Nrf2-ARE信号通路在白癜风氧化应激发病中的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     白癜风是一种常见的色素脱失性皮肤病,发病率呈逐年上升趋势,皮损局部黑素细胞减少或消失是其色素脱失的主要原因。由于白癜风发病的确切机制尚不清楚,目前仍缺乏有效的治疗方法。近年来的研究发现,氧化应激在诱发表皮黑素细胞破坏或功能障碍方面发挥关键作用。氧化应激可通过产生大量的氧自由基来攻击细胞,干扰其正常代谢、增殖和分化,并可能进一步诱发机体自身免疫反应,形成瀑布式效应,造成表皮黑素细胞不可逆性损伤。与其它表皮细胞相比,白癜风患者黑素细胞更易于受到氧化攻击而发生损伤,然而这其中的原因和机制并不清楚。因此,阐明白癜风患者黑素细胞易受到氧化损伤的原因和具体分子机制对于完善白癜风氧化应激发病机理、指导临床治疗具有重要的意义。
     Nrf2-ARE通路是细胞对抗外源性刺激和氧化损伤的主要机制。Nrf2属于“CNC”家族的亮氨酸拉链蛋白,它可与胞核内的抗氧化反应元件(ARE)的DNA序列结合,调控下游一系列II相解毒酶和抗氧化基因的表达。在无任何刺激的状况下,Nrf2与胞浆伴侣蛋白Keap1相结合,处于相对抑制的状态,并被铆钉在胞浆中。当处于氧化应激条件时,Nrf2将与Keap1解偶联并转移入核,与核内的抗氧化反应元件结合,启动一系列II相解毒酶和抗氧化基因的表达。这些基因主要包括:血红素氧合酶-1(HO-1)、NADP(H)醌氧化还原酶1(NQO1)、谷氨酸-半胱氨酸连接酶催化亚基(GCLC)和谷氨酸-半胱氨酸连接酶调节亚基(GCLM)。Nrf2-ARE信号通路及其下游基因已被证实在多种细胞、组织和器官抗氧化损伤中发挥重要作用。由此,我们提出如下的假说:第一,Nrf2-ARE通路在保护黑素细胞抵抗氧化损伤中发挥重要作用;第二,白癜风患者黑素细胞中Nrf2-ARE通路存在异常,导致其对氧化应激更为敏感。
     目的:
     1.研究Nrf2-ARE通路及其下游分子在人黑素细胞中的表达情况,明确该通路在黑素细胞抗氧化应激中的作用;
     2.分析Nrf2-ARE通路在正常人和白癜风患者黑素细胞中的表达及功能差异;
     3.探讨Nrf2-ARE通路及其下游分子在白癜风患者黑素细胞中表达及功能差异的分子机制。
     方法:
     1.首先利用不同浓度的H_2O_2处理人黑素细胞PIG1,MTS实验检测细胞活性,摸索建立体外黑素细胞氧化应激模型的最佳条件;
     2.在PIG1中通过转染Nrf2干涉片段及过表达质粒下调或者上调Nrf2的表达,氧化应激下MTS和流式细胞术检测细胞活性和凋亡情况。
     3. H_2O_2预处理后,Real-time PCR检测Nrf2下游主要的4个抗氧化基因(HO-1,NQO-1, GCLC和GCLM)表达水平,免疫细胞化学及Real-time PCR检测原代黑素细胞中Nrf2及HO-1的表达情况。
     4.分别利用MTS实验、Real-time PCR、免疫印迹、激光共聚焦显微镜、双荧光素酶报告基因实验、流式细胞术以及酶联免疫实验检测氧化应激下正常人及白癜风患者黑素细胞活性、HO-1表达水平、Nrf2的核转位情况、转录活性、细胞内ROS和MDA水平以及SOD、GPx、CAT和GSH的含量。
     5.用免疫组化法检测白癜风患者皮损处Nrf2、p-Nrf2和HO-1的表达分布模式,ELISA检测患者血清中IL-2和HO-1表达水平。
     6.应用ATM干涉片段或抑制剂KU55933抑制ATM的表达后,Real Time-PCR和免疫印迹实验检测Nrf2、HO-1和p-Nrf2的表达情况。H_2O_2预处理后,MTS实验、流式细胞术以及酶联免疫实验检测氧化应激下黑素细胞活性、细胞内ROS和MDA水平,免疫组化检测白癜风患者皮损处ATM和p-ATM表达分布模式。
     结果:
     1. H_2O_2可以浓度依赖性的方式诱导黑素细胞死亡,1.0mM H_2O_2处理24h是体外建立黑素细胞氧化应激模型的最佳条件;
     2. MTS实验及流式结果证实,下调Nrf2的表达可导致氧化应激下细胞活性下降,增加细胞凋亡和坏死的比率;而上调Nrf2的表达则可提高细胞活性,显著降低细胞凋亡的比率,说明调节Nrf2-ARE通路可影响黑素细胞对氧化应激的抵抗性;
     3. Real-time PCR结果表明,H_2O_2可诱导Nrf2通路下游4个主要抗氧化基因表达升高,其中HO-1变化最显著(升高了近5倍)。用HO-1抑制剂ZnPP预处理可增加过氧化氢对细胞的损伤,而用其激动剂hemin预处理可提高细胞抗氧化能力,进一步研究显示,HO-1的表达水平与Nrf2的表达呈正相关,说明HO-1可通过Nrf2通路保护黑素细胞避免氧化损伤;
     4. MTS实验结果显示,在未使用H_2O_2处理时,正常人和白癜风患者黑素细胞活性无显著差异,但在H_2O_2作用下,白癜风患者黑素细胞活性较正常人相比显著下降,说明白癜风患者黑素细胞对氧化应激的敏感性更高;
     5.激光共聚焦显示,Nrf2在正常人黑素细胞(PIG1)中主要位于胞核,而在白癜风患者黑素细胞(PIG3V)中则主要位于胞浆。在正常状态下,PIG1细胞胞核中Nrf2的含量要高于PIG3V中,而胞浆中的含量则明显低于PIG3V中;免疫印迹实验结果显示,H_2O_2刺激后两组黑素细胞胞核中Nrf2的含量均有所增加,但PIG3V细胞胞核中Nrf2的增加量显著低于PIG1中;双荧光素酶报告基因实验显示,H_2O_2可在两组黑素细胞中以时间依赖性的方式诱导Nrf2转录活性升高,而在PIG3V中Nrf2转录活性的升高幅度显著低于PIG1中;进一步研究显示,在氧化应激下,白癜风患者黑素细胞中HO-1表达增高幅度显著低于正常人黑素细胞中,说明PIG3V中Nrf2存在激活障碍导致HO-1表达水平降低;
     6.在PIG3V中上调Nrf2的表达可显著减少氧化应激下细胞死亡率,说明激活Nrf2可降低PIG3V对氧化应激的敏感性;
     7.与PIG1相比,PIG3V细胞中ROS和MDA水平升高、SOD和GPx活性及总GSH和GSH含量降低,但是CAT活性在两组细胞中无显著差异,说明PIG3V细胞中氧化-抗氧化失衡;
     8.白癜风患者皮损处表皮细胞中Nrf2、p-Nrf2和HO-1表达分布异常,细胞核内Nrf2、p-Nrf2和HO-1含量减少,氧化应激并未引起细胞核内Nrf2、p-Nrf2和HO-1核转位增加;
     9.与健康对照相比,白癜风患者血清中HO-1水平降低,而IL-2水平升高,同时发现血清HO-1水平与IL-2水平呈显著负相关;
     10.免疫组化结果表明,白癜风患者皮损处表皮细胞中ATM表达降低,而p-ATM表达升高;在PIG1中下调ATM的表达可显著抑制Nrf2、HO-1和p-Nrf2的表达,降低氧化应激下黑素细胞活性,提高细胞内ROS和MDA的水平,而对黑素合成及酪氨酸酶活性则无影响,提示ATM可通过作用于Nrf2通路影响细胞氧化应激水平,ATM表达量降低可能是白癜风患者黑素细胞中Nrf2通路存在激活障碍的原因。
     结论:
     通过本课题的研究,我们首次明确了Nrf2-ARE信号通路在黑素细胞抗氧化应激中的重要作用,发现Nrf2激活障碍是白癜风患者黑素细胞易于发生氧化损伤的原因,初步阐明了Nrf2存在激活障碍的分子机制,为进一步认识白癜风中黑素细胞的损伤机制奠定了基础。同时,本研究不仅丰富和完善了白癜风氧化应激发病机制,而且为临床治疗提供了新靶点。
Background:
     Vitiligo is a well-known skin depigmenting disorder characterized by the death ofmelanocytes from the lesional epidermis, and with an increasing incidence rate. Due to thepoorly understood in the pathogenesis, vitiligo is still lack of effective treatment. Recently,experimental and clinical evidences suggest that oxidative stress in the epidermis ofaffected skin lead to melanocyte degeneration. Oxidative stress can generate largeamounts of oxygen free radicals that affect the metabolism, proliferation anddifferentiation of normal cells. It may also further induce the autoimmune response toform a waterfall effect, causing irreversible damage of the epidermal melanocytes. Recentexperimental data underline that melanocytes involved in vitiligo may have inherentaberrations that make them more vulnerable to extracellular insults. However, the processand the executive disappearance mechanism lack a clear explanation. Therefore, it hasgreat significance in improving the pathogenesis and treatment of vitiligo to clarify the causes that vitiligo melanocytes is susceptible to oxidative damage and its molecularmechanism.
     Nrf2-ARE (Nuclear factor E2-related factor2-Antioxidant response element)pathway plays an important function in the defense against oxidative stress. Nrf2belongsto the cap'n'collar (CNC) family of basic leucine zipper proteins, and Nrf2regulates theexpression of phase II detoxifying and antioxidant genes by binding to the ARE sequence.Under unstimulated conditions, Nrf2is sequestered in the cytosol, where it is associatedwith Kelch-like ECH-associated protein1(Keap1). When under oxidative stress, Nrf2escapes from Keap1and then translocates to the nucleus where it binds to ARE andinduces the phase II antioxidant genes. These genes encode heme oxygenase-1(HO-1),catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathioneperoxidase (GPx), NADH quinone oxidoreductase1(NQO1), glutamate-cysteine ligasecatalytic subunit (GCLC), and glutamyl-cystine ligase modulatory subunit (GCLM).Recently, the functions of Nrf2and its downstream genes have been shown to beimportant for protection against oxidative stress and chemical-induced cellular damage inmany cells, tissues and organs. Therefore, we hypothesized that the Nrf2-ARE pathwaymay serve as a key mechanism of cytoprotection during H_2O_2-mediated oxidative stress inhuman melanocytes, and hypothesize that the increased sensitivity to H_2O_2-inducedoxidative insults of vitiligo melanocytes is due to the dysfunction in Nrf2-ARE redoxsignaling pathway and the activation of Nrf2can decrease the sensitivity of vitiligomelanocytes to H_2O_2-induced oxidative damage.
     Aims:
     1. To study the expression of Nrf2-ARE signaling pathway and its downstream genesin human melanocytes and to determine the role of Nrf2-ARE signaling pathway in copingwith oxidative stress in melanocytes;
     2. To analyze the expression and functional changes of Nrf2-ARE signaling pathwaybetween normal human melanocytes and vitiligo melanocytes;
     3. To explore the underlying mechanism for the aberrant expression of Nrf2-AREsignaling pathway and its downstream genes in vitiligo melanocytes.
     Methods:
     1. Firstly, we utilized H_2O_2in our studies and performed a series of dose-responseassays to determine the optimal concentration that would lead to a consistent and highdegree of cytotoxicity.
     2. Then, we used Nrf2siRNA and pCMV6-XL5-Nrf2to downregulate or upregulateNrf2expression in immortalized human melanocyte cell line PIG1. The melanocytes werethen analyzed under oxidative stress conditions for cell viability and apoptosis.
     3. After treatment with H_2O_2in PIG1cells, the expression of four main downstreamgenes (HO-1, NQO-1, GCLC and GCLM) of Nrf2pathway was determined by Real-timePCR. Then, immunocytochemistry and Real-time PCR analysis were carried out toexamine the expression of Nrf2and HO-1in the normal primary human melanocytes afterthe treatment with H_2O_2.
     4. Next, the cell viability, HO-1expression, the location of Nrf2, Nrf2-AREtranscriptional activity, the levels of ROS and MDA, the activities or contents of SOD,GPx, CAT and GSH were determined respectively by MTS aasay, Real-time PCR, westernblot, laser confocal scanning microscopy, dual luciferase reporter assay, flow cytometerand enzyme-linked immunosorbent assay between control and vitiligo melanocytes.
     5. Moreover, the expression patterns of Nrf2, p-Nrf2and HO-1in lesional skin weredetected by immunohistochemistry, and the serum levels of HO-1and interleukin (IL)-2inpatients with vitiligo were determined by ELISA.
     6. Finally, we used ATM siRNA or KU55933to downregulate ATM expression inPIG1cells and used Real-time PCR and western blot to determine the expression of Nrf2,HO-1and p-Nrf2. In order to observe the effect about ATM downregulation, the cellviability, the levels of ROS and MDA, melanin synthesis and tyrosinase activity weredetermined respectively by MTS aasay, flow cytometer and enzyme-linkedimmunosorbent assay. The expression patterns of ATM and p-ATM in lesional skin werealso detected by immunohistochemistry.
     Results:
     1. As determined by MTS assay, the H_2O_2-induced cell death of normal human melanocytes was concentration-dependent, and1.0mM H_2O_2caused consistentcytotoxicity but maintained high cell viability.
     2. MTS assay results showed that suppressed Nrf2expression led to significant celldeath under oxidative stress, and the percentage of dead cells was low in cells withupregulated Nrf2expression. Compared with the control group, the proportion ofapoptotic and necrotic cells increased after Nrf2was downregulated by Nrf2siRNA, butthere was a statistically significant induction in apoptosis48h after transfection withpCMV6-XL5-Nrf2. It suggests that modulation of Nrf2-ARE pathway can affect thecapability of melanocytes to cope with oxidative stress.
     3. The RT-PCR results shown that the expression levels of four main phase IIdetoxifying genes (HO-1, NQO-1, GCLC and GCLM) were upregulated after H_2O_2treatment. The most significant change was found in the HO-1gene with an approximate5-fold increase when compared to the control. ZnPP treatment exacerbated the damageinduced by H_2O_2in melanocytes, and hemin treatment enhanced cells viability comparedwith the control. The reduction of HO-1expression was associated with Nrf2knockdown,while the increase in both mRNA and protein levels of HO-1coincided with increasedNrf2levels. It suggests that HO-1can protect human melanocytes against H_2O_2-inducedoxidative damage through an Nrf2-dependent pathway.
     4. MTS assay results showed that no remarkable difference in cell viability was foundbetween normal human melanocytes from vitiligo melanocytes when H_2O_2was absent,while the present of1.0mM H_2O_2caused statistically significant reduction in cell viabilityof vitiligo melanocytes compared with control melanocytes. It suggests that vitiligomelanocytes showing more hypersensitive to H_2O_2-induced oxidative injury.
     5. Laser confocal scanning microscopy showed that nuclear Nrf2localization wasobserved mainly in control melanocytes, while vitiligo melanocytes produced primarilycytoplasmic staining. Under normal condition, the expression of nuclear Nrf2in controlmelanocytes are higher than that in vitiligo melanocytes, while the expression ofcytoplasmic Nrf2in vitiligo melanocytes are higher than that in control melanocytes.Moreover, western blot showed that in the nuclei-enriched fractions of control and vitiligo melanocytes, Nrf2content increased in response to H_2O_2. Far smaller Nrf2increases wereseen in the nuclei-enriched fractions of vitiligo melanocytes. Dual luciferase reporter assayshowed that treatment with H_2O_2increased transcriptional activity of Nrf2in terms ofARE luciferase activity in a time-dependent manner in both groups, whereas AREluciferase activity of PIG3V was much lower than that of PIG1in the presence of H_2O_2. Incontrol melanocytes, H_2O_2led to greater increases in HO-1. While in vitiligo melanocytes,the increases were far smaller compared with H_2O_2-untreated group. These data clearlyindicate that Nrf2-driven transcriptional activation of HO-1is aberrant in vitiligomelanocytes.
     6. Compared with normal control group, up-regulated Nrf2expression by transfectedwith pCMV6-XL5-Nrf2led to a less cell death under oxidative stress, whereas suchchanges were not observed in mock group. These data indicate that up-regulation of Nrf2restores the antioxidative ability of vitiligo melanocytes.
     7. Vitiligo melanocytes present a significantly higher intracellular ROS and MDAlevels. The SOD and GPx activities and low contents of total GSH and GSH in vitiligomelanocytes were comparatively lower than that in control melanocytes. Interestingly,there was no signifcant difference in activity of CAT between two groups. These dataindicate that antioxidant enzymes system is impaired in vitiligo melanocytes.
     8. In vitiligo lesional skin, we observed a dramatic reduction in nuclear Nrf2, p-Nrf2and HO-1in epidermal cells, which was different from the expected localizationresponding to oxidative stress.
     9. Serum HO-1levels were signifcantly lower in patients with vitiligo than in healthycontrols and the overall levels of serum IL-2of the patients with vitiligo were obviouslyhigher than that of healthy controls. The level of serum HO-1was inversely correlatedwith serum IL-2in vitiligo patients.
     10. Immunohistochemistry showed that decreased expression of ATM and increasedexpression of p-ATM were observed in epidermal cells of vitiligo lesional skin.Transfection with ATM-siRNA2lead to decreased expression of Nrf2, HO-1and p-Nrf2.Downregulation of ATM present a significantly lower cell viability and higher intracellular ROS and MDA levels, but have no effect on melanin synthesis and tyrosinase activity. Itsuggests that ATM regulates the oxidative stress level via Nrf2-ARE signaling pathway inmelanocytes, and the lack of ATM in epidermal cells of lesional skin may be the reasonthat the Nrf2activation is impaired under oxidative stress.
     Conclusion:
     In view of the above data, we demonstrate for the first time that Nrf2-ARE pathwayplays an important function in the defense against oxidative stress in human melanocytesand impaired Nrf2-ARE signaling pathway in vitiligo melanocytes shown for the first timehere contributes to the severity of oxidative stress and the failure of antioxidant inductionin response to oxidative stress. Furthermore, the underlying mechanism for the aberrantactivation of Nrf2in vitiligo melanocytes is clarified. Our work laid the foundation for thefurther understanding of the injury mechanism of vitiligo melanocytes. Meanwhile, ourstudy not only enriches and improves the oxidative stress pathogenesis in vitiligo, but alsoprovides a new target for clinical treatment.
引文
[1]C. Kruger and K.U. Schallreuter, A review of the worldwide prevalence of vitiligo inchildren/adolescents and adults., Int J Dermatol51(2012), p.1206-1212.
    [2]K. Ezzedine, H.W. Lim, T. Suzuki, I. Katayama, I. Hamzavi and C.C. Lan, et al.,Revised classification/nomenclature of vitiligo and related issues: the Vitiligo GlobalIssues Consensus Conference., Pigment Cell Melanoma Res25(2012), p. E1-E13.
    [3]A. Taieb and M. Picardo, Clinical practice. Vitiligo., N Engl J Med360(2009), p.160-169.
    [4]T. Lu, T. Gao, A. Wang, Y. Jin, Q. Li and C. Li, Vitiligo prevalence study inShaanxi Province, China., Int J Dermatol46(2007), p.47-51.
    [5]J. Porter, A.H. Beuf, A. Lerner and J. Nordlund, Response to cosmetic disfigurement:patients with vitiligo., Cutis39(1987), p.493-494.
    [6]M.R. Namazi, Neurogenic dysregulation, oxidative stress, autoimmunity, andmelanocytorrhagy in vitiligo: can they be interconnected?, Pigment Cell Res20(2007), p.360-363.
    [7]K.U. Schallreuter, P. Bahadoran, M. Picardo, A. Slominski, Y.E. Elassiuty and E.H.Kemp, et al., Vitiligo pathogenesis: autoimmune disease, genetic defect, excessivereactive oxygen species, calcium imbalance, or what else?, Exp Dermatol17(2008), p.139-140,141-160.
    [8]M.L. Dell'anna and M. Picardo, A review and a new hypothesis fornon-immunological pathogenetic mechanisms in vitiligo., Pigment Cell Res19(2006), p.406-411.
    [9]P.S. Bhatia, L. Mohan, O.N. Pandey, K.K. Singh, S.K. Arora and R.D. Mukhija,Genetic nature of vitiligo., J Dermatol Sci4(1992), p.180-184.
    [10]K.U. Schallreuter, R. Lemke, O. Brandt, R. Schwartz, M. Westhofen and R. Montz,et al., Vitiligo and other diseases: coexistence or true association? Hamburg study on321patients., Dermatology188(1994), p.269-275.
    [11]S.M. Kim, H.S. Chung and S.K. Hann, The genetics of vitiligo in Korean patients.,Int J Dermatol37(1998), p.908-910.
    [12]J. MOHR, Vitiligo in a pair of monovular twins., Acta Genet Stat Med2(1951), p.252-255.
    [13]P.R. Fain, K. Gowan, G.S. LaBerge, A. Alkhateeb, G.L. Stetler and J. Talbert, et al.,A genomewide screen for generalized vitiligo: confirmation of AIS1on chromosome1p31and evidence for additional susceptibility loci., Am J Hum Genet72(2003), p.1560-1564.
    [14]I. Ando, H.I. Chi, H. Nakagawa and F. Otsuka, Difference in clinical features andHLA antigens between familial and non-familial vitiligo of non-segmental type., Br JDermatol129(1993), p.408-410.
    [15]W. Gunther and K.V. Richter,[Incidence of histocompatibility antigens (HL-A) inskin diseases]., Dermatol Monatsschr161(1975), p.402-405.
    [16]L.M. Foley, N.J. Lowe, E. Misheloff and J.L. Tiwari, Association of HLA-DR4withvitiligo., J Am Acad Dermatol8(1983), p.39-40.
    [17]C. Quan, Y.Q. Ren, L.H. Xiang, L.D. Sun, A.E. Xu and X.H. Gao, et al.,Genome-wide association study for vitiligo identifies susceptibility loci at6q27and theMHC., Nat Genet42(2010), p.614-618.
    [18]S.K. Nath, J.A. Kelly, B. Namjou, T. Lam, G.R. Bruner and R.H. Scofield, et al.,Evidence for a susceptibility gene, SLEV1, on chromosome17p13in families withvitiligo-related systemic lupus erythematosus., Am J Hum Genet69(2001), p.1401-1406.
    [19]Y. Jin, C.M. Mailloux, K. Gowan, S.L. Riccardi, G. LaBerge and D.C. Bennett, et al.,NALP1in vitiligo-associated multiple autoimmune disease., N Engl J Med356(2007), p.1216-1225.
    [20]Y. Jin, S.L. Riccardi, K. Gowan, P.R. Fain and R.A. Spritz, Fine-mapping of vitiligosusceptibility loci on chromosomes7and9and interactions with NLRP1(NALP1)., JInvest Dermatol130(2010), p.774-783.
    [21]X.J. Zhang, J.B. Liu, J.P. Gui, M. Li, Q.G. Xiong and H.B. Wu, et al.,Characteristics of genetic epidemiology and genetic models for vitiligo., J Am AcadDermatol51(2004), p.383-390.
    [22]M. Li, D. Sun, C. Li, Z. Zhang, L. Gao and K. Li, et al., Functional polymorphismsof the FAS gene associated with risk of vitiligo in Chinese populations: a case-controlanalysis., J Invest Dermatol128(2008), p.2820-2824.
    [23]L. Liu, C. Li, J. Gao, K. Li, L. Gao and T. Gao, Genetic polymorphisms ofglutathione S-transferase and risk of vitiligo in the Chinese population., J Invest Dermatol129(2009), p.2646-2652.
    [24]K. Li, C. Li, L. Gao, L. Yang, M. Li and L. Liu, et al., A functional single-nucleotidepolymorphism in the catechol-O-methyltransferase gene alter vitiligo risk in a Chinesepopulation., Arch Dermatol Res301(2009), p.681-687.
    [25]M. Li, Y. Gao, C. Li, L. Liu, K. Li and L. Gao, et al., Association of COX2functional polymorphisms and the risk of vitiligo in Chinese populations., J DermatolSci53(2009), p.176-181.
    [26]L. Liu, C. Li, J. Gao, K. Li, R. Zhang and G. Wang, et al., Promoter variant in thecatalase gene is associated with vitiligo in Chinese people., J Invest Dermatol130(2010),p.2647-2653.
    [27]Y. Zhang, C. Li, K. Li, L. Liu, Z. Jian and T. Gao, Analysis of inducible nitric oxidesynthase gene polymorphisms in vitiligo in Han Chinese people., PLoS One6(2011), p.e27077.
    [28]K. Li, Q. Shi, L. Yang, X. Li, L. Liu and L. Wang, et al., The association of vitaminD receptor gene polymorphisms and serum25-hydroxyvitamin D levels with generalizedvitiligo., Br J Dermatol167(2012), p.815-821.
    [29]X.W. Wang, K. Li, S. Guo, H.N. Qiang, L. Liu and P. Song, et al., The associationof functional polymorphisms in the aryl hydrocarbon receptor (AHR) gene with the risk ofvitiligo in Han Chinese populations., Br J Dermatol166(2012), p.1081-1087.
    [30]C. Wei, Z. Jian, L. Wang, H. Qiang, Q. Shi and S. Guo, et al., Genetic variants of theAPE1gene and the risk of vitiligo in a Chinese population: A genotype-phenotypecorrelation study., Free Radic Biol Med58(2013), p.64-72.
    [31]P.E. Grimes, J.S. Sevall and A. Vojdani, Cytomegalovirus DNA identified in skinbiopsy specimens of patients with vitiligo., J Am Acad Dermatol35(1996), p.21-26.
    [32]J.C. Bystryn, Serum antibodies in vitiligo patients., Clin Dermatol7(1989), p.136-145.
    [33]J. Cui, Y. Arita and J.C. Bystryn, Cytolytic antibodies to melanocytes in vitiligo., JInvest Dermatol100(1993), p.812-815.
    [34]J. Cui, Y. Arita and J.C. Bystryn, Characterization of vitiligo antigens., Pigment CellRes8(1995), p.53-59.
    [35]E.H. Kemp, D.J. Gawkrodger, P.F. Watson and A.P. Weetman, Immunoprecipitationof melanogenic enzyme autoantigens with vitiligo sera: evidence for cross-reactiveautoantibodies to tyrosinase and tyrosinase-related protein-2(TRP-2)., Clin Exp Immunol109(1997), p.495-500.
    [36]E.H. Kemp, E.A. Waterman, D.J. Gawkrodger, P.F. Watson and A.P. Weetman,Autoantibodies to tyrosinase-related protein-1detected in the sera of vitiligo patients usinga quantitative radiobinding assay., Br J Dermatol139(1998), p.798-805.
    [37]G.K. Naughton, D. Reggiardo and J.C. Bystryn, Correlation between vitiligoantibodies and extent of depigmentation in vitiligo., J Am Acad Dermatol15(1986), p.978-981.
    [38]R. Harning, J. Cui and J.C. Bystryn, Relation between the incidence and level ofpigment cell antibodies and disease activity in vitiligo., J Invest Dermatol97(1991), p.1078-1080.
    [39]Q. Li, Y. Lv, C. Li, X. Yi, H.A. Long and H. Qiao, et al., Vitiligo autoantigen VIT75is identified as lamin A in vitiligo by serological proteome analysis based on massspectrometry., J Invest Dermatol131(2011), p.727-734.
    [40]J.G. van den Boorn, D. Konijnenberg, T.A. Dellemijn, J.P. van der Veen, J.D. Bosand C.J. Melief, et al., Autoimmune destruction of skin melanocytes by perilesional Tcells from vitiligo patients., J Invest Dermatol129(2009), p.2220-2232.
    [41]A.M. Badri, P.M. Todd, J.J. Garioch, J.E. Gudgeon, D.G. Stewart and R.B. Goudie,An immunohistological study of cutaneous lymphocytes in vitiligo., J Pathol170(1993),p.149-155.
    [42]P.I. Le, R.M. van den Wijngaard, W. Westerhof and P.K. Das, Presence of T cellsand macrophages in inflammatory vitiligo skin parallels melanocyte disappearance., Am JPathol148(1996), p.1219-1228.
    [43]G.S. Ogg, D.P. Rod, P. Romero, J.L. Chen and V. Cerundolo, High frequency ofskin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo., J ExpMed188(1998), p.1203-1208.
    [44]E.E. Boh, Role of reactive oxygen species in dermatologic diseases., Clin Dermatol14(1996), p.343-352.
    [45]C. Nishigori, Y. Hattori and S. Toyokuni, Role of reactive oxygen species in skincarcinogenesis., Antioxid Redox Signal6(2004), p.561-570.
    [46]R.M. Tyrrell, The molecular and cellular pathology of solar ultraviolet radiation.,Mol Aspects Med15(1994), p.1-77.
    [47]H. Yang, X. Wang, X. Liu, J. Wu, C. Liu and W. Gong, et al., Antioxidantpeptidomics reveals novel skin antioxidant system., Mol Cell Proteomics8(2009), p.571-583.
    [48]M. Athar, Oxidative stress and experimental carcinogenesis., Indian J Exp Biol40(2002), p.656-667.
    [49]C.S. Sander, H. Chang, F. Hamm, P. Elsner and J.J. Thiele, Role of oxidative stressand the antioxidant network in cutaneous carcinogenesis., Int J Dermatol43(2004), p.326-335.
    [50]S. Briganti and M. Picardo, Antioxidant activity, lipid peroxidation and skin diseases.What's new., J Eur Acad Dermatol Venereol17(2003), p.663-669.
    [51]D. Kulms and T. Schwarz, Molecular mechanisms of UV-induced apoptosis.,Photodermatol Photoimmunol Photomed16(2000), p.195-201.
    [52]S.J. Seo and D.E. Fisher, Melanocyte photobiology, ultraviolet radiation andmelanoma., G Ital Dermatol Venereol145(2010), p.603-611.
    [53]M.B. Abdel-Naser, K. Krasagakis, C. Garbe and J. Eberle, Direct effects onproliferation, antigen expression and melanin synthesis of cultured normal humanmelanocytes in response to UVB and UVA light., Photodermatol PhotoimmunolPhotomed19(2003), p.122-127.
    [54]C. Marionnet, C. Pierrard, F. Lejeune, J. Sok, M. Thomas and F. Bernerd, Differentoxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed tonon extreme daily-ultraviolet radiation., PLoS One5(2010), p. e12059.
    [55]K.J. Trouba, H.K. Hamadeh, R.P. Amin and D.R. Germolec, Oxidative stress and itsrole in skin disease., Antioxid Redox Signal4(2002), p.665-673.
    [56]D.R. Bickers and M. Athar, Oxidative stress in the pathogenesis of skin disease., JInvest Dermatol126(2006), p.2565-2575.
    [57]M. Mastore, L. Kohler and A.J. Nappi, Production and utilization of hydrogenperoxide associated with melanogenesis and tyrosinase-mediated oxidations of DOPA anddopamine., FEBS J272(2005), p.2407-2415.
    [58]N.P. Smit, F.A. van Nieuwpoort, L. Marrot, C. Out, B. Poorthuis and H. van Pelt, etal., Increased melanogenesis is a risk factor for oxidative DNA damage--study on culturedmelanocytes and atypical nevus cells., Photochem Photobiol84(2008), p.550-555.
    [59]K.U. Schallreuter, Successful treatment of oxidative stress in vitiligo., SkinPharmacol Appl Skin Physiol12(1999), p.132-138.
    [60]K.U. Schallreuter, K.R. Lemke, H.Z. Hill and J.M. Wood, Thioredoxin reductaseinduction coincides with melanin biosynthesis in brown and black guinea pigs and inmurine melanoma cells., J Invest Dermatol103(1994), p.820-824.
    [61]M.L. Cucchi, P. Frattini, G. Santagostino and G. Orecchia, Higher plasmacatecholamine and metabolite levels in the early phase of nonsegmental vitiligo., PigmentCell Res13(2000), p.28-32.
    [62]S.G. Kalko, J.L. Gelpi, I. Fita and M. Orozco, Theoretical study of the mechanismsof substrate recognition by catalase., J Am Chem Soc123(2001), p.9665-9672.
    [63]C. Jimenez-Cervantes, M. Martinez-Esparza, C. Perez, N. Daum, F. Solano and J.C.Garcia-Borron, Inhibition of melanogenesis in response to oxidative stress: transientdownregulation of melanocyte differentiation markers and possible involvement ofmicrophthalmia transcription factor., J Cell Sci114(2001), p.2335-2344.
    [64]K.U. Schallreuter, J. Moore, J.M. Wood, W.D. Beazley, D.C. Gaze and D.J. Tobin,et al., In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in theepidermis of patients with vitiligo and its successful removal by a UVB-activatedpseudocatalase., J Investig Dermatol Symp Proc4(1999), p.91-96.
    [65]R.E. Boissy, Y.Y. Liu, E.E. Medrano and J.J. Nordlund, Structural aberration of therough endoplasmic reticulum and melanosome compartmentalization in long-term culturesof melanocytes from vitiligo patients., J Invest Dermatol97(1991), p.395-404.
    [66]J.J. Yohn, D.A. Norris, D.G. Yrastorza, I.J. Buno, J.A. Leff and S.S. Hake, et al.,Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts,keratinocytes, and melanocytes., J Invest Dermatol97(1991), p.405-409.
    [67]Z. Zhou, C.Y. Li, K. Li, T. Wang, B. Zhang and T.W. Gao, Decreased methioninesulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress:a possible cause for melanocyte loss in vitiligo., Br J Dermatol161(2009), p.504-509.
    [68]K.U. Schallreuter, J.M. Wood, M.R. Pittelkow, G. Buttner, N. Swanson and C.Korner, et al., Increased monoamine oxidase A activity in the epidermis of patients withvitiligo., Arch Dermatol Res288(1996), p.14-18.
    [69]S. Moretti, A. Spallanzani, L. Amato, G. Hautmann, I. Gallerani and M. Fabiani, etal., New insights into the pathogenesis of vitiligo: imbalance of epidermal cytokines atsites of lesions., Pigment Cell Res15(2002), p.87-92.
    [70]H. Rokos, W.D. Beazley and K.U. Schallreuter, Oxidative stress in vitiligo:photo-oxidation of pterins produces H(2)O(2) and pterin-6-carboxylic acid., BiochemBiophys Res Commun292(2002), p.805-811.
    [71]K.U. Schallreuter, J. Moore, J.M. Wood, W.D. Beazley, E.M. Peters and L.K. Marles,et al., Epidermal H(2)O(2) accumulation alters tetrahydrobiopterin (6BH4) recycling invitiligo: identification of a general mechanism in regulation of all6BH4-dependentprocesses?, J Invest Dermatol116(2001), p.167-174.
    [72]K.U. Schallreuter, G. Chiuchiarelli, E. Cemeli, S.M. Elwary, J.M. Gillbro and J.D.Spencer, et al., Estrogens can contribute to hydrogen peroxide generation andquinone-mediated DNA damage in peripheral blood lymphocytes from patients withvitiligo., J Invest Dermatol126(2006), p.1036-1042.
    [73]I. Dammak, S. Boudaya, A.F. Ben, H. Turki, H. Attia and B. Hentati, Antioxidantenzymes and lipid peroxidation at the tissue level in patients with stable and activevitiligo., Int J Dermatol48(2009), p.476-480.
    [74]S. Moretti, P. Fabbri, G. Baroni, S. Berti, D. Bani and E. Berti, et al., Keratinocytedysfunction in vitiligo epidermis: cytokine microenvironment and correlation tokeratinocyte apoptosis., Histol Histopathol24(2009), p.849-857.
    [75]E. Pelle, T. Mammone, D. Maes and K. Frenkel, Keratinocytes act as a source ofreactive oxygen species by transferring hydrogen peroxide to melanocytes., J InvestDermatol124(2005), p.793-797.
    [76]M. Shalbaf, N.C. Gibbons, J.M. Wood, D.J. Maitland, H. Rokos and S.M. Elwary, etal., Presence of epidermal allantoin further supports oxidative stress in vitiligo., ExpDermatol17(2008), p.761-770.
    [77]M. Eskandani, J. Golchai, N. Pirooznia and S. Hasannia, Oxidative stress level andtyrosinase activity in vitiligo patients., Indian J Dermatol55(2010), p.15-19.
    [78]M. Yildirim, V. Baysal, H.S. Inaloz and M. Can, The role of oxidants andantioxidants in generalized vitiligo at tissue level., J Eur Acad Dermatol Venereol18(2004), p.683-686.
    [79]V.A. Kostyuk, A.I. Potapovich, E. Cesareo, S. Brescia, L. Guerra and G. Valacchi, etal., Dysfunction of glutathione S-transferase leads to excess4-hydroxy-2-nonenal andH(2)O(2) and impaired cytokine pattern in cultured keratinocytes and blood of vitiligopatients., Antioxid Redox Signal13(2010), p.607-620.
    [80]K.U. Schallreuter, K. Rubsam, N.C. Gibbons, D.J. Maitland, B. Chavan and C.Zothner, et al., Methionine sulfoxide reductases A and B are deactivated by hydrogenperoxide (H2O2) in the epidermis of patients with vitiligo., J Invest Dermatol128(2008),p.808-815.
    [81]P.V. Sravani, N.K. Babu, K.V. Gopal, G.R. Rao, A.R. Rao and B. Moorthy, et al.,Determination of oxidative stress in vitiligo by measuring superoxide dismutase andcatalase levels in vitiliginous and non-vitiliginous skin., Indian J Dermatol VenereolLeprol75(2009), p.268-271.
    [82]R. Khan, A. Satyam, S. Gupta, V.K. Sharma and A. Sharma, Circulatory levels ofantioxidants and lipid peroxidation in Indian patients with generalized and localizedvitiligo., Arch Dermatol Res301(2009), p.731-737.
    [83]S.N. Aksoy, Z. Erbagci, E.I. Saygili, T. Sever, A.B. Erbagci and S. Pehlivan,Analysis of myeloperoxidase promotor polymorphism and enzyme activity in Turkishpatients with vitiligo., Eur J Dermatol19(2009), p.576-580.
    [84]D. Agrawal, E.M. Shajil, Y.S. Marfatia and R. Begum, Study on the antioxidantstatus of vitiligo patients of different age groups in Baroda., Pigment Cell Res17(2004), p.289-294.
    [85]R. Koca, F. Armutcu, H.C. Altinyazar and A. Gurel, Oxidant-antioxidant enzymesand lipid peroxidation in generalized vitiligo., Clin Exp Dermatol29(2004), p.406-409.
    [86]O. Arican and E.B. Kurutas, Oxidative stress in the blood of patients with activelocalized vitiligo., Acta Dermatovenerol Alp Panonica Adriat17(2008), p.12-16.
    [87]K.U. Schallreuter, J. Moore, S. Behrens-Williams, A. Panske and M. Harari, Rapidinitiation of repigmentation in vitiligo with Dead Sea climatotherapy in combination withpseudocatalase (PC-KUS)., Int J Dermatol41(2002), p.482-487.
    [88]K.U. Schallreuter, C. Kruger, B.A. Wurfel, A. Panske and J.M. Wood, From basicresearch to the bedside: efficacy of topical treatment with pseudocatalase PC-KUS in71children with vitiligo., Int J Dermatol47(2008), p.743-753.
    [89]K. Kostovic, Z. Pastar, A. Pasic and R. Ceovic, Treatment of vitiligo withnarrow-band UVB and topical gel containing catalase and superoxide dismutase., ActaDermatovenerol Croat15(2007), p.10-14.
    [90]G. Sanclemente, J.J. Garcia, J.J. Zuleta, C. Diehl, C. Correa and R. Falabella, Adouble-blind, randomized trial of0.05%betamethasone vs. topical catalase/dismutasesuperoxide in vitiligo., J Eur Acad Dermatol Venereol22(2008), p.1359-1364.
    [91]J.E. Rojas-Urdaneta and A.G. Poleo-Romero,[Evaluation of an antioxidant andmitochondria-stimulating cream formula on the skin of patients with stable commonvitiligo]., Invest Clin48(2007), p.21-31.
    [92]M.L. Dell'Anna, A. Mastrofrancesco, R. Sala, M. Venturini, M. Ottaviani and A.P.Vidolin, et al., Antioxidants and narrow band-UVB in the treatment of vitiligo: adouble-blind placebo controlled trial., Clin Exp Dermatol32(2007), p.631-636.
    [93]M. Becatti, F. Prignano, C. Fiorillo, L. Pescitelli, P. Nassi and T. Lotti, et al., Theinvolvement of Smac/DIABLO, p53, NF-kB, and MAPK pathways in apoptosis ofkeratinocytes from perilesional vitiligo skin: Protective effects of curcumin and capsaicin.,Antioxid Redox Signal13(2010), p.1309-1321.
    [94]D. Parsad and A. Kanwar, Oral minocycline in the treatment of vitiligo--apreliminary study., Dermatol Ther23(2010), p.305-307.
    [95]X. He, H. Kan, L. Cai and Q. Ma, Nrf2is critical in defense against highglucose-induced oxidative damage in cardiomyocytes., J Mol Cell Cardiol46(2009), p.47-58.
    [96]T. Satoh, N. Harada, T. Hosoya, K. Tohyama, M. Yamamoto and K. Itoh,Keap1/Nrf2system regulates neuronal survival as revealed through study of keap1gene-knockout mice., Biochem Biophys Res Commun380(2009), p.298-302.
    [97]J.M. Lee and J.A. Johnson, An important role of Nrf2-ARE pathway in the cellulardefense mechanism., J Biochem Mol Biol37(2004), p.139-143.
    [98]M.O. Leonard, N.E. Kieran, K. Howell, M.J. Burne, R. Varadarajan and S.Dhakshinamoorthy, et al., Reoxygenation-specific activation of the antioxidanttranscription factor Nrf2mediates cytoprotective gene expression in ischemia-reperfusioninjury., Faseb J20(2006), p.2624-2626.
    [99]M.K. Kwak, N. Wakabayashi, K. Itoh, H. Motohashi, M. Yamamoto and T.W.Kensler, Modulation of gene expression by cancer chemopreventive dithiolethionesthrough the Keap1-Nrf2pathway. Identification of novel gene clusters for cell survival., JBiol Chem278(2003), p.8135-8145.
    [100]R.K. Thimmulappa, K.H. Mai, S. Srisuma, T.W. Kensler, M. Yamamoto and S.Biswal, Identification of Nrf2-regulated genes induced by the chemopreventive agentsulforaphane by oligonucleotide microarray., Cancer Res62(2002), p.5196-5203.
    [101]H. Motohashi, F. Katsuoka, J.D. Engel and M. Yamamoto, Small Maf proteins serveas transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2regulatorypathway., Proc Natl Acad Sci U S A101(2004), p.6379-6384.
    [102]A.N. Kong, E. Owuor, R. Yu, V. Hebbar, C. Chen and R. Hu, et al., Induction ofxenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophileresponse element (ARE/EpRE)., Drug Metab Rev33(2001), p.255-271.
    [103]J.S. Lee and Y.J. Surh, Nrf2as a novel molecular target for chemoprevention.,Cancer Lett224(2005), p.171-184.
    [104]K.W. Kang, S.J. Lee, J.W. Park and S.G. Kim, Phosphatidylinositol3-kinaseregulates nuclear translocation of NF-E2-related factor2through actin rearrangement inresponse to oxidative stress., Mol Pharmacol62(2002), p.1001-1010.
    [105]N.G. Innamorato, A.I. Rojo, A.J. Garcia-Yague, M. Yamamoto, M.L. de Ceballosand A. Cuadrado, The transcription factor Nrf2is a therapeutic target against braininflammation., J Immunol181(2008), p.680-689.
    [106]W.O. Osburn, M.S. Yates, P.D. Dolan, S. Chen, K.T. Liby and M.B. Sporn, et al.,Genetic or pharmacologic amplification of nrf2signaling inhibits acute inflammatory liverinjury in mice., Toxicol Sci104(2008), p.218-227.
    [107]T.X. Pedersen, C. Leethanakul, V. Patel, D. Mitola, L.R. Lund and K. Dano, et al.,Laser capture microdissection-based in vivo genomic profiling of wound keratinocytesidentifies similarities and differences to squamous cell carcinoma., Oncogene22(2003), p.3964-3976.
    [108]P.H. Shih and G.C. Yen, Differential expressions of antioxidant status in aging rats:the role of transcriptional factor Nrf2and MAPK signaling pathway., Biogerontology8(2007), p.71-80.
    [109]H.J. Kim, B. Barajas, M. Wang and A.E. Nel, Nrf2activation by sulforaphanerestores the age-related decrease of T(H)1immunity: role of dendritic cells., J Allergy ClinImmunol121(2008), p.1255-1261.
    [110]R. Dringen, Metabolism and functions of glutathione in brain., Prog Neurobiol62(2000), p.649-671.
    [111]R.M. Adibhatla, R. Dempsy and J.F. Hatcher, Integration of cytokine biology andlipid metabolism in stroke., Front Biosci13(2008), p.1250-1270.
    [112]R.M. Adibhatla and J.F. Hatcher, Role of Lipids in Brain Injury and Diseases.,Future Lipidol2(2007), p.403-422.
    [113]R.M. Adibhatla and J.F. Hatcher, Altered lipid metabolism in brain injury anddisorders., Subcell Biochem49(2008), p.241-268.
    [114]R.M. Adibhatla, J.F. Hatcher and R.J. Dempsey, Lipids and lipidomics in braininjury and diseases., AAPS J8(2006), p. E314-E321.
    [115]M. Zakkar, K. Van der Heiden, L.A. Luong, H. Chaudhury, S. Cuhlmann and S.S.Hamdulay, et al., Activation of Nrf2in endothelial cells protects arteries from exhibiting aproinflammatory state., Arterioscler Thromb Vasc Biol29(2009), p.1851-1857.
    [116]J.A. Araujo and A.E. Nel, Particulate matter and atherosclerosis: role of particle size,composition and oxidative stress., Part Fibre Toxicol6(2009), p.24.
    [117]Z.A. Shah, R.C. Li, R.K. Thimmulappa, T.W. Kensler, M. Yamamoto and S. Biswal,et al., Role of reactive oxygen species in modulation of Nrf2following ischemicreperfusion injury., Neuroscience147(2007), p.53-59.
    [118]T. Satoh, S.I. Okamoto, J. Cui, Y. Watanabe, K. Furuta and M. Suzuki, et al.,Activation of the Keap1/Nrf2pathway for neuroprotection by electrophilic [correction ofelectrophillic] phase II inducers., Proc Natl Acad Sci U S A103(2006), p.768-773.
    [119]A.Y. Shih, P. Li and T.H. Murphy, A small-molecule-inducible Nrf2-mediatedantioxidant response provides effective prophylaxis against cerebral ischemia in vivo., JNeurosci25(2005), p.10321-10335.
    [120]W. Yan, H.D. Wang, Z.G. Hu, Q.F. Wang and H.X. Yin, Activation of Nrf2-AREpathway in brain after traumatic brain injury., Neurosci Lett431(2008), p.150-154.
    [121]X. Cheng, R.C. Siow and G.E. Mann, Impaired redox signaling and antioxidant geneexpression in endothelial cells in diabetes: a role for mitochondria and the nuclearfactor-E2-related factor2-Kelch-like ECH-associated protein1defense pathway., AntioxidRedox Signal14(2011), p.469-487.
    [122]V. Paupe, E.P. Dassa, S. Goncalves, F. Auchere, M. Lonn and A. Holmgren, et al.,Impaired nuclear Nrf2translocation undermines the oxidative stress response in Friedreichataxia., PLoS One4(2009), p. e4253.
    [123]A. Lau, N.F. Villeneuve, Z. Sun, P.K. Wong and D.D. Zhang, Dual roles of Nrf2incancer., Pharmacol Res58(2008), p.262-270.
    [124]P. Nioi and T. Nguyen, A mutation of Keap1found in breast cancer impairs itsability to repress Nrf2activity., Biochem Biophys Res Commun362(2007), p.816-821.
    [125]X.J. Wang, Z. Sun, N.F. Villeneuve, S. Zhang, F. Zhao and Y. Li, et al., Nrf2enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2.,Carcinogenesis29(2008), p.1235-1243.
    [126]L. Marrot, C. Jones, P. Perez and J.R. Meunier, The significance of Nrf2pathway in(photo)-oxidative stress response in melanocytes and keratinocytes of the humanepidermis., Pigment Cell Melanoma Res21(2008), p.79-88.
    [127]C.P. Guan, M.N. Zhou, A.E. Xu, K.F. Kang, J.F. Liu and X.D. Wei, et al., Thesusceptibility to vitiligo is associated with NF-E2-related factor2(Nrf2) genepolymorphisms: a study on Chinese Han population., Exp Dermatol17(2008), p.1059-1062.
    [128]C.P. Guan, X.D. Wei, H.Y. Chen, L. Zhang, M.N. Zhou and A.E. Xu,[Abnormalnuclear translocation of nuclear factor-E2related factor2in the lesion of vitiligo].,Zhonghua Yi Xue Za Zhi88(2008), p.2403-2406.
    [129]X. Song, A. Xu, W. Pan, B. Wallin, R. Kivlin and S. Lu, et al., Minocycline protectsmelanocytes against H2O2-induced cell death via JNK and p38MAPK pathways., Int JMol Med22(2008), p.9-16.
    [130]H.Y. Park, C. Wu, L. Yonemoto, M. Murphy-Smith, H. Wu and C.M. Stachur, et al.,MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes.,Biochem J395(2006), p.571-578.
    [131]V.T. Natarajan, A. Singh, A.A. Kumar, P. Sharma, H.K. Kar and L. Marrot, et al.,Transcriptional upregulation of Nrf2-dependent phase II detoxification genes in theinvolved epidermis of vitiligo vulgaris., J Invest Dermatol130(2010), p.2781-2789.
    [132]R.M. Halder and J.L. Chappell, Vitiligo update., Semin Cutan Med Surg28(2009), p.86-92.
    [133]Y.J. Lee and E. Shacter, Hydrogen peroxide inhibits activation, not activity, ofcellular caspase-3in vivo., Free Radic Biol Med29(2000), p.684-692.
    [134]A. Barbouti, P.T. Doulias, L. Nousis, M. Tenopoulou and D. Galaris, DNA damageand apoptosis in hydrogen peroxide-exposed Jurkat cells: bolus addition versus continuousgeneration of H(2)O(2)., Free Radic Biol Med33(2002), p.691-702.
    [135]P.I. Le, F.M. van den Berg, R.M. van den Wijngaard, D.A. Galloway, P.J. vanAmstel and A.A. Buffing, et al., Generation of a human melanocyte cell line byintroduction of HPV16E6and E7genes., In Vitro Cell Dev Biol Anim33(1997), p.42-49.
    [136]K. Itoh, T. Chiba, S. Takahashi, T. Ishii, K. Igarashi and Y. Katoh, et al., AnNrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genesthrough antioxidant response elements., Biochem Biophys Res Commun236(1997), p.313-322.
    [137]T. Ishii, K. Itoh, S. Takahashi, H. Sato, T. Yanagawa and Y. Katoh, et al.,Transcription factor Nrf2coordinately regulates a group of oxidative stress-induciblegenes in macrophages., J Biol Chem275(2000), p.16023-16029.
    [138]T.W. Kensler, N. Wakabayashi and S. Biswal, Cell survival responses toenvironmental stresses via the Keap1-Nrf2-ARE pathway., Annu Rev Pharmacol Toxicol47(2007), p.89-116.
    [139]A. Tanaka, N. Hamada, Y. Fujita, T. Itoh, Y. Nozawa and M. Iinuma, et al., A novelkavalactone derivative protects against H2O2-induced PC12cell death via Nrf2/AREactivation., Bioorg Med Chem18(2010), p.3133-3139.
    [140]N.G. Abraham, P.L. Tsenovoy, J. McClung and G.S. Drummond, Heme oxygenase:a target gene for anti-diabetic and obesity., Curr Pharm Des14(2008), p.412-421.
    [141]H.T. Chung, H.O. Pae and Y.N. Cha, Role of heme oxygenase-1in vascular disease.,Curr Pharm Des14(2008), p.422-428.
    [142]T. Nguyen, P.J. Sherratt, H.C. Huang, C.S. Yang and C.B. Pickett, Increased proteinstability as a mechanism that enhances Nrf2-mediated transcriptional activation of theantioxidant response element. Degradation of Nrf2by the26S proteasome., J Biol Chem278(2003), p.4536-4541.
    [143]J.W. Kim, M.H. Li, J.H. Jang, H.K. Na, N.Y. Song and C. Lee, et al.,15-Deoxy-Delta(12,14)-prostaglandin J(2) rescues PC12cells from H2O2-inducedapoptosis through Nrf2-mediated upregulation of heme oxygenase-1: potential roles ofAkt and ERK1/2., Biochem Pharmacol76(2008), p.1577-1589.
    [144]N. Radhakrishnan, M. Bhaskaran and P.C. Singhal, Hepatocyte growth factormodulates H2O2-induced mesangial cell apoptosis through induction of hemeoxygenase-1., Nephron Physiol101(2005), p. p92-p98.
    [145]G.S. Jeong, G.S. Oh, H.O. Pae, S.O. Jeong, Y.C. Kim and M.K. Shin, et al.,Comparative effects of curcuminoids on endothelial heme oxygenase-1expression:ortho-methoxy groups are essential to enhance heme oxygenase activity and protection.,Exp Mol Med38(2006), p.393-400.
    [146]A. Lau, N.F. Villeneuve, Z. Sun, P.K. Wong and D.D. Zhang, Dual roles of Nrf2incancer., Pharmacol Res58(2008), p.262-270.
    [147]L.E. Otterbein, F.H. Bach, J. Alam, M. Soares, L.H. Tao and M. Wysk, et al.,Carbon monoxide has anti-inflammatory effects involving the mitogen-activated proteinkinase pathway., Nat Med6(2000), p.422-428.
    [148]V. Gopinathan, N.J. Miller, A.D. Milner and C.A. Rice-Evans, Bilirubin andascorbate antioxidant activity in neonatal plasma., Febs Lett349(1994), p.197-200.
    [149]S.W. Ryter, J. Alam and A.M. Choi, Heme oxygenase-1/carbon monoxide: frombasic science to therapeutic applications., Physiol Rev86(2006), p.583-650.
    [150]V.T. Natarajan, A. Singh, A.A. Kumar, P. Sharma, H.K. Kar and L. Marrot, et al.,Transcriptional Upregulation of Nrf2-Dependent Phase II Detoxification Genes in theInvolved Epidermis of Vitiligo Vulgaris., J Invest Dermatol130(2010), p.2781-2789.
    [151]J. Alam, E. Killeen, P. Gong, R. Naquin, B. Hu and D. Stewart, et al., Hemeactivates the heme oxygenase-1gene in renal epithelial cells by stabilizing Nrf2., Am JPhysiol Renal Physiol284(2003), p. F743-F752.
    [152]X.L. Chen, S.E. Varner, A.S. Rao, J.Y. Grey, S. Thomas and C.K. Cook, et al.,Laminar flow induction of antioxidant response element-mediated genes in endothelialcells. A novel anti-inflammatory mechanism., J Biol Chem278(2003), p.703-711.
    [153]Z. Jian, K. Li, L. Liu, Y. Zhang, Z. Zhou and C. Li, et al., Heme oxygenase-1protects human melanocytes from H2O2-induced oxidative stress via the Nrf2-AREpathway., J Invest Dermatol131(2011), p.1420-1427.
    [154]S.K. Tusi, N. Ansari, M. Amini, A.D. Amirabad, A. Shafiee and F. Khodagholi,Attenuation of NF-kappaB and activation of Nrf2signaling by1,2,4-triazine derivatives,protects neuron-like PC12cells against apoptosis., Apoptosis15(2010), p.738-751.
    [155]T.A. Beyer, D.K.U. Auf, S. Braun, M. Schafer and S. Werner, Roles andmechanisms of action of the Nrf2transcription factor in skin morphogenesis, wound repairand skin cancer., Cell Death Differ14(2007), p.1250-1254.
    [156]R. Khan, A. Satyam, S. Gupta, V.K. Sharma and A. Sharma, Circulatory levels ofantioxidants and lipid peroxidation in Indian patients with generalized and localizedvitiligo., Arch Dermatol Res301(2009), p.731-737.
    [157]O. Arican and E.B. Kurutas, Oxidative stress in the blood of patients with activelocalized vitiligo., Acta Dermatovenerol Alp Panonica Adriat17(2008), p.12-16.
    [158]D. Ines, B. Sonia, B.M. Riadh, E.G. Amel, M. Slaheddine and T. Hamida, et al., Acomparative study of oxidant-antioxidant status in stable and active vitiligo patients., ArchDermatol Res298(2006), p.147-152.
    [159]A. Taieb, Intrinsic and extrinsic pathomechanisms in vitiligo., Pigment Cell Res13Suppl8(2000), p.41-47.
    [160]M. Yildirim, V. Baysal, H.S. Inaloz and M. Can, The role of oxidants andantioxidants in generalized vitiligo at tissue level., J Eur Acad Dermatol Venereol18(2004), p.683-686.
    [161]R. Koca, F. Armutcu, H.C. Altinyazar and A. Gurel, Oxidant-antioxidant enzymesand lipid peroxidation in generalized vitiligo., Clin Exp Dermatol29(2004), p.406-409.
    [162]M. Yildirim, V. Baysal, H.S. Inaloz, D. Kesici and N. Delibas, The role of oxidantsand antioxidants in generalized vitiligo., J Dermatol30(2003), p.104-108.
    [163]E. Hazneci, A.B. Karabulut, C. Ozturk, K. Batcioglu, G. Dogan and S. Karaca, et al.,A comparative study of superoxide dismutase, catalase, and glutathione peroxidaseactivities and nitrate levels in vitiligo patients., Int J Dermatol44(2005), p.636-640.
    [164]D. Agrawal, E.M. Shajil, Y.S. Marfatia and R. Begum, Study on the antioxidantstatus of vitiligo patients of different age groups in Baroda., Pigment Cell Res17(2004), p.289-294.
    [165]M.L. Dell'Anna, V. Maresca, S. Briganti, E. Camera, M. Falchi and M. Picardo,Mitochondrial impairment in peripheral blood mononuclear cells during the active phaseof vitiligo., J Invest Dermatol117(2001), p.908-913.
    [166]E.M. Shajil and R. Begum, Antioxidant status of segmental and non-segmentalvitiligo., Pigment Cell Res19(2006), p.179-180.
    [167]W.D. Beazley, D. Gaze, A. Panske, E. Panzig and K.U. Schallreuter, Serumselenium levels and blood glutathione peroxidase activities in vitiligo., Br J Dermatol141(1999), p.301-303.
    [168]S. Passi, M. Grandinetti, F. Maggio, A. Stancato and C. De Luca, Epidermaloxidative stress in vitiligo., Pigment Cell Res11(1998), p.81-85.
    [169]M. Picardo, S. Passi, A. Morrone, M. Grandinetti, A. Di Carlo and F. Ippolito,Antioxidant status in the blood of patients with active vitiligo., Pigment Cell Res7(1994),p.110-115.
    [170]K.U. Schallreuter, J.M. Wood and J. Berger, Low catalase levels in the epidermis ofpatients with vitiligo., J Invest Dermatol97(1991), p.1081-1085.
    [171]S.B. Cullinan, D. Zhang, M. Hannink, E. Arvisais, R.J. Kaufman and J.A. Diehl,Nrf2is a direct PERK substrate and effector of PERK-dependent cell survival., Mol CellBiol23(2003), p.7198-7209.
    [172]Q. Lin, S. Weis, G. Yang, Y.H. Weng, R. Helston and K. Rish, et al., Hemeoxygenase-1protein localizes to the nucleus and activates transcription factors importantin oxidative stress., J Biol Chem282(2007), p.20621-20633.
    [173]P.I. Le, P.K. Das, R.M. van den Wijngaard, J.D. Bos and W. Westerhof, Review ofthe etiopathomechanism of vitiligo: a convergence theory., Exp Dermatol2(1993), p.145-153.
    [174]R. Khan, S. Gupta and A. Sharma, Circulatory levels of T-cell cytokines (interleukin
    [IL]-2, IL-4, IL-17, and transforming growth factor-beta) in patients with vitiligo., J AmAcad Dermatol66(2012), p.510-511.
    [175]L.A. Rubin and D.L. Nelson, The soluble interleukin-2receptor: biology, function,and clinical application., Ann Intern Med113(1990), p.619-627.
    [176]H.O. Pae, G.S. Oh, B.M. Choi, S.C. Chae, Y.M. Kim and K.R. Chung, et al., Carbonmonoxide produced by heme oxygenase-1suppresses T cell proliferation via inhibitionof IL-2production., J Immunol172(2004), p.4744-4751.
    [177]H.J. Kim and N.D. Vaziri, Contribution of impaired Nrf2-Keap1pathway tooxidative stress and inflammation in chronic renal failure., Am J Physiol Renal Physiol298(2010), p. F662-F671.
    [178]H.Y. Cho, A.E. Jedlicka, S.P. Reddy, T.W. Kensler, M. Yamamoto and L.Y. Zhang,et al., Role of NRF2in protection against hyperoxic lung injury in mice., Am J Respir CellMol Biol26(2002), p.175-182.
    [179]H.Y. Cho, A.E. Jedlicka, S.P. Reddy, L.Y. Zhang, T.W. Kensler and S.R. Kleeberger,Linkage analysis of susceptibility to hyperoxia. Nrf2is a candidate gene., Am J RespirCell Mol Biol26(2002), p.42-51.
    [180]A.T. Churchman, A.A. Anwar, F.Y. Li, H. Sato, T. Ishii and G.E. Mann, et al.,Transforming Growth Factorbeta-1elicits Nrf2-mediated antioxidant responses in aorticsmooth muscle cells., J Cell Mol Med (2008).
    [181]C.M. Clements, R.S. McNally, B.J. Conti, T.W. Mak and J.P. Ting, DJ-1, a cancer-and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional masterregulator Nrf2., Proc Natl Acad Sci U S A103(2006), p.15091-15096.
    [182]I.M. Copple, C.E. Goldring, R.E. Jenkins, A.J. Chia, L.E. Randle and J.D. Hayes, etal., The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2celldefense system., Hepatology48(2008), p.1292-1301.
    [183]S. Numazawa and T. Yoshida, Nrf2-dependent gene expressions: a moleculartoxicological aspect., J Toxicol Sci29(2004), p.81-89.
    [184]P.O. Frappart and P.J. McKinnon, Ataxia-telangiectasia and related diseases.,Neuromolecular Med8(2006), p.495-511.
    [185]A. Barzilai and K. Yamamoto, DNA damage responses to oxidative stress., DNARepair (Amst)3(2004), p.1109-1115.
    [186]A. Barzilai, G. Rotman and Y. Shiloh, ATM deficiency and oxidative stress: a newdimension of defective response to DNA damage., DNA Repair (Amst)1(2002), p.3-25.
    [187]N. Takao, Y. Li and K. Yamamoto, Protective roles for ATM in cellular response tooxidative stress., Febs Lett472(2000), p.133-136.
    [188]J.C. Hibma, D.A. Neufeld, M.J. Halaby and D.Q. Yang, A novel phenotypic markerfor ATM-deficient129S6/SvEvTac-ATMtm1Awb/J mice., Anat Rec (Hoboken)290(2007), p.243-250.
    [189]B. Li, X. Wang, N. Rasheed, Y. Hu, S. Boast and T. Ishii, et al., Distinct roles ofc-Abl and Atm in oxidative stress response are mediated by protein kinase C delta., GenesDev18(2004), p.1824-1837.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700