of sequence analysis on SNP site of MSTN exon-1 showed that a single nucleotide transition (C/A) occurred at site 282 in crossed herds which caused a change of amino acid change from Phe to Leu and there was no mutation in red cattle. The effect of genotype for MSTN gene was analyzed with least-square method and the result showed that all the 9 beef traits but kidney fat was significantly related to genotypes of SNP site in crossed herds. The effect of different genotype analysis indicated that B allele has positive relation with daily gain significantly, and has no relation with other traits.
     There was a G/A transition at site 142 of H-FABP gene's 5' flanking region identified by sequence analysis. Variance analysis indicated that nutrition level, genetic background and H-FABP gene had influences on traits of digestive metabolism, slaughter and beef quality, of which nutrition played dominant effect on digestive metabolism and genetic background mainly on slaughter traits. But it was much more complex for beef quality traits, muscle fiber diameter was mainly influenced by genetic background, marbling score by nutrition level, and shear force mainly by H-FABP gene as well. Under higher nutrition level, the nutrient elements had a greater effect on performances, but the genotype effect would be more dominant for decision of digestive metabolism and beef quality. Different genotypes had greater effect on shear force under higher nutrition level, and on marbling and muscle fiber diameter under lower nutrition level, but little effects on slaughter traits.
     There were differences for IGF-Ⅰexpression volume The results of analysis for IGF-Ⅰexpression volume under different nutrition level showed that IGF-Ⅰexpression volume was significantly different in red cattle and was different but not significantly in crossed herds. It was lower for IGF-Ⅰexpression volume in red cattle than in crossed herds under low nutrition level and was significantly higher under high nutrition level. Expression volume of IGF-Ⅰin liver increased with nutrition level in both herds. IGF-Ⅰexpression had great effect on blood index under different nutrition level. Under low nutrition level, IGF-Ⅰexpression volume had low-negative correlation in red cattle and high-negative in crossed herds to urine nitrogen, and low-negative in red cattle and medium-positive in crossed herds with blood sugar, and also negative correlation in red cattle and positive correlation in crossed herds with A/G, G, ChE, AKP and IGF-Ⅰconcentration. Under high nutrition level, IGF-Ⅰexpression volume had negative correlation (-0.32) in red cattle and positive correlation in crossed herds with GH (0.39), and related coefficient with ChE and Amy concentration decreased from 0.45 and 0.82 in red cattle to 0.17 and 0.31 in crossed herds, respectively.
     IGF-Ⅰexpression has a great effect on traits within the same genetic groups under different nutrition level. In red cattle, its expression volume had high-positive correlation with crude protein and energy deposition under low nutrition level and medium-negative correlation under high nutrition level. For beef quality traits, its correlations were positive with marbling, beef color, dehydration ratio, water loss under low nutrition level and with muscle fiber diameter, marbling under high nutrition level. Its expression volume had low-positive correlation with loin muscle area, daily gain and little correlation with other slaughter traits. In crossed herds, IGF-Ⅰexpression volume had positive correlation under low nutrition level and negative correlation under high nutrition level with all digestive and metabolic traits. Its related coefficient with daily gain and loin muscle area under high nutrition level much more increased than that under low nutrition level. For beef quality traits, its correlations with marbling and dehydration ratio were medium-positive under low nutrition level and negative under high nutrition level, but its related coefficient with shear force was greatly increased under high nutrition level.
     IGF-Ⅰexpression had also great effect on traits in different population under the same nutrition level. Under low nutrition level, its expression volume had high-positive correlation with crude protein and energy deposition in red cattle, but in crossed herds, its correlations with both traits were lower and much higher with other digestive and metabolic traits as dry material, crude fiber and energy. Its correlation with loin muscle area was reversed in red cattle and crossed herds. For beef quality traits, its correlations were positive with marbling, meat color, dehydration ratio, water loss in red cattle and positive with marbling, dehydration ratio, but negative with water loss, meat color in crossed herds. Under high nutrition level, all the correlations were negative with digestive and metabolic traits in both population except with crude fat which was positive in red cattle, and the coefficient was higher in crossed herds than that in red cattle. Its related coefficients with loin muscle area and daily gain were much higher in crossed herds than that in red cattle. Under high nutrition level, its correlations with most beef traits were reversed in red cattle and crossed herds, such as pH (-0.46: 0.29), marbling (0.29: -0.22), shear force(-0.14: 0.57), water loss (0.13: -0.41), and so on, which showed that genetic background played important role on beef quality under high nutrition level.
     There were interaction effects of nutrition and H-FABP genotype or nutrition and genetic backgrounds on digestive metabolism, slaughter and meat traits. Interaction between nutrition and genetic backgrounds was significant on digestive and metabolic traits like dry material, crude protein, energy, and interactions between genotype and nutrition on crude fat and dry material was also significant. The marbling and shear force were greatly influenced by the interaction between nutrition and H-FAPB genotype, and the interaction effect on dehydration ratio was greatly influenced by nutrition and genetic backgrounds. There were no significant interactions on slaughter traits. Both kinds of interactions had similar interaction effects on IGF-Ⅰexpression and concentration in serum but had not significant difference.
引文
1 杨凤.动物对饲料的消化.见:杨凤,主编.动物营养学.第一版版.北京:中国农业出版社,2000.17-25.
    2 黄晶晶,刘玉兰.表皮生长因子对胃肠道的作用.饲料研究.2006,2:12-13
    3 徐佐钦,张玉生,胡仲明,等.消化生理.家畜生理学.第一版版.长春:吉林科学技术出版社,1986.116-170.
    4 奶牛瘤胃发酵优化与高效饲养关键技术研究成功.中国乳业.2006,3:30-33
    5 何晓燕.家兔胃底部组织结构的研究.通化师范学院学报.2007,1:20-22
    6 袁森泉.影响断奶仔猪小肠发育的因素.广东饲料.2001,2:10-12
    7 杨凤.动物对饲料的消化.动物营养学,1993.17-25.
    8 马松成,陈静,毛华明,等.瘤胃微生态系统.中国畜牧兽医.
    9 赵军,林英庭.瘤胃保护性脂肪在奶牛饲料中的研究进展.饲料研究.
    10 宋恩亮.肉牛合理利用非蛋白氮。农业知识.
    11 刘芳,潘晓亮.用外源纤维素酶提高反刍动物对饲料的利用.饲料研究.
    12 陈宁,尹君亮,刘福元,等.不同日粮组成对断奶初期奶公犊瘤胃内环境指标的影响.家畜生态学报.
    13 汪水平,王文娟,谭支良,等.瘤胃纤维降解的研究进展.家畜生态学报.
    14 张相梅,李汉浸,高志军,等.秸秆的综合利用技术.河南气象.
    15 王梦芝,王洪荣,李国祥,等.反刍动物肽代谢的研究进展.草食家畜.
    16 高启平,乐国伟,施用晖,等.饲粮完整蛋白质比例对肉雏鸡生产性能和养分利用的影响.畜牧兽医学报.
    17 王艳立,赵希彦,金曙光,等.龙须眼子菜对绵羊日粮养分消化率和氮沉积的影响.中国饲料.
    18 田晓燕,姚军虎,吴孝兵,等.择食饲喂对肉鸡生产性能和养分代谢的影响.中国家禽.
    19 张克英,陈代文,余冰,等.饲粮中添加植酸酶对断奶仔猪生长性能及蛋白质、氨基酸和磷利用率的影响.动物营养学报.
    20 CaryL,Cormwell,潘勇.NRC《猪营养需要量》第10版简介.国外畜牧科技.
    21 王志祥,张建云,陈文,等.固始鸡、罗曼蛋雏鸡和艾维茵肉仔鸡生长、养分沉积、肉质特性的比较研究.动物营养学报.
    22 Skinner D M, Beattie W C, Blatter F R. et al. The sequence of a hermitcrab satellite DNA in (TAGG)n/(ATCC)n. Biochemistry, 1974,13:3930-3937.
    23 Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Rec. 1989.17:6463-6471.
    24 赵红书,杨晓鹏,刘榜,等.猪12号染色体几个微卫星标记与部分生产性状的芙系研究.华中 农业大报,2000,19(4):360~362.
    25 蒋隽,施启顺,吴晓林,等.家猪1号染色体微卫星标记与背膘厚的相关性.湖南农业大学学报,2002,28(2):132~134.
    26 张淑君,熊远著,曾凡同,等.猪八号染色体产仔数微卫星标记的探讨.养猪,2001,2(31~33).
    27 单雪松,张沅,李宁.奶牛微卫星基因座与产奶性能关系的研究,2002,5.遗传学报,2002,5:4230~4233
    28 CharlierC,et al. The mh geneca using double muscling in cattle maps to bovine chromosome2. Mammalian Genome, 1999,6(788~792).
    29 E.Casas,J.Keele,S.D.Shacklford et al. Association of the muscle hypertrophy locus with carcass traitas in beef cattle. J.Anim.Sci, 1998,76(468~473).
    30 曹红鹤,王雅春,陈幼春.探讨微卫星DNA作为皮埃蒙特和南阳杂交牛生长性状的遗传标记.遗传学报,1999,6:621~626.
    31 金海国,曹阳,臧延青等.微卫星DNA与延边黄牛肉用生长性状关系的初步探讨[J].中国兽医学报,2004,24((3)):285~288.
    32 Hacia JG,LC Brody,MS Chee et al. Detection of heterozygous mutations in BRCA1 using high-density oligonucleotide arrays and two-colour fluorescence analysis. Nat. Genet, 1996,14:441-447.
    33 Nickerson DA,R Kaiser, S Lappin et al. Automated DNA diagnostics using an ELISA-based oligonuCleotide ligation assay. Proc. Natl. Acad. Sci, 1990,87:8923-8927.
    34 Livark KJ,S J A Flood,J Marrnaro et al. Oligonucleotides with fluorescence dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Method Appl, 1995,4:357-362.
    35 Chen X,and P-Y Kwok. Template-directed dye-terminator incorporation(TDI) assay:a homogeneous DNA diagnostic method based on fluorescence energy transfer. Nucleic Acids Res, 1997,25:347-353.
    36 Maruya E,Saji H,Yokoyama S. PCR-LIS-SSCP(Iow ionic strength single-strand conformation polymorphism)-a imple method for high-resolution allele typing of HLA-DRBI,-DQB1 and DPB1. Genome Research, 1996,6((1)):51-57.
    37 Chen X,K Livak,and P-Y Kwok. A homogeneous,lagase-mediated DNA diagnostic test. Genome Res, 1998,8:549-556.
    38 Pease AC,D Solas,EJ Sullivan et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci, 1994,91:5022-5026.
    39 Yao J B,Aggrey S E,Zadworny D et al. Sequence variations in the bovine growth hormone gene characterized by single-strand conformation polymorphism(SSCP) analysis and their association with milk production traits in Holsteins. Genetics. 1996,144:1809-1816.
    40 Wehling M, Cai B, Tidball JG. Modulation of myostatin expression during modified muscle use. FASEB J. Jan, 2000,14((1)):103-10.
    41 McPherron A C. et al. Regulation of skeletal muscle mass in mice by a new TGF-B superfam ilymember [J]. Nature, 1997,387:83-90.
    42 姜运良,李宁,吴常信等.肌肉生长抑制素基因的研究进展[J].遗传,2000,22((2)):119-121.
    43 Jiang M S, Liang L F, Wang S, et al. Characterization and identification of the inhibitory domain of GDF-8 propeptide [J]. Biochem Biophys Res Commun, 2004,315((3)):525~531.
    44 张利媛,岳文斌.MSTN基因的研究进展[J].草食家畜,2006,3:1~4.
    45 Thomas M, LangleyB, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation [J]. Biol Chem, 2000,275((51)):40235~40243.
    46 Rios R, CarneiroI, Arce V M,et al. Myostatin is an inhibitor of myogenic differentiation[J]. Am J Physiol Cell Physiol, 2002,282((5)):993~999.
    47 Joulia D, Bernardi H, Garandel V, et al. Mechanisms involved in theinhibition of myoblast proliferation and differentiation by Myostatin [J]. Exp Cell Res, 2003,286((2)):263~275.
    48 McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal[J]. The Journal of Cell Biology, 2003,162((6)): 1135~1147.
    49 苏智光,张思仲.人类基因组单核苷酸多态性研究进展[J].生命的化学,2001((6)):452-455
    50 Pirottin D, Poncelet D, Grobet L, Royo LJ, Brouwers B, Masabanda J, Takeda H, Fries R, Sugimoto Y, Womack JE, Dunner S, Georges M. High-resolution, human-bovine comparative mapping based on a closed YAC contig spanning the bovine mh locus[J]. Mamm Genome. Mar, 1999,10((3)):289~293.
    51 Ganguli A, and DJ Prockop. Detection of single-base mutations by reaction of DNA heteroduplexes with a water-soluble carbodiimide followed by primer extension:Application to products from the polymerase chain reaction[J]. Nucleic Acids Res, 1990,18:3933~3939.
    52 Marcq F, et al. Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep[J]. Animal Genetics, 1998,29:52.
    53 坝志良,张海峰,李辉等.鸡myostatin基因的单核苷酸多态性的群体遗传学分析[J].遗传学报,2002,29((7)):599~606.
    54 Sonstegard T. S,Rohrer G. A porcine chromosome 15 by linkage and physicial analyses[J]. Animal Genetic, 1998,29((1)):19.
    55 Fahrenkrug S C, Casas E, Keele J W, Smith T P. Technical note: direct genotyping of the double-muscling locus (mh) in Piedmontese and Belgian Blue cattle by fluorescent PCR. Anita Sci, 1999,77((8)):2028-2030.
    56 Gerbens F, van Erp A J, Harders F L, Verburg F J, Meuwissen T H, Veerkamp J H, te Pas M F. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs[J]. Journal of Animal Science, 1999,77:846-852.
    57 Gerbens F, Verburg F J, Van Moerkerk H T, et al. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs[J]. J Anita Sci, 2001,79((2)):347~354.
    58 Quintanilla R, Demeure O, Bidanel JP, Milan D, Iannuccelli N, Amigues Y, Gruand J, Renard C, Chevalet C, Bonneau M. Detection of quantitative trait loci for fat androstenone levels in pigs. J Ani.Sci, 2003,81 ((2)):385-394.
    59 Huff Lonergan E, Baas TJ, Malek M, Dekkers JC, Prusa K, Rothschild MF. Correlations among selected pork quality traits. Ani.Sci, 2002,80((3)):617-627.
    60 Casas E, White SN, Riley DG, Smith TP, Brenneman RA, Olson TA, Johnson DD, Coleman SW, Bennett GL, Chase CC Jr. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Ani.Sci, 2005,83((1)):13-19.
    61 Casas E, Shackeiford SD, Keele JW, Koohmaraie M, Smith TP, Stone RT. Detection of quantitative trait loci for growth and carcass composition in cattle. Ani. Sci. Dec, 2003,81((12)):2976-83.
    62 Looft C, Milan D, Jeon JT, Paul S, Reinsch N, Rogel-Gaillard C, Rey V, Amarger V, Robic A, Kalm E, Chardon P, Andersson L. A high-density linkage map of the RN region in pigs. Gen.Sel Evol. May-Jun, 2000,32((3)):321-9.
    63 Veerkamp J H, Maatman R G. Cytoplasmic fatty aci binding proteins: their structure and genes[J]. Progressin Lipid Research, 1995,34:17~52.
    64 韩新燕,汪以真,许梓荣.脂肪酸结合蛋白的研究进展[J].生物学通报,2000,35((11)):8~9.
    65 李武峰,许尚忠,曹红鹤等.3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析[J].畜牧兽医学报,2004,35:252~255.
    66 钟金城,马志杰,陈智华等.牦牛心脏脂肪酸结合蛋白(H-FABP)基因的克隆及序列分析[J].中国农业科学,2006,39((8)):1639-1650.
    67 Gerbens F, Rettenberger G, Lenstra J A, Veerkamp J H, te Pas M F. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene[J]. Mamm Genome, 1997,8:328-332.
    68 Gerbens F, Verburg F J, Harders F L, et al. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs[J]. J Anita Sci, 1999,77((4)):46~52.
    69 Zhang J, Rickers-Haunerland J, Dawe I, Haunerland Nil. Structure and chromosomal location of the rat gene encoding the heart fatty acid-binding protein[J]. European Journal of Biochemisty, 1999,266:347~351.
    70 Calvo J H, Vaiman D, Saydi-Mehtar N. Characterization, genetic variation and chromosomal assignment to sheep chromosome 2 of the ovine heart fatty acid-binding protein gene (FABP3) [J]. Cytogenetic Genome Research, 2002,98:270~273.
    71 王启贵,李宁.鸡脂肪酸结合蛋白基因的克隆和测序分析[J].遗传学报,2002,29((2)):115~118.
    72 周国利,朱奇,郭善利等.鲁西黄牛H-FABP基因的多态性及其与肉质性状关系的分析[J].西北农业学报,2005,14(3):5~7.
    73 王存芳.猪H-FABP和A-FABP基因的多态性及其与肌内脂肪性状关系的研究.山东农业大学硕 士研究生论文,2002.
    74 Koohmaraie M. Effect of pH, temperature, and inhibitors on autolysis and catalytic activity of bovine skeletal muscle mu-calpain. J Ani. Sci, 1992,70(10):3071-80.
    75 Rinderknecht E, Humbel R E. The amino acid sequence of human insulin-like growth factor-1 and its structural homology with proinsulin. Journal of biology Chemistry, 1978(10):2769~2776.
    76 梁艳,李学伟.胰岛素样生长因子与动物性状的相关性研究.畜禽业,2006(12):6~9.
    77 梁艳,李学伟.胰岛素样生长因子与动物性状的相关性研究.畜禽业,2006,12:6~9.
    78 Morton, C, Rail, L, Bell, G, Shows, T. Human insulin- like growth factor- 1 (IGFI) is encoded at 12q22 - q24.1, and insulin-like growth factor- 2 (IGF2) is at 11pl5. Cytogenet. Cell Genet, 1985(40):703.
    79 Morton C C, Byers M G ,et al. Human genes for insulin-like growth factors Ⅰ and Ⅱ and epidermal growth factor are located on 12q22-q24.1,11p15,and 4q25-q27, respectively. Cytogenet Cell Genet, 1986(4):245~249.
    80 Taylor B A, Grieco D. Localization of the gene encoding insulin- like growth factor Ⅰ on mouse chromosome 10. Cytogenet Cell Genet, 1991 (1):57~58.
    81 Winter A K, Fredholm M ,Andersson L. Assignment of the gene for insulin- like growth factorl (IGF-1) to chromosome 5 by linkage mapping. Anim Genet, 1994(1):37~39.
    82 Klein S, Morrice D R, Sang H S. Gentic and physical mappingofthe chicken IGF1 gene to chromosome 1 and conservation of synteny with other vertebrate genomes. J Heredity, 1996(87):10~14.
    83 De Donato M, Gallagher DS Jr, et al. Molecular cytogenetic assignment of gene to bvoine chromosome 5. Genet Mol Res, 2003(3): 260-270.
    84 Nikolic IA, et al. Blot in AnimHus. 2000: 3~10.
    85 Davis M E, et al. Genetic parameter estimates for serum insulin- like growth factor-Ⅰ concentration and carcass traits in Angus beef cattle. Anita Sci, 2000((9)):2305~2313.
    86 Lamberson W R, Sterle JA,et al. Relationship of serum insulin-like growth factor-Ⅱ concentrations to growth, compositional and reproductive traits of swine[J]. Anita Sci, 1996,74:1753~1756.
    87 Gerrard D E, Okamura C S, Banalletta M A M, et al. Developmental expression and location of IGF-I and IGF-Ⅱ mRNA and protein in skeletal muscle. J Anita Sci, 1998,(4):1004~1011.
    88 Magri K A, Benedict M R, Ewton D Z. Negative feedback regulation of insulin-like growth factor-I gene expression in diferentiating myoblasts invitro. Endocrinology, 1994.
    89 Owens P C, Gatford K L, Walton P E, et al. The relationship between endogenous insulin- like growth factors and growth of pigs[J]. J Anita Sci, 1999((8)):2098~2103.
    90 Nagaraja S C, Aggrey S E, Yao J, Zadworny D, et al. Trait association of a genetic marker near the IGF-Ⅰ gene in egg- laying chickens[J]. Heredity, 2000((2)): 150~156.
    91 葛盛芳.60日龄大蛋系和高产系绍兴蛋鸭血清激素水平和酶活性的比较.南京农业大学学报, 2000((2)):76~79.
    92 Dehnhard M, Claus R, et al. Course of Epidermal Growth Factor (EGF) and insulin-like Growth Factor Ⅰ (IGF-Ⅰ) in Mammary Secretions of the Goat during End-Pregnancy and Early Lactation[J]. Vet Med Ser A, 2000((9)):533~540.
    93 云振宇.牛初乳及过渡乳中类胰岛素生长因子IGF-Ⅰ含量测定及其变化[J].中国乳品工业,2004((4)):6~9.
    94 Su H-Y, Cheng W T K. Increased milk yield in transgenic mice expressing insulin-like growth factorl [J]. Anim Bio, 2004((1)): 9~19.
    95 周庆安,姚军虎,刘文刚,何瑞国.基因技术住动物营养科学中的应用.饲料工业,2005(16):51~52.
    96 C. Coupe, D. Perdereau, P. Ferre, Y. Hitier, M. Narkewicz and J. Girard. Lipogenic enzyme activities and mRNA in rat adipose tissue at weaning. Am J Physiol Endocrinol Metab, 1990,258:E126-E133.
    97 Clarke S. D, Jump D. B. Regulation of gene transcription by polyunsaturated fatty acids. Prog. Lipid Res, 1993,32:139-149.
    98 Foufelle F,Lepetit N,Bosc D,Morin J,Raymondjean M&Ferre P. Dnase I hypersensitivity sites and nuclear protein binding on the fatty acid synthase gene:identification of an element with properties similar to known glucose-responsive elements. Biochemical Journal, 1995,308:521-527.
    99 Boiron B Chen R Chen. Transcriptional glucose signaling through the glucose response element is mediated by pentose phosphate path way. Journal of Biological Chemistry, 1996,271:5321-5324.
    100 Wicker C, et al. Expression of rat pancreatic lipase gene is modulated by a lipid- rich diet at a transcriptional level[J]. Biochem Biophys Res Commun, 1990,166:358-364.
    101 Hopkins K. A surprising function for the PTEN tumor suppressor. Science, 1999,282:1027-1028.
    102 Bremner. Metallothionein and the trace minerals. Ann Rev Nutr, 1990(10):63-83.
    103 Bermano et al. Selenoprotein gene expression during selenium-repletion of selenium-deficient rats.Biological Trace Elenent Research, 1996,51:211~223.
    104 刘恭平,朱清华.维生素A对小鼠胚胎Hox3.5基因表达的影响.卫生研究,2000(Vol.29 No.3):164~165.
    105 樊建设.维生素A缺乏对大鼠胚胎生长发育的影响.卫生研究,1999(28(4)):235.
    106 于芳.维生素E、维生素C与基因的稳定性.国外医学*卫生学分册,2002,29(3):141.
    107 Ricciarelli, R, Zingg, J.M. und Azzi, A. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation, 2000,102(1): 82-87.
    108 杨国忠,张嘉保,任文陟,等.草原红牛及其杂种牛群体遗传变异与肉用性能的微卫星标记研究.畜牧兽医学报,2006(2):27-32.
    109 Beef Quality and Yield Grades.
    110 陈幼春.现代肉牛生产.第1版版.北京:北京农业出版社,1999.125-176.
    111 分子克隆实验指南.第3版版.北京:科学出版社,2002.463~471.
    112 金海国,曹阳,臧延青等.微卫星DNA与延边黄牛肉用生长性状关系的初步探讨.中国兽医学报,2004,24(3):285~288.
    113 P. G. Sullivan, J. W. Wilton, S. P. Miller, and L. R. Banks. Genetic Trends and Breed Overlap Derived from Multiple-Breed Genetic Evaluations of Beef Cattle for Growth Traits. J. Anim. Sci, 1999,77:2019-2027.
    114 王艳荣,张海棠,王瑞平,等.不同精料水平对肉牛饲料利用效率的影响.黑龙江畜牧兽医,2005(11).
    115 王艳荣,吕文发,王自良,等.不同杂交组合肉牛的肥育效果研究.安徽农业科学,2006(06).
    116 刘立成,苗树君,任宪刚,等.二元轮回杂交牛育肥效果比较.黑龙江畜牧兽医,2005(11).
    117 张金山,张扬,卡德尔,等.不同肉牛品种断奶后育肥试验.草食家畜,2006(02).
    118 孙维斌,王加启,毛玉胜.不同饲养水平卜西门塔尔杂交阉牛瘤胃氮代谢特征研究.西北农林科技大学学报(自然科学版),2007(7):24-27.
    119 王艳荣,吕文发,崔艳红,等.不同年龄杂交肉牛的肥育效果研究.饲料工业,2006(05).
    120 胡成华,张国梁,于洪春,等.草原红牛导入丹麦红牛血的研究.吉林农业科学,2005(02).
    121 胡成华,张国梁,赵玉民,等.草原红牛及其导入利木赞血牛产肉性能对比试验.吉林农业科学,2004(05).
    122 张国梁,胡成华,苏秀侠,等.不同日粮对草原红牛肥育效果的研究.吉林农业科学,2004(04).
    123 吴长庆,于洪春,张国良.中国草原红牛品种资源现状及展望.黄牛杂志,2000(06).
    124 胡成华,于洪春.草原红牛与利木赞杂交后增重效果的观察.黄牛杂志,1999(01).
    125 K. D. Sinclair, L. A. Sinclair and J. J. Robinson. Nitrogen metabolism and fertility in cattle: I. Adaptive changes in intake and metabolism to diets differing in their rate of energy and nitrogen release in the rumenl. J. Anita. Sci. 2000.78:2659-2669.
    126 胡成华,张国梁,刘基伟,等.草原红牛导入利木赞血后产肉性能研究.中国牛业科学,2006(04).
    127 李燎,梅淑凤,耿进怡,等.不同品种肉牛与黄牛杂交屠宰试验效果分析.畜牧兽医科技信息,2007(02).
    128 R. A. Kohn, M. M. Dinneen, and E. Russek-Cohen. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, orses, pigs, and rats. J. Anita. Sci, 2005,83:879-889.
    129 储明星,王毓英,石万海.不同产奶量遗传优势的犊牛对代谢刺激的生化和生理反应(综述).中国奶牛,1999(06).
    130 高雪,许尚忠,任红艳,等.牛类胰岛素生K因子IGF.I基冈研究.畜牧兽医学报,2006(12).
    131 高雪,徐秀容,任红艳,等.不同基因型对南阳牛生长发育性状的影响.遗传,2006(08).
    132 QunZhao,B,S,等.Pit-Ⅰ、GHRH-R、IGF-Ⅱ基因的遗传标记及其与肉牛生长和胴体性状的关系.中国畜牧兽医,2004(11).
    133 史福胜,车发梅,孙旭红,等.不同海拔地区牦牛血浆和组织中乳酸脱氢酶的比较.中国兽医杂 志,2007(02).
    134 邓艳美,叶绍辉.牛血清LDH同工酶遗传多样性及其在遗传育种中的应用.山东农业科学,2006(01).
    135 沈明华.玛多牦牛红细胞血清及组织中乳酸脱氢酶活性的测定.中国兽医杂志,2005(07).
    136 田璐,许尚忠,岳文斌,等.MyoD基因对肉牛胴体性状影响的分析.遗传,2007(03).
    137 咎林森,张恩平,辛亚平,等.秦川牛在不同立地条件下生长发育及肉用生产性能的比较研究.家畜生态学报,2006(06).
    138 李德允.TMR饲料对肉用牛生长发育及胴体品质的影响.延边大学农学学报,2005(02).
    139 陈银基,周光宏,李春保,等.中国黄牛及其杂交牛产肉量和产肉率预测.安徽农业科学,2005(07).
    140 何桦,赖松家.牛双肌性状的研究进展及其应用.中国畜牧兽医,2005(04).
    141 G,H,Zhou,等.纯种及杂交中国黄牛的生产性能及胴体特征.中国畜牧兽医,2004(04).
    142 Hearne C M, et al. Microsatelites for linkage analysis of genetic traits. Trend in Genetics, 1992,8:288-293.
    143 吴伟,王栋,曹红鹤.微卫星DNA标记对5个中外黄牛品种/群体遗传结构的研究.吉林农业大学学报,2000,4:5~10.
    144 曹红鹤,王雅春,陈幼春.五种微卫星DNA标记在肉牛群体中的研究.中国农业科学,1999,32(1):69~73.
    145 CharlierC,e t al. The mh geneca using double muscling in cattle maps to bovine chromosome2. Mammalian Genome, 1995,6:788~792.
    146 E.Casas,J.Keele,S.D.Shacklford et al.Association of the muscle hypertrophy locus with carcass traitas in beef cattle. J.Anim.Sci, 1998,76:468~473.
    147 张伟峰,张沅,王勇强.牛双肌性状的研究进展及其应用.草食家畜,1998,2:1-5.
    148 Grobet L, et al. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mare malian genome, 1998,9(3): 210-213.
    149 李武峰,许尚忠,曹红鹤等.3个杂交牛种H-FABP基因第二内含子的遗传变异与肉品质性状的相关分析.畜牧兽医学报,2004,35:252~255.
    150 周国利,朱奇,郭善利等.鲁西黄牛H-FABP基因的多态性及其与肉质性状关系的分析.西北农业学报,2005,14(31:5~7.
    151 钟金城,马志杰,陈智华等.牦牛心脏脂肪酸结合蛋白(H-FABP)基因的克隆及序列分析.中国农业科学,2006,39(8):1639-1650.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700