基于润滑油添加剂的纳米锑粉的摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料具有许多特殊的性能,有着广泛地应用前景,是当前材料科学研究的前沿。纳米材料在摩擦领域中的研究也越来越受到重视,纳米材料作为润滑油添加剂在新型润滑材料中的应用是纳米科学的一个重要研究领域之一。本研究将电化学法制备的纳米锑颗粒按不同的百分含量加入到液压油中,利用CFT-1型材料性能测试仪分别在不同摩擦载荷和摩擦速率下考察了纳米锑粉作为润滑油添加剂的摩擦学性能。采用扫描电子显微镜和能谱仪对摩擦表面进行了分析,初步探讨了其润滑机理。得到的主要结论如下:
     1.采用CFT-1型材料性能测试仪在不同载荷进行了往复式摩擦磨损试验,对比研究了不同条件下的纳米锑粉作为润滑油添加剂的摩擦学性能。结果表明:在不同载荷下要得到抗磨减摩性能最优的润滑油需要加入不同百分含量的纳米锑粉,摩擦载荷为30N、60N、90N、120N时的最佳锑粉添加量分别为0.5%、0.3%、0.9%、0.5%。当载荷为120N时在液压油中加入0.5%质量分数的纳米锑粉所得到的润滑油的抗磨减摩性能最好,所以重载荷下纳米锑粉能显著提高液压油的抗磨减摩性能。
     2.在不同摩擦速率下对不同锑含量的润滑油的摩擦学性能进行了评价。结果表明:在纯液压油和含0.1%、0.5%锑含量液压油润滑条件下,摩擦表面的摩擦系数随着摩擦速率的增大都有一个先减小后增大的趋势。当摩擦速率为0.0625m/s时,摩擦系数最小,润滑油的润滑效果最好。在0.9%锑含量的液压油润滑条件下,摩擦速率的变化对摩擦系数的影响不大,摩擦表面的摩擦系数基本相同。
     3.通过SEM对试样摩擦表面进行了形貌分析,利用EDX进行了磨痕表面元素分析,并对纳米锑粉的润滑摩擦机理进行了探讨。纳米锑粉的纳米效应和类石墨的层状晶体结构,使得润滑油中高活性的纳米锑粒子在高温高压的环境下很容易与摩擦表面的金属相互作用,渗透或吸附在金属表面形成一层低剪切强度的自修复膜,有效地减小了摩擦副的直接接触,产生了良好的减摩抗磨效果。
Nano-material is one of the frontier fields of material science research and willhave wide application in future because of possessing many special properties.Nano-material will be more and more important in tribology field. That thenano-materials as additives apply to new types of lubricating material is one of theimportant research areas of the nano science. The antimony nanoparticles prepared byelectrochemical method were added to the hydraulic oil according to differentpercentage content. The tribological behavior of antimony powder as additive inhydraulic oil were evaluated by CFT-1material performance tester under different loadand friction velocity. The worn surfaces of the samples were analyzed by scanningelectron microscope and energy-dispersive spectroscopy, the lubrication mechanism ofSb nanopowder was also discussed.The main conclusions were as followed.
     1. The reciprocating friction and wear tests were taken by CFT-1materialperformance tester under different load, the tribological behavior of antimony powderas additive in hydraulic oil were studied under different conditions.The results showedthat it was needed to add different percentage content of nanometer antimony powdersto lubricating oil to achieve the best friction performance under different load. Whenfriction load was30N、60N、90N、120N, the corresponding optimum content was0.5%、0.3%、0.9%、0.5%. When friction load was120N, the reducing-friction andanti-wear properties of lubricating oil which contained0.5%content of nanometerantimony powders was best.
     2. The tribological behavior of lubrication oil which contained different contentsof antimony powders were evaluated under different friction velocity. It was resultedthat the friction coefficient increase after the first decrease with rise of the frictionvelocity on the lubrication conditions of pure hydraulic oil and hydraulic oil containing0.1%、0.5%of Nano-Sb Particles. When the friction velocity was0.0625m/s, thefriction coefficient of lubricating oil was least and the lubricating effect of lubricatingoil was best. When the hydraulic oil contained0.9%content of nanometer antimonypowders, the change of friction velocity had little effect on friction coefficient, thefriction coefficients of the worn surfaces were basically the same.
     3. The morphologies of the worn surfaces of the samples were observed on SEM,and the elemental distributions on the worn surfaces were determined by means of EDX. The lubrication mechanism of Sb nanopowder was also discussed. Because ofnanometer size effect and graphite-like crystal structure of Nano-Sb Particles, thehighly reactive Nano-Sb Particles interacted with the friction surface easily in theenvironment of high temperature and pressure. The highly reactive Nano-Sb Particlespenetrated or adsorbed on the friction surface to form a self-repairing film of low shearstrength. The self-repairing film which avoided the direct contact of two metalsexhibited wonderful resistance to wear and friction.
引文
[1]温诗铸.摩擦学原理.北京:清华大学出版社,1990,409-413
    [2]中国有色金属产品品种质量调查与研究编委会编.中国有色金属产品品种质量调查与研究.北京:科学出版社,1995,150-160
    [3]刘述平,我国的锑深加工产品,矿产综合利用,2003(l),29-32
    [4]任朝晖,卿仔轩等.锑市场现状及发展趋势分析.世界有色金属,2002(7):23-25
    [5]曹茂盛,曹传宝,徐甲强,等.纳米材料学.哈尔滨:哈尔滨工程大学出版社,2002,32-38
    [6]吴翔.纳米材料(连载三).江南航天科技,2002,3:60-63.
    [7]杜彦良,张光磊等.现代材料概论.重庆大学出版社,2009,156-159
    [8]赵瑞荣,石西昌编著.锑冶金物理化学.长沙市:中南大学出版社,2006,4-6
    [9]雷霆,朱从杰,张汉平编.现代有色金属冶金科学技术丛书锑冶金.北京市:冶金工业出版社,2009,3-7
    [10]何峰,张正义,肖耀福等.新一代润滑剂——超细金属粉固体润滑剂.润滑与密封,1997,(5):65
    [11] S Taras ov, A S Kolubaev, M Belyaev, et al.Study of friction reduction by nanocopperadditives to motor oil. Wear,2002,252:63-69
    [12]夏延秋,金寿日,孙维民,等.纳米级金属粉对润滑油摩擦磨损性能的影响.润滑与密封,1999(3):33-34
    [13]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究.摩擦学学报,2002,20(2):123-126
    [14]李斌,夏延秋,王晓波,等.纳米Cu在聚乙二醇溶液中的摩擦磨损性能研究.摩擦学学报,2005,25(5):385-389
    [15]于鹤龙,徐滨士,许一,王晓丽等.纳米铜添加剂改善钢-铝摩擦副摩擦磨损性能的研究.摩擦学学报.2006,26(5):432-437
    [16]李晛,柳刚,范荣焕,等.纳米Al/Sn金属颗粒对润滑油抗磨极压性能的影响.润滑与密封,2004(4):61-63
    [17]张振忠,高建卫,殷波,等.金属纳米复合粉体改善润滑油的摩擦磨损性能研究.润滑与密封,2006(5):81-84
    [18]恽寿榕,黄风雷,马峰.超微金刚石——21世纪新材料.科技前沿与学术评论,2000,2(1):39-46
    [19]张传安,乔玉林,池俊成,等.含纳米金刚石润滑油减摩抗磨添加剂的摩擦学性能.中国表面工程,2002(2):2932
    [20] Xu T,et al. Study on Tribological Properties of Ultra-dispersed Diamond Containing Soot asan Oil Additives. STLE Tribology,1997,40(3):178-184
    [21] G X Chen, Z S Hu,J X Dong. Study on antiwear and re2ducing friction additive of nanometercobalt hydroxide.LUBR ENG,2001,57(4):36-39
    [22] J X Dong, Z S Hu, G X Chen. The preparation and tribology of spherical nanometric particlesof diantimony trioxide SbOx(OH)y.Lubrication Science,1999,11(4):379-388
    [23] Z S Hu,G X Chen,J X Dong. Study on antiwear and reducing friction additive of nanometerferric oxide. TRIBOLINT,1998,31(7):355-360
    [24] Hu Z S, Dong J X. Study on antiwear and reducing friction additive of nanometer titaniumoxide.Wear,1998,216(1):92-96
    [25] Wang L G, Hu Z S, Ye Y. Study on Antiwear and Reducing Friction Additive of NanometerManganese Hydroxide. Lubrication Engineering,1999(5):30-32
    [26]王立光,胡泽善,赖容等.石油学报(石油加工),2000,16(6):45-50.
    [27]王利军,郭楚文,杨志伊等.添加纳米Fe3O4润滑剂磨损性能试验研究.润滑与密封,2006(9):30-31
    [28]聂芊,陈平.豆油脂肪酸修饰二氧化钛纳米微粒的摩擦学性能研究.润滑与密封,2006,(11):87-89
    [29] J X Dong, Z S Hu. Study of the anti-wear and friction-reducing properties of the lubricantadditive nanometer zinc borate. TRIBOLINT,1998,31(5):219-223
    [30] Z S Hu, J X Dong. Study on anti wear and reducing friction additive of nanometer titaniumborate.Wear,1998,216(1):87-91
    [31] G X Chen,Z S Hu,R Lai.Preparation and tribology of ultrafine and amorphous strontiumborate. PIMECH ENGL-JMAT,2001,215(L3):133-40
    [32] Z S Hu, R Lai, F Lou. Preparation and tribological properties of nanometer magnesium borateas lubricating oil additive.Wear,2002,252(3):370-374
    [33] Z S Hu, Shi Y G, Wang L G, et al. Study on antiwear andreducing friction additive ofnanometer aluminum borate. Lubrication Engineering,2001,57(3):23-27
    [34] Hu Z S, Dong J X, Chen G X. Preparation and tribological properties of nanoparticlelanthanum borate.Wear,2000,243(1):43-47
    [35] HU Zeshan, WANG Liguang, HUANG Ling, et al.Preparation and Tribological Properties ofNanometer Copper Borateas Lubricating Oil Additive.Tribology,2000,20(4):292-295
    [36] L Rapoport. Friction and Wear of Power Composites Impregnated with WS2InorganicFullerene-like Nanoparticles.Wear,2002,252:518-527
    [37] L Cizaire, B Vacher, T LeMogne. Mechanisms of ultra low by hollow in organic fullerene-likeMoS2nanoparticles. Surface and Coatings Technology,2002,160:282-287
    [38] L Rapoport. Friction and Wear of Bronze Powder Composites Including Fullerene-like WS2Nanoparticles.Wear,2001,249:150-157
    [39]王九,等.润滑油中CuS纳米粒子的摩擦学性能研究.润滑与密封,2001(1):42-45
    [40]叶萍萍,李曙,姜晓霞,等.纳米硫代钼酸镍润滑油添加剂的制备及性能.材料研究学报,2001,15(6):629-634
    [41]周静芳,陶小军,张治军等.表面修饰Ag2S纳米微粒的合成及摩擦学行为.化学研究.1999,3(4):1-5
    [42]宣瑜,刘颖,赵修臣等.纳米AlOOH及纳米Fe3O4粒子在液体石蜡中的摩擦学性能研究.摩擦学学报,2010,30(2):209-216
    [43] Zhao Baoyan. Synthesis and Tribological Properties of Polymer Nanoparticles as LubricatingOil Additives. Chinese Journal of Applied Chemistry,1999,16(4):33-36
    [44]叶文玉,程铁峰,郭新勇等.2,5-二巯基-1,3,4-噻二唑-聚乙二醇共聚物纳米微粒的制备及其摩擦学行为.摩擦学学报,2003,23(2):116-119
    [45]梁起,张治军,薛群基等.LaF3纳米微粒的摩擦学行为研究.稀土,1999(2):32-35
    [46]顾卓明,顾彩香,陈志刚.含纳米碳酸钙、稀土粒子润滑油的摩擦学性能.润滑与密封,2005,(6):9-11
    [47]段春英,周静芳,吴志申等.聚苯乙烯/Ag核壳结构纳米微粒的制备及表征.物理化学学报,2003,19(11):1049-1053
    [48]张治军,马同森等.表面修饰MoS2纳米微粒的XPS研究.河南大学学报(自然科学版),1995,25(4),41~45
    [49]李晓娥,邓红,樊安,等.纳米TiO2粉体的表面有机处理研究.西北大学学报,2002,32(5):523525
    [50]葛岭梅,贾鹏涛,薛韩玲.纳米氧化锌粉的表面改性研究.湘潭矿业学院学报,2002,17(4):31-34
    [51]张泽抚,刘维民,薛群基,等.钼化合物润滑材料的摩擦学应用与研究发展现状.摩擦学学报,1998,18(4):377-382
    [52]张晟卯,张治军,薛群基,等. TiO2/聚丙烯酸丁酯纳米复合薄膜的制备及结构表征.物理化学学报,2003,19(2):17l-173
    [53] S R Cohen, Y Feldman, H Cohen, et al. Nanotribology of novel metal dichalcogenides.Applied Surface Science,1999,144:603-607
    [54] Fawad Tariq,S.Umair Azher,Nausheen Naz. Failure Analysis of Cast Lead–Antimony BatteryGrids. J Fail. Anal. and Preven,2010,10:152-160
    [55] Rahulk. Rajgarhia, Douglase. Spearot, Ashok saxena. Molecular Dynamics Simulations ofDislocation Activity in Single-Crystal and Nanocrystalline Copper Doped with Antimony.Metallurgical and materials transactions A,2010,41:854-86
    [56] K.Ravichandran,P.Philominathan. Analysis of critical doping level of sprayed antimony dopedtin oxide films. J Mater Sci: Mater Electron, Published online17April2010
    [57] A.A.Zvyagin, A.V.Shaposhnik, S.V.Ryabtsev, D.A.Shaposhnik, A.A.Vasil’ev, I.N.Nazarenko.Determination of Acetone and Ethanol Vapors Using Semiconductor Sensors. Journal ofAnalytical Chemistry,2010,65(1):94-98
    [58] Garima Jain, et al. Electrical and Optical Properties of Tin Oxide and Antimony Doped TinOxide Films.Optical Materials,2004,26:2731
    [59] Coleman J P, Lynch A T, Madhukar P, et al. Antimony doped tin oxide powders:electrochromic materials for printed displays. Solar Energy Materials&Solar Cells,1999,56:375-394
    [60] Tirtha Som,Basudeb Karmakar. Surface Plasmon Resonance and Enhanced FluorescenceApplication of Single-step Synthesized Elliptical Nano Gold-embedded Antimony GlassDichroic Nanocomposites. Plasmonics,2010,5:149-159
    [61] L.Joly-Potttuz, B.Vacher, N.Ohmae, et al. Anti-wear and friction reducing mechanisms ofcarbon nano-onions as lubricant additives. Tribology Letters,2008,30:69-80
    [62] Guo QB, Rong MZ,Jia GL, et al.Sliding wear performance of nano-SiO2/short carbonfiber/epoxy hybrid composites. Wear,2009,266:658–665
    [63] Lee J,Cho S, Hwang Y, et al. Enhancement of lubrication properties of nano-oil by controllingthe amount of fullerene nanoparticle additives. Tribology Letters,2007,28(2):203-208
    [64] Libo Wang, Weimin Liu, Xiaobo Wang. The preparation and tribological investigation ofNi–P amorphous alloy nanoparticles. Tribology Letters,2010,37:381-387
    [65]王亚珍,龚中良,黄平.法向载荷和滑动速度对纳米摩擦的影响.润滑与密封,2011,36(6):60-64
    [66]邵鑫,薛群基,马春林等.载荷速度及环境温度对聚醚飒酮摩擦磨损性能的影响.工程塑料应用,2003,31(12):43-46
    [67]李国禄,王昆林,刘家浚等. SiC颗粒填充单体浇铸尼龙的摩擦学性能.清华大学学报(自然科学版),2000,4,111-114
    [68]王海宝,吴光杰.不同润滑条件下对塑料合金轴承摩擦磨损性能的影响.机械科学与技术,2004,1
    [69]高诚辉,赵源,雷天觉.电沉积Fe-Ni-P合金边界润滑的摩擦学行为.中国机械工程,1994,4
    [70]朱佳眉,刘维民.氟化二酮的摩擦学特性及抗磨机理研究.摩擦学学报,2003,5
    [71] Qian Liu, Yi Xu, Pei-jing Shi,et al. Analysis of self-repair films on friction surface lubricatedwith nano-Cu additive. Journal of Central South University of Technology.2005,12(2):186-189
    [72] Yi Dong Zhang, Jia Sheng Yan, Lai Gui Yu, et al.Effect of nano-Cu lubrication additive onthe contact fatigue behavior of steel.Tribology Letters,2010,37:203-207.
    [73]温诗铸.摩擦学原理.北京:清华大学出版社,1990,387-391
    [74]李江鸿,熊翔,张红波等.不同制动速度下C/C复合材料摩擦面研究.复合材料学报.2007,24(4):112-117
    [75]葛毅成,易茂中.载荷、时间、速度对C/C复合材料摩擦磨损行为的影响.中国有色金属学报,2006,16(2):241-246.
    [76]韩晓明,高飞,宋宝韫.摩擦速度对铜基摩擦材料摩擦磨损性能影响.摩擦学学报.2009,29(1):89-96
    [77]高飞,杜素强,符蓉.不同速度下石墨含量对铜基摩擦材料性能的影响.矿冶工程,2005,25(4):80-82
    [78]张永振,邱明,上官宝等.高速干摩擦条件下铝基复合材料的摩擦磨损行为研究.摩擦学学报,2005,25(4):343-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700