一次力竭性离心运动后大鼠骨骼肌α-actin代谢、α-actin和MHC基因表达及针刺对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究一次力竭性离心运动后大鼠骨骼肌α-actin代谢变化、α-actin mRNA和MHC mRNA表达及针刺对其影响,将130只成年SD大鼠随机分为安静对照组和运动实验组。运动实验组又分为非针刺组和针刺组。将非针刺组和针刺组根据运动后的不同的取样时间分别分为:运动后即刻组、6小时组、12小时组、24小时组、48小时组和72小时组,共分为12组,每组10只大鼠。动物的体重为205±23.3克。将各组动物分笼饲养,自由饮食。运动组大鼠动物在跑台上以16米/分的速度进行持续性下坡跑至力竭(跑台坡度为-16°)。运动时间为3.5-4.5小时,平均4小时。在一次力竭性离心运动后即刻,对针刺组大鼠进行针刺。安静对照组和非针刺组不进行针刺处理。分别在运动后即刻、6、12、24、48、72小时取血和肌肉样品。用紫外分光度法测定了血清CK、LDH活性,并利用Dnase Ⅰ抑制法测定了大鼠骨骼肌G-actin、F-actin和T-actin的含量,利用定量反转录聚合酶链式反应(QRT-PCR)法测定α-actin和MHC基因表达。
     本研究发现,一次力竭性离心运动后大鼠血清CK在运动后即刻达到峰值,然后逐渐下降,运动后48小时,恢复到安静对照组水平。而血清LDH在运动后12小时达到峰值,运动后48小时同样恢复到安静对照组水平。针刺组与非针刺组血清CK、LHD的变化没有显著性差异。但是可以看出,针刺组血清CK、LHD的变化幅度较小。
     和安静对照组相比,一次力竭性离心运动后大鼠骨骼肌T-actin没有明显变化;G-actin只在运动后即刻显著低于安静对照组;F-actin在运动后即刻到运动后6小时,高于安静对照组,运动后12-24小时降低到低于安静对照组水平,出现延迟性F-actin解聚加强现象。运动后即刻到运动后6小时,针刺组大鼠骨骼肌F-actin的升高幅度低于非针刺组,而在运动后12-24小时显著高于非针刺组。说明针刺对大负荷运动后大鼠骨骼肌F-actin的含量有调节作用。而且,这种调节作用可能是双向的。针刺可以阻遏大负荷运动引起的F-actin延迟性解聚加强。
     一次力竭性离心运动后大鼠骨骼肌α-actin的基因表达明显下降,其恢复过程大于72小时。针刺有可能促进运动后α-actin基因表达的恢复。
    
    / 一次力竭性离心运动后大鼠骨骼肌总 MHC基因表达在运动后 6* 小时低于安静对照
     组,运动后48小时出现超量基因表达。运动后针刺组总MHC基因表达的变化曲线与非针刺
     组相似,但针刺组恢复时限提前,超量基因表达提前,而且超量基因表达的幅度大于非针刺
     组。说明针刺可以促进大负荷运动后骨骼肌MHC基因表达的恢复。
     运动后MHC各同功型的基因表达可能与运动强度、持续时间、运动形式以及肌纤维在
     运动参与工作的情况有关。有可能在基因表达水平上,运动负荷越大,参与工作程度越大的
     >肌纤维,运动后恢复期基因的超量表达就越明显。
     在针刺的作用下,运动后不同同功型MHC基因表达的变化趋势是:MHC-IIb基因表达
     下降,MHC-IIx基因表达增加,MHC·IIa基因表达增加,MHCI基因表达下降。
The purpose of this study is to investigate the changes of a-actin metabolism, a-actin mRNA and MHC isoform mRNA expression in skeletal muscles of rats after one exhaustive eccentric exercise and the effects of acupuncture on them. 130 adult male SD rats were randomly divided into the sedentary group and the exercise group. The rats of the exercise group were again divided into the acupuncture group and non-acupuncture group. According to the sampling time, the exercise group (the acupuncture and non-acupuncture group) was divided into 12 groups, that is the 0 hours, 6 hours, 12 hours, 24 hours, 48 hours and 72 hours groups. In each group there were ten rats. The rats weighting 205 ± 23.3 (mean ± SE) were maintained at 23 ±1
    ℃. They were fed in different chests taking food and drink freely. The rats of the exercise group carried out continuous downhill running with the speed of 16m/min for about 4 hours until exhaustion on the animal treadmill (degree -16?). The rats of the acupuncture group were treated with acupuncture immediately after exhaustive eccentric exercise, but those of the sedentary group and the non-acupuncture group were treated without acupuncture. They were the control groups. The blood and muscle samples were taken immediately, 6 hours, 12 hours, 24 hours, 48 hours and 72 hours after exercise. The serum CK and LDH enzyme activities were measured by means of ultraviolet spectroscopy and the contents of G-actin, F-actin and T-actin
    in skeletal muscles of rats were measured by means of Dnase I assay. The gene expression of a-actin mRNA and MHC isoforms mRNA were determined by using the quantitative reverse transcription PCR technology.
    It was found in this study that the serum CK reached the peak immediately after exercise, then gradually decreased to the baseline level 48 hours after exercise. But the serum LDH did not reach the peak until 12 hours after exercise and decreased to the baseline 48 hours after exercise as well. There was no significant difference of the changes of serum CK and LDH between the acupuncture groups and the non-acupuncture groups. However, it could be found that the range of the changes of CK and LDH in the acupuncture groups was smaller than that in the non-acupuncture groups.
    Compared with the sedentary group, there was no remarkable change of T-actin after exercise. The decreased G-actin could be detected only immediately after exercise. The content of F-actin was significantly higher than that of the sedentary group 0-6 hours after exercise, but 12-24 hours after
    
    
    exercise it decreased to a lower level than that of the sedentary group. A delayed increase of F-actin depolymerization presented after exercise. The F-actin value of the acupuncture group was improved in a lower range than that of the non-acupuncture group 0~6 hours after exercise, but 12-24 hours after exercise it was remarkably higher than those of the non-acupuncture group. It was shown that acupuncture could regulate the F-actin concentration in skeletal muscles of rats after exercise. Furthermore, the regulation might be bilateral. Acupuncture could stop the increase of F-actin delayed depolymerization induced by high loading exercise.
    The gene expression of a-actin mRNA in skeletal muscles of rats decreased significantly after one exhaustive exercise. The duration of its recovery was longer than 72 hours. It might be that acupuncture accelerated the recovery process of a-actin mRNA expression after exercise.
    The MHC mRNA expression of the non-acupuncture group was lower than that of the sedentary group 6-12 hours after exercise. There appeared an excess expression of MHC mRNA 48 hours after exercise. The curve of the change of the total MHC mRNA expression in the acupuncture groups was similar to that in the non-acupuncture group. The duration of recovery of the acupuncture group was shorter, the excess expression of MHC mRNA was ahead of time and its range was higher than that in the non-acupuncture group. It was shown that acupuncture could promote the recovery of MHC mRNA expre
引文
1. Hough, T. Ergographic studies in muscular soreness. Am. J. Physiol. 7:76-92, 1902.
    2. Devris, H. A. Quantitative electromyographic investigation of the spasm theory of muscle pain. Am J Phy. Med. 45:119-134, 1966.
    3. Devries, H. A. Physiology of muscle sereness-cause and relief. Physiology of Exercise. (4):23, 1986.
    4. Schwane, J. A. Delayed onset muscular soreness and plasma CPK and LDH activities after downhill ming. Med. and sic. in sport and Exercise. 15(1):51-58, 1983.
    5. Hikida, R. S., et al. Muscle Fiber Necrosis associated with Human Marathon Runners. J. Neurol. Sci. 59:185-203, 1983.
    6. Siegel, A. J. Focal myofibrillar necrosis in skeletal muscle of trained marathon runners after competition. Med. Sci. in sport and Exercise. 15(2): 164, 1983.
    7. Friden, J., et al. A morphological study of delayed muscle soreness. Experientia. 37:506-507, 1981.
    8. Friden, J., et al. Myofibrillar damage following intense eccentric exercise in man. Int. J. Sports Med. 4:170-176, 1983.
    9. Friden, J., et al. Muscle Sorenness After Exercise: Implications of Morphological changes, Int. J. Sport med, (5): 57-66, 1984.
    10. Friden, J., et al, Delayed musle soreness and cytoskeletal altemations: An immunocytological study in man. Int. J. sports. Med. 5:15-18, 1984.
    11. Lamb, D., et al, myofibriHar protein degradation after eccentric exercise. Experientia. 40: 69-70,1984.
    12.张建国,针刺(直刺和斜刺)对大负荷斜蹲后骨骼肌超微结构变化的影响。体育科学。8(1);61-64,1988。
    13.屈竹青,针刺与静力牵张对大负荷斜蹲后骨骼肌M线变化影响的免疫电镜研究。体育科学,6:52-59,1992。
    14.李晓楠,针刺与静力牵张对大负荷斜蹲后人骨骼肌Z带变化影响的免疫电镜研究。体育科学,6:60-65,1992。
    15.田野等,运动性骨骼肌结构、机能变化的机制研究--Ⅰ。中国运动医学杂志,12(1):31-33,1993。
    16.卢鼎厚等,针刺和静力牵张对大负荷运动后骨骼肌粗丝结构变化影响的免疫电镜研究。体育科学。13(1):21-25,1993。
    17.段昌平,针刺和静力牵张对延迟性酸痛过程中骨骼肌超微结构的影响。北京体育学院学报,4:8-19,1984。
    18. Duan, C., et al. Rat skeletal muscle mitochondrial(Ca~(2+)) and injury from downhill walking. J. Appl. Physiol. 68:(3)1241-1251,1990.
    19.杨晓冰,延迟性肌肉疼痛。中国运动医学杂志,13(4),1994。
    20. Armstrong, R. B. Initial events in exercise induced muscular injury. Med. Sci. Sports Exerc. 22: 429-435, 1990.
    21. Dillard, C. I., et al. Effects of exercise, Vitamine E, and Ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol.45:927,1978.
    
    
    22. Davris, J. A., et al. Free radicals and tissue damage produced by exercise. Biochem. biophysics Res. Communications. 107:1198,1982.
    23. Smith, L. L., et al. White blood cell response to uphill walking and downhill jogging at similar metabolic loads. Eur. J. Appl. Physiol. 58:833-837,1989.
    24. Kuipers, H., et al. Muscle degeneration after exercise in rats. Int. J. Sports. Med. 4:45-51,1983.
    25. Armstrong, R. B. Eccentric exercise induced injury to rat skeletal muscle. J. Appl. physiol.54:90-93,1983.
    26. Mishra, D. K., et al. Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subseguent loss of muscle function. J. Bone Joint Surg. Am. 77(10):1510-1519,1995.
    27. Stauber, M. T, et al. Extracellular matrix disruption and pain after eccentric muscle action. J. Appl. physiol. 69:868-874,1990.
    28. Jones, D. A., et al. skeletal muscle stiffness and pain following eccentric exercise of the elbow foexor. Pain.30:233-242,1987.
    29.卢鼎厚,骨骼肌损伤的机制。北京体育大学学报,17(2):23-29,1994。
    30. Devris, H. A. Prevention of muscular distress after exercise. Res. Quart. 32:177-185, 1961.36. Younti., et al. NT-MH (3-MH) and muscle protein mover. Fed. Proc. 37:2291-2300,1978.
    31.孙和甫,中医牵拉手法对肌肉工作能力的影响。中国运动医学杂志,1:9-10,1987。
    32.郭庆芳等,有关训练后运动员肌肉酸痛、僵硬的问题。江苏体育科技,21,22,23合刊,1979。
    33.郭庆芳等,运动员训练后早期肌肉酸痛、僵硬的问题。中国运动医学杂志,1:1-5,1984。
    34.林玉雯,针刺对肌肉的放松作用。北京体育学院学报,4:73-76,1982。
    35.屈竹青等,针刺对骨骼肌损伤过程中细胞内钙分布的影响及其机制。中国运动医学杂志,14(1):7-12,1995。
    36. Younti., et al. NT-MH (3-MH) and muscle protein mover. Fed. Proc. 37:2291-2300,1978.
    37. Buskirk, E. R., and J. Mendez. Sports science and body composition analysis: emphasis on cell and muscle mass. Med. Sci. Sports Exere. 16:584-593,1984.
    38. Ballard, F. J., et al. 3-Methylhistidine as a measure of skeletal muscle protein breakdown in human subject: the case for its continued use. Clinical Science. 65,209-215,1983.
    39. Wassner,S.J.,et al. A Rapid, Sensitive Method for the Determination of 3-Methylhistidine Levels in Urine and Plasma Using High-Pressure Liquid Chromatography. Analytical Biochemistry. 104:284-289,1980.
    40. Lukaski, H. C. et al., Relationship between endogenous 3--MH excretion and body composition. Am. J. Physiol. 240:E302-307,1981.
    41. Millward, D. J. et al. Quantitative importance of non-skeletal muscle soreness of N-MH in urine. Biochem. J. 190:225-228,1980.
    42. Wassner, S. J. et al. N-MH release: Contribution of rat skeletal muscle. Am. J. Physiol. 243 :E293-297,1982.
    43. Dohm, G. L., et al. Biphasic changes in 3-methylhistidine excretion in humans after exercise. Am. J. Physiol. 248:E588-E592,1985.
    45. Dohm, G L., et al. Increased excretion of urea and NT-methylhistidine by rats and humans after a bout of exercise. J. Appl. Physiol. Environ. Exercise Physiol. 21:27-33,1982.
    
    
    47. Dohrn, G. L., et al. Protein degradation during endurance exercise and recovery. Med. and Sci. in sports and exerc. Vol. 19, No.5:S166-S177,1987.
    48. Evans, W. J., et al. Metabolic changes following eccentric exercise in trained and untrained men. J. Appl. Physiol. 61(5):1864-1868,1986.
    50. Hickson, J. F., et al. Failure of weight training to affect urinary indices of protein metabolism in men. Med. Sci. Sports Exerc. Vol. 18,No.5,563-567,1986.
    51. Horswill, C. A., et al. Excretion of 3-Methylhistidine and Hydroxyproline Following Acute Weight-Training Exercise. Int. J. Sports Med, Vol 9,No 4,245-248,1988.
    52.张蕴琨等,力量练习对血清肌酸激酶、肌红蛋白和尿3-甲基组氨酸水平的影响。中国运动医学杂志,第13卷(1):7-10,1994。
    53. Pivamik, J. M., et al. Urinary 3-methylhistidine excretion increases with repeated weight training exercise. Med. Sci. Sports Exerc. Vol.21,No.3,283-287,1989.
    54. Evans, W. J., et al. Metabolic changes following eccentric exercise in trained and untrained men. J. Appl. Physiol. 61(5):1864-1868,1986.
    55. Ronard, L., et al. Exercise and sports sciences reviews. 12:1,1984.
    56.王健等,肌球蛋白分子的多型性及其运动适应。生理学进展,第22卷,第1期,5-54,1991。
    57. Hoh, J. E Y., et al. Nature,280:321,1979.
    58. Swynghedquw, B., et al. Physiol. Rew. 66:710, 1986.
    59. Bar, A., and D Pette. Three fast myosin heavy chains in adult rat skeletal muscle. FEPS Lett. 235:153-155.1988.
    60. Hamalainen, N., and D. Pette. The histochemical profiles of fast fiber types ⅡB, ⅡD, and ⅡA in skeletal muscle of mouse, rat, and rabbit. J. Histochem Cytochem 41:733-743,1993.
    61. Termin, A., R. S. Staron, and D. Pette. Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453-457,1989.
    62. LaFramboise, W. A., M. J. Daood, R. D. Guthrie, P. Moretti, S. Schiaffino, and M. Ontell. Electrophoretic separation and immunological identification of type 2x myosin heavy chain in rat skeletal muscle. Biochem. Biophsiol. Acta 1035:109-112,1990.
    63. Schiaffmo, S., L. Saggin, A. Viel, and L. Gorza. Differentiation of fibre types in rat skeletal muscle visualized with monoclonal antimyosin antibodies. J. Muscle Res. Cell Motil. 6:60-61,1985.
    64. Schiaffmo, S., S. Ausoni, A. L. Gorza, L. Saggin, K. Gumdersen, and T. Lomo. Myosin heavy chian isoforms and velocity of shortening of type s Ⅱ skeletal muscle fibers. Acta Physiol. Stand 134: 575-578, 1988.
    65. Smerdu, V., et al. Type Ⅱx myosin heavy chain transctipts are expressed in type Ⅱb fibers of human skeletal muscle. Am. J. Physiol. 267(Cell Physiol. 36):C1723-C1728,1994.
    66. Spmer, C., and D. Pette. Activity pattern of phosphofructokinase, glyceraldehyephosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase in microdissected fast slow fibers from rabbit psoas and soleus muscle. Histochemistry 52:201-216.1977.
    67. Delp, Michael D., and Changping Duan. Composition and size of type Ⅰ, ⅡA, ⅡD/ⅡX, and ⅡB fibers and citrate synthase activity of rat muscle. J. Appl. Physiol. 80(1 ):261-270, 1996.
    
    
    68. Bamman, Marcas M, et al. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J. Appl. Physiol. 84(1): 157-163, 1998.
    69. Zhou, M. Y, et al. Myosin heavy chain isoforms of human muscle after short-term spaceflight. J. Appl. Physiol. 78:1740-1744, 1995.
    70. Day, M. K., et al. Adaptations of human skeletal muscle fibers to spaceflight. J. Gravitation Physiol. 2:47-50,1995.
    71. Caiozzo, V. J., et al. Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle. J Appl. Physiol. 76:1764-1773, 1994.
    72. Thomason, D. B., et al. Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J. Appl. Physiol. 63:130-137, 1987.
    73. Oishi, Y., et al. al. Hindlimb suspension induces the expression of multiple myosin heavy chain isoforms in single fibres of rat soleus muscle. Acta. Physiol. Scand. 162,127-134, 1998.
    74. Staron, R. S., et al. Strength and skeletal muscle adaptations in heavy resistance trained women after detraining and retraining. J. Appl. Physiol. 70: 631-640, 1991.
    75. Staron, R. S., et al. Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur. J. Appl. Physiol. 60: 71-79, 1989.
    76. Adams, G.R., et al. Skeletal muscle myosin heavy chain composition and resistance training. J. Appl. Physiol. 74:911-915, 1993
    77. Hather, B. M., et al. Influence of eccentric action on skeletal muscle adaptations to resistance training. Acta Physiol. Scand. 143: 177-185, 1991.
    78. Jurimae, J., et al. Changes in the myosin heavy chain isoform profile of the triceps brachii muscle following 12 weeks of resistance training. Eur. J. Appl. Physiol. 74:287-292, 1996.
    79. Klitgaard, H., et al. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta. Physiol. Scand. 140: 41-54, 1990.
    80. Kraemer, W. J., et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J. Appl. Physiol. 78:976-989, 1995.
    81. Staron, R. S, et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J. Appl. Physiol. 76: 1247-1255, 1994.
    82. Perre, D., et al. Adaptation of mammalian skeletal muscle fiber to chronic electrical stimulation. Rev. Physiol. Biochem Pharmacol. 120: 115-202, 1992.
    83. Andersen, J.L., T. Mohr, F. Biering-Sorenson, H. Galbo, and M. Kjaer. Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis in spinal cord injured individuals: Effect s of long terms functional electrical stimulafion(FES). Pflugers Arch. 431: 508-513, 1996.
    84. Esbjomsson, M., Y. Hellsten-Westing, P. D. Balsom, B. Sjodm, and E, Jansson, Muscle fibre type changes with sprint training: effect of training pattern. Acta Physiol. Scand. 149: 245-246, 1993.
    85. Andersen, J.L., H. Klitgaard, and B. Saltin, Myosin heavy chain isoforms in single fibres from m. vastus lateralis of sprinters: influence of training intensity Acta Physiol. Scan& 151: 135-142, 1994.
    
    
    86. Hennesey, E. S., Drummond, D. R, Sparrow, J. C. Biochem J. 282: 657-671, 1993.
    [5] 陈明等,肌动蛋白、肌动蛋白结合蛋白质和细胞运动的研究进展。生命科学,第9卷第1期,1-5,1997。
    87. Pollard, T. D, et al. Mechanism of actin polymerization. TIBS. 55-58,February-1982.
    88. Rouayrenc, J. E, et al. The first step in the Polymerisation of actin. Eur. J. Biocheml16:73-77,1981.
    89.艾华等,大鼠力竭性游泳前后股四头肌深层肌α-肌动蛋白基因表达的动态观察。中国运动医学杂志,16(2)86-90,1997。
    90. Paul, R. M.,et al. Daily running for 2 wk and mRNAs fo cytochrome c an a-actm in rat skeletal muscle. Am. J. Physiol. 257:C936-C939,1989.
    91. Theodore, S. W., et al. Protein metabolism in rat gastrocnemius muscle after stimulate chronic concentric exercise. J. Appl. Physiol. 69(5): 1709-1717,1990.
    92. Theodore, S. W., et al. Protein metabolism in rat tibialis anterior muscle after stimulate chronic eccentric exercise. J. Appl. Physiol. 69(5): 1718-1724,1990.
    93.冯连世,优秀中长跑运动员高原训练的生理适应及模拟高原训练时骨骼肌α-肌动蛋白的基因表达。北京体育大学博士论文,1999。
    94. Donald, B. T., et al. Altered actin and myosin expression in muscle during exposure to microgravity. J. Appl. Physiol. 73(2):90S-93S,1992.
    95.王新宅,静力牵张对一次性力量练习后血清肌酸激酶和尿三甲基组氨酸的影响。北京体育大学硕士研究生论文,1998。
    96.秦长江,电刺激蟾蜍骨骼肌后肌球蛋白的变化及针刺对其的影响。北京体育大学硕士研究生论文,1998。
    97.常青,电刺激蟾蜍骨骼肌力竭后蛋白质的变化及静力牵张对其的影响。北京体育大学硕士研究生论文,1998。
    98. Biolo, G., S. P. Maggi, B. D. Williams, K. D. Tipton, and R. R. Wolfe. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am. J. Physiol. 268(Endocrinol. Metab. 31) E45-E50, 1995.
    99. Chesley, A., J. D. MacDougall, M. A. Tamopolsky, S. A. Atkinson, and K. Smith. Changes in human muscle protein synthesis after resistance exercise. J. Appl. Physiol. 73:1383-1388, 1992.
    100. Welle, S., and C. A. Thornton. High-protein meals do not enhance myofibrillar synthesis after resistance exercise in 62-to 75-yr-old men and women. Am. J. PhsioL 274 (Endocrinol. Metab. 37): E667-E683, 1998.
    101. Yarashski, K. E., J. A. Campbell, K. Smith, M. J. Rennie, J. O. Holloszy, and D. M. Bier. Effect of growth hormone and resistance exercise on muscle growth in young men. Am. J. Phsiol. 262 (Endocrinol. Metab. 25): E261-E267, 1992.
    102. Yarashski, K. E., J. J. Zachwieja, and D. M. Bier. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. Am. J. Phsiol. 265 (Endocrinol. Metab. 28): E210-E214, 1992.
    103. Wernerman, J., A. Von der Decken, and E. Vinnars. Size distribution of ribosomes in biopsy specimens of human skeletal muscle during starvation. Metabolism 34: 665-69, 1985.
    104. Wernerman, J., A. Von der Decken, and E. Vinnars. Polyribosome concentration in human skeletal muscle after starvation and parenteral or enteral refeedmg. Metabolism 35:447-451, 1986.
    
    
    105. Booth, F. W., and C R. Kirby. Changes in skeletal muscle gene expression consequent to altered weight bearing. Am. J. Physiol. 262(Regulatory Integrative Comp. Physiol. 31) R329-R332,1996.
    106. Morrison, P. R., R. B. Biggs, and F. W. Booth. Daily running for 2 wk and mRNAs for cytochrome c and (z-actin in rat skeletal muscle. Am. J. Physiol. 257(Cell Physiol. 26): C936-C939, 1989.
    107. Morrison, P. R., G. W. Muller, and F. W. Booth. Actin synthesis tate and mRNA lever increase during early recovery of atrophied muscle. Am. J. Physiol. 253(Cell Physiol. 22): C205-C209, 1987.
    108. Caiozzo, V. J., F. Haddad, M. J. Baker, and K. M. Balddwin. Influence of mechanical loading on myosin heavy-chain protein and mRNA isoform expression. J. Appl. Physiol. 80: 1503-1512, 1996.
    109. Jankala, H., V.-P. Harjola, N. E. Petersen, and M. Harkonen. Myosin heavy-chain mRNA transform to faster isoforms in immobilized skeketal muscle: a quantitative PCR study. J. Appl. Physiol. 82: 977-982, 1997.
    110. Pette, D., and R. S. Staron. Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170: 143-223, 1997.
    111. Balagopal, P., O, H. Ljungqvist, and K. S. Nair. Skeletal muscle myosin heavy-chain synthesis rate in healthy humans. Am. J. Physiol. 272(Endocrinol. Metab. 35): E45-E50, 1997.
    112. Anderson, J. L, and S. Schiaffmo. Mismatch between myosin heavy chain mRNA and distribution in human skeletal muscle fibers. Am. J. Physiol. 272(Cell Physiol.41) C 1881-C 1889, 1997.
    113. Amstrong, R.B., Ogilvie., R.W., and Schwane, J.A. Eccentric exercise-induced injury to rat skeletal muscle. J. Appl. Physiol. 1983, 54 (1): 80-93.
    114.苗明三,实验动物和动物实验技术。中国中医药出版社,1997,159。
    115. Cooper JA, Pollard TD. Methods to measure actin polymerization. Methods in Enzymology, 85(part B):182-206,1982.
    116.徐玉明,针刺对长时间电刺激蟾蜍骨骼肌静息膜电位和动作膜电位的影响,体育科学,第1期,34-37,1999。
    117. Kasperek George J. and Rebecca D. Snider Total and myofibrillar protein degradation in isolated soleus muscules after exercise .Am. J. Physiol. 257 El-E5 1989.
    118. Kasperek George J., Guy R. Conway, Dorothy S.Krayeski, and Jack J.Lohne. A reexamination of the effect of exercise on rate of muscle protein degradation .Am .J. physiol. 263 E1144-1150, 1992.
    119. Ronard, L., et al. Exercise and sports sciences reviews. 12:1,1984.120. Swynghedquw, B., et al. Physiol. Rew. 66:710, 1986.
    121. Bar, A., and D. Pette. Three fast myosin heavy chains in adult rat skeletal muscle. FEPS Lett. 235:153-155.1988.
    122. Hamalainen, N., and D. Pette. The histochemical profiles of fast fiber types ⅡB, ⅡD, and ⅡA in skeletal muscle of mouse, rat, and rabbit. J. Histochem Cytochem. 41:733-743,1993.123. Termin, A., R. S. Staron, and D. Pette. Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453-457,1989.
    
    
    124. LaFramboise, W. A., M. J. Daood, R. D. Guthrie, P. Moretti, S. Schiaffino, and M. Ontell. Electrophoretic separation and immunological identification of type 2x myosin heavy chain in rat skeletal muscle. Biochem. Biophsiol. Acta 1035:109-112,1990.
    125. Staron, R. S., et al. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J. Appl. Physiol. 76: 1247-1255, 1994.
    126. Andersen, J.L., T. Mohr, E Biefing-Sorenson, H. Galbo, and M. Kjaer. Myosin heavy chain isoform transformation in single fibres from m. vastus lateralis m spinal cord injured individuals: Effect s of long terms functional electrical stimulafion(FES). Pflugers Arch. 431:508-513, 1996.
    127.全国体育教材委员会,《运动生理学》,人民体育出版社,244-246,1990。
    128.冯炜权等,《运动生物化学原理》,北京体育大学出版社,299-302,1995。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700