种子老化影响玉米、大麦、小麦种质遗传完整性变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究种子老化对库存种质遗传完整性变化的影响,是种质保存中最亟待解决的问题,对于确保种质资源安全保存具有非常重要的现实意义。本研究主要以玉米、大麦和小麦种质作为研究对象,利用形态标记、细胞标记、生化标记以及DNA分子标记等方法,来探讨种子生活力下降对种质遗传完整性变化的影响,旨在为种质发芽率更新标准的制定提供科学的理论和实践依据。主要结果如下:
     1、通过农艺性状和SSR分子标记技术对玉米地方品种条花糯不同发芽率水平的群体进行遗传分析。结果表明,同一份玉米种质材料,人工老化处理的低发芽率种质群体,其多态性条带百分率、等位基因数、有效等位基因数、基因多样性、Shannon指数等遗传参数数值,都较对照的高发芽率种质群体的遗传参数数值有所下降,表明同一玉米品种群体内,老化处理群体内的遗传多样性低于对照群体的遗传多样性,其群体内遗传变异出现下降。随着种子发芽率的下降,其出苗植株中芽鞘色为浅紫色植株样本的比率也随之下降,当发芽率降到32%时,其出苗植株中芽鞘色为浅紫色植株样本的比率降至0。该结果表明,当该份玉米种子发芽率降至32%时,其更新下一代的种质遗传组成与亲本种质的遗传组成可能发生了变化,即种质群体中已不含芽鞘色为浅紫的植株。另外,在不同发芽率出苗植株群体中,叶鞘色为浅紫色植株的比率有随发芽率下降而升高的趋势,而叶鞘色为白色植株的比率则表现相反,为下降的趋势。该结果也从另一方面证明,对于异质种质材料,低的发芽率更新标准是不利于确保种质遗传完整性的维持。
     2、应用植物细胞染色体技术和醇溶蛋白酸性聚丙烯酰胺凝胶电泳技术对大麦地方品种普乃干木进行分析。实验结果表明,不同发芽率水平的老化种子,其染色体畸变率不存在显著差异。但随着种子生活力的下降,该种质群体醇溶蛋白的四种谱带类型的“biotype”频率也发生变化,当发芽率降到34%时,其中一种谱带类型“biotype”消失,即可理解为更新下一代的种质遗传组成可能发生了遗传上的漂移。同时也表明大麦醇溶蛋白分析方法应用于研究大麦种质遗传完整性变化是可行的。
     3、对每一品种分别来自中期库(低生活力种子)和长期库(高生活力种子)的30份小麦种质进行农艺性状和生育期调查,发现在这两组之间,除了穗长有显著差异外,其它各项指标均无显著差异;对其中20份进行植物细胞染色体测定,结果表明中期库的小麦种质,其更新前种子根尖细胞平均染色体畸变率为4.41%,明显高于长期库种质的平均染色体畸变率(0.49%)。种子根尖染色体畸变率与发芽率呈负显著相关,但不管是贮藏于长期库或中期库,种子根尖染色体畸变率与贮藏年限均无显著相关。进一步对其中9份新繁殖子一代小麦种子进行分析,发现此时种子根尖细胞染色体畸变率已基本无差异。
The effect of seed aging on genetic integrity changes of stored seeds in genebank is an urgent task to be clarified for germplasm preservation. It is of great significance for a safe conservation of germplasm resources. Working on seeds of maize (ZeamaysL.) , barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) , the effect of seed viability decline on the alteration of genetic integrity was analyzed with morphological markers, cytological markers, biochemical markers and DNA molecular markers, so as to provide scientific and theoretical basis for making a germination-rate-based criteria for regenerating germplasm resources. Main results found were as the following.
    1. Genetic alterations of maize landrace cv. Tiaohuanuo populations having different germination levels were analyzed by using agronomic traits and SSR markers. It was shown that change measured as the percentage of polymorphic bands, the number of alleles (na), effective number of alleles (ne) , Nei's gene diversity index (h) and Shannon's information index (I) and so on, were lower in artificially aged population with lower germination percentage than in CK population with higher germination percentage. This indicated that the genetic diversity was lower in aged population than in CK population. The proportion of plant with light-purple gemmule sheath decreased with the decline of germination percentage. When seed germination percentage declined to 32%, there was no light-purple plant. This result indicated that alternation of the genetic composition from light-purple plant to no light-purple plant could occur in regenerating population if the seed germination percentage declined to 32%. On the other h
    and, the proportion of light-purple leaf sheath plant increased while the white leaf sheath plant decreased, when seed germination percentage declined. This result also indicated that a low germination percentage standard for regeneration is disadvantageous for maintaining the genetic integrity of heterogeneous accessions.
    2. The hereditary characters of barley landrace cv. Punaiganmu were analyzed using botanical cell chromosomal and A-PAGE methods. The result showed that there was no significant difference in seed chromosomal aberration ratio in root tip cells between populations with different germination percentage. By the use of A-PAGE, four biotypes differing in the hordein spectra have been determined, biotype ratio varied with the decline of germination percentage. One "biotype" disappeared while seed germination percentage declined to 34%. The result indicated that the loss of seed viability and differential survival of the biotypes resulted in selection and genetic shifts in germplasm accessions, and also indicated that the A-PAGE could be used to detect genetic integrity change in barley accessions.
    3. A same set of 30 wheat accessions from two sources, one set was from seeds stored in the National Long-term Genebank, and the other was from seeds stored in the mid-term Genebank. On growth
    
    
    duration and other agronomic traits studies, no significant differences were found between two sets except on panicle length. Chromosomal aberration percentages in root tip cells of 20 wheat accessions which were stored in mid-term genebank and had lower viabilities were averaged as 4.41%, which was obviously higher than the value of 0.49% calculated from cells of wheat accessions which were stored in long-term genebank and had higher viability. Seed chromosomal aberration proportion in root tip cells was negatively correlated with seed germination percentage. There was no significant correlation between seed germination percentage and storage time for seeds no matter they were stored in the mid-term or long-term genebank. Studies on 9 wheat accessions newly regenerated also showed that there was no significant difference on the chromosomal aberration in root tip cells between seeds stored in mid-term genebank and long-term genebank.
引文
1.柴建方.种质库异花授粉作物种子的更新繁殖(J).作物品种资源,1996,(2):38~40
    2.高楷,祃洪昌,刘爱群.玉米品种种子更新授粉群体量的研究.作物科学,1991,17(4):315~319
    3.杜金友,黎浴,王天宇等.SSR和AFLP分析玉米遗传多样性的研究.华北学报,2003,18(1):59~63
    4.盖钧镒主编.作物育种学各论.北京:中国农业出版社.1997
    5.郭小平,赵元明,刘毓侠.SSR技术及其在植物遗传育种中的应用.华北学报,1998,13(3):73~76
    6.贾继增,1996,分子标记种质资源鉴定和分子育种,中国科学,1996(4):1~4
    7.兰海燕,李立会.蛋白质凝胶电泳技术在作物品种鉴定中的作用.中国农业科学,2002,35(8):916~920
    8.李雅华,崔平.甜菜种质资源的更新.中国糖料,2000,(4):48~50
    9.黎裕,贾继增,王天宇.分子标记的种类及其发展.生物技术通报,1999,(4):19~22
    10.李云海,肖晗,张春庆等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异.植物学报,1999,41(10):1061~1066
    11.李柱刚,崔崇士,马荣才,曹鸣庆.遗传标记在植物上的发展与应用.东北农业大学学报,2001,32(4):396~401
    12.李懋学等.植物染色体研究技术.哈尔滨:东北林业大学出版社.1991:1~120
    13.李新海,傅骏骅,张世煌等.利用SSR标记研究玉米自交系的遗传变异.中国农业科学,2001,33(2):1~9
    14.黎裕,王天宇,田松杰等.利用分子标记分析遗传多样性时的玉米群体取样策略研究.植物遗传资源学报,2003,4(4):314~317
    15.刘勋甲,郑用琏,尹艳.遗传标记的发展及分子标记在作物遗传育种中的应用Ⅰ遗传标记的发展及分子标记的检测技术[J].湖北农业科学,1998,1:33~35
    16.卢洪.玉米地方品种数量性状和18个同工酶标记位点遗传的多样性.[硕士学位论文].武汉:华中农业大学.1993
    17.卢新雄.水稻种子贮藏过程中生活力丧失特性及预警指标的研究.中国农业科学,2002,8(35):975~979
    18.卢新雄,陈晓玲,陈叔平.低温库种质安全保存理论的研究进展.植物遗传资源科学,2000,1(2):54~58
    19.卢新雄,崔聪淑,陈晓玲,陈贞,陈叔平.国家种质库部分作物种子生活力监测结果与分析.植物遗传资源科学,2001,2(2):1~5
    20.卢新雄,崔聪淑,陈晓玲,张晗,李秀全,李高原,陈丽华.小麦种质贮藏过程中生活力丧失特性及田间出苗率表现.植物遗传资源学报,2003,4(3):220~224
    21.罗峥峰.异花授粉作物种质资源繁殖保持中适宜样本容量的研究.[硕士学位论文].南京:南京农业大学,1999
    22.马缘生,吕风金.种子贮藏过程中遗传完整性变化.见:马缘生主编.作物种质资源保存技术.北
    
    京:学术书刊出版社.1989:206~230
    23.马缘生,范传珠,王述民等.五种作物基因库种子繁殖更新技术研究.植物遗传资源科学,2002,3(2):1~7,33
    24.马缘生等.普通小麦陈旧种子遗传完整性研究的初报.种子,1987,(5):15~19
    25.马缘生,谭富娟,李灵芝等.异花授粉作物大白菜和荞麦基因库种子繁殖技术研究.中国农业科学,2000,33(2):16~22
    26.潘家驹主编.作物育种学总论.北京:农业出版社.1992
    27.乔燕祥,高平平,马俊华等.玉米种子老化过程中生理遗传变化的研究.山西农业科学,2001,29(4):18~21
    28.谭富娟,马缘生,范传珠等.种子贮存过程中遗传完整性的研究.作物品种资源,1996,2:42~44
    29.谭富娟,范传珠,马缘生等.燕麦种子贮存后遗传完整性研究.种子,1997,5:9~12
    30.唐定中,李维明,吴为人等.福建农业大学学报,1998,27(3):265~270
    31.唐慧慧,丁毅,胡耀军.中国近缘野生大麦醇溶蛋白的遗传多态性研究.武汉植物学研究,2002,20(4):251~257
    32.熊立仲,王石平,刘克德.植物学报,1998,40(7):605~614
    33.徐廷文,黄文俊.青藏高原近缘野生大麦和栽培大麦的几种同工酶研究.中国大麦文集,1989,(2):215~223
    34.袁甲正.低温贮藏对栽培大麦染色体的影响.青海师范大学学报(自然科学版),1996,1:50~52
    35.王中仁.植物等位酶分析.北京:科学出版社.1996
    36.魏新华.自花授粉作物种质繁殖更新策略研究的若干问题及进展.上海科学技术出版社.
    37.危文亮,赵应忠.分子标记在作物育种中的应用.生物技术通报,2000,(2):12~16,22
    38.武耀廷,张天真,殷剑美.利用分子标记和形态学性状检测的陆地棉栽培品种遗传多样性.遗传学报,2001,28(1):1040~1050
    39.翟虎渠.应用数量遗传学.中国农业出版社.2001
    40.张海英,许勇,王永健.分子标记概述.长江蔬菜,2001,2:4~6
    41.张学勇,杨欣明,董玉琛.醇溶蛋白电泳在小麦种质资源遗传分析中的应用.中国农业科学,1995,28(4):25~32
    42.赵凌侠,李景富,唐克轩,等.番茄属基因组遗传多样性RAPD分析.福建农林大学学报(自然科学版),2002,31(2):228~233
    43.浙江农业大学.遗传学[M].北京:农业出版社.1987:115~200
    44.朱睦园,黄培忠等.大麦育种与生物工程.上海科学技术出版社.1999
    45. 朱申龙.Genetic diversity of Chinese soybean germplasm revealed by amplified fragment length polymorphism. 浙江农业学报,1998,10(6):302~309
    46. Abdalla F H and Roberts E H. The effects of seed storage conditions on growth and yield of barley, broad beans, and peas. Ann. Bot, 1963,33:169~184
    47. Allard R W. 1960, Principles of Plant Breeding. J Wiley and Sons. Inc New York and London.
    
    
    48. Anderson W R and Fairbanks D J. Molecular markers: Important tools for plant genetic resources characterization Diversity, 1990, 66, 51~53
    49. Bassam B J, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80~83
    50. Bean E W. Principles of Herbage Seed Production (2nd Ed.)Welsh Plant Breeding Station, Aberyswyth. 1978
    51. Beddows A R. The ryegrasses in British agriculture: a survey. Bulletin No. 17, Series H, Welsh Plant Breeding Station, Aberystwyth. 1953
    52. Bredemejer G M M, Arens P, Wouters D, Visser D, Vosman B. The use of semi-automated fluorescent iocrosatellite analysis for tomato cultivar identification. Theor Appl Genet, 1998, 97:584~590
    53. Breese E L. Regeneration and multiplication of germplasm resources in seed genebank: the scientific background. IBPGR. 1989
    54. Breese E L and Tyler B F. Patterns of variation and the underlying genetic and cytological architecture in grasses with particular reference to Lolium. In: Infraspecific Classification of Wild and Cultivated Plant (B, T, Styles, Ed) The Systematics Association Special, 1986, 29
    55. Borner A, Chebotar S, Korzun V. Molecular characterization of the genetic integrity of wheat (Triticum aestivum L.) gernplasm alter long-term maintenance. Theor Appl Genet, 2000a, 100: 494~497
    56. Borner A, Roder M S, Unger O, Meinel A. The detection and molecular mapping of a major gene for non specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet, 2000b, 100: 1095~1099
    57. Chandra S, Huaman Z, Hari Krishna S, Ortiz R. Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data-a simulation study. Theor Appl Genet. 2002, 104: 1325~1334
    58. Chauhan K P S and Banerjee S K. Studies on the induction of variability in quantitave characters of soybean and after accelerated aging of seeds. Seed Research, 1983, 11: 141~191
    59. Chauhan K P S and Banerjee S K. Correlative studies in accelerated aged seed of soybean and barley. Seed Research, 1983, 11: 191~203
    60. Chebotar S, Roder M S, Korzun V, Saal B, Weber W E, Borner A. Molecular studies on genetic integrity of open-pollinating species rye (Secale cereale L.) after long-term genebank maintenance. Theor Appl Genet. 2003 Nov, 107(8): 1469~1476
    61. Clark R L, Shands, H. I, Bretting, P. K et al. Germplasm regeneration developments in population genetics and their implications. Crop Science. 1997,37(1):1~6
    62. Crow J F and Kimura M. An introduction to population genetics theory. New York. Harper and Row. 1970,297~312
    63. Darlington C D. The evolution of genetic system, Cambridge University Press. 1939
    64. Davierwala A P, Chowdari K V, Kumar S, Reddy A P K, Ranjekar V S, Gupta V S. Use of different marker systems to estimate genetic diversity of Indian elite rice arieties. Genetica, 2000, 108: 269~284
    65. Devos K M, Gale M D. The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet, 1992, 84: 567~572.
    66. De Vries H. Die mutations theories, Band I. Veit and Co., Leipzig. 1901
    
    
    67. Draper S R. ISTA variety committee report of the working group for biochemical tests for cultivar identification 1983-1986. Seed & Technol, 1987,15:431~434
    68. Dobzhansky TH. What is an adaptive traits. Amer Naturalist, 1956, 90: 337~347
    69. Donini P, Stephenson P, Bryan G J, Koebner R M D. The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet Res Crop Evol, 1998,45: 415~421
    70. Dourado A M, Roberts E H. Chromosome Aberrations induced during storage in barley and pea seeds. Ann. Bot, 1984, 54: 767~779
    71. Duley J W. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci, 1993,33:660~668
    72. Eahima T, Roder M S, Grama A, Nevo E. Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet, 1998, 96:187~195
    73. FAO. Report on the state of the worlds plants genetic resources. International Technical Conference on Plant Genetic Resources, Leipzig, Germany. FAO, Rome, Italy. 1996
    74. Fatokun C A, Danesh D, Young N D and Stewart E L. Molecular taxonomic relationship in the genus Vigna based on RFLP analysis. TAG, 1996, 86: 97~104
    75. Frankel O H and Soule M E. Conservation and evolution, Cambridge University Press, Cambridge, 1981.
    76. Frankel O H. Genetic perspectives of germplasm conservation in Genetic Manipulation, Impact on Man and Society Ed. by W. Arber K. Iumensee, W.J. Peacock and P. Starlinger, ICSU Press, Cambridge University Press. 1984
    77. Grodzicker T, Williama J, Sharp P, Sambrook J. Cold Spring Harbor Symp, Quant. Biol. 1974,39: 439~445
    78. Hallauer A R and Miranda F. Quantitative genetics in maize breeding. Iowa State University Press, Ames, Iowa. 1981
    79. Helentjaris T, Weber D, Wright S. Genetic, 1988, 118: 353~363
    80. Huang X Q, Borner A, Roder M S, Ganal M W. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet, 2002, 84: 699~707
    81. ISTA. International Rules for Seed Testing. Seed Sci.& Technol, 1985,15:299~355
    82. Johnson R C. Genetic structure of regeneration populations of annual ryegrass. Crop Sci. 1998 (38):851~857
    83. Korzun V, Roder M S, Ganal MW, Worland A J, Law CN. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of the Rht8 on the short chromosome 2D of bread wheat(Triticum aestivum L.)Theor Appl Genet, 1998, 96: 1104~1109
    84. Lawrence M J, Marshall D F and Davies P. Genetic of genetic conservation. Ⅰ. Sample size when collecting germplasm. Euphytica. 1995,84:89~99
    85. Lee M. DNA markers in plant breeding programs. Adv. Agron, 1995, 55: 265~344
    86. Mather K. Genetical structure of population. Chapman and hall, London. 1973
    87. Senior M L et al. Utility of SSRs for Determining Genetics Similarities and Relationships Ⅰ Maize Using an Agarose Gel System, Crop Sci, 1998, 38: 1088~1098
    
    
    88. Murata M. Genetic changes induced by artificial seed aging in barley. Ph. D. Diss. Colorado State University, Ft. Collons. 1979:1~185
    89. Murata M et al. Types of chromosome aberrations induced by artificial seed aging in barley. Barley. Grnet. Newslett., 1979, 9: 67~69
    90. Murata M et al. Mitotic and meiotic chromosome aberrations and pollen fertility in plants grown from artificial aged barley seeds. Barley. Grnet. Newslett., 1979,9:69~71
    91. Murata M et al. Relationship between loss of germinability and occurrence of chromosome aberrations in artificially aged seeds of barley. Barley. Grnet. Newslett, 1979,9:65~67
    92. Murata, M, Tsuchiya T, Roos E.E. Chromosome damages induced by artificial seed aging in barley. Theor. Appl. Genet. 1984, 67:161~170
    93. Navashin M S. Origin of spontaneous mutations. Nature. Lond, 1933a, 131: 436.
    94. Navashin M S. Aging of seed is a cause chromosome mutations. Plant,1933b, 20: 233~243.
    95. Oka H I. Conservation of heterogeneous rice populations. In: Rice germplasm conservation workshop, IRRI, 1983
    96. Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of SSLP in Rice. Mol. Gen Genet, 1996, 252: 597~607
    97. Parzies H K, Spoor W and Ennos R A. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. Vulgate) conserved for different lengths of time in ex situ gene banks. Heredity,2000, 84:476~486
    98. Pejic I, Ajmone-Marsan P, Morgante M, Kozumplic V, Castiglioni P, Taramino G, Motto M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor. Appl. Genet. 1998,97:1248~1255.
    99. Peto F H. The effect of aging and heat on the chromosome mutation rate in maize and barley. Can. J. Res., 1933,(9):261~264
    100. Plaschke J, Ganal M W, Rder M S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995,91:1001~1007
    101. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S and Rafalski A. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2: 225~238
    102. Priestley D A. Hudo De Vries and the development of seed aging theory. Ann. Bot 1985,56: 267~269
    103. Rick C M. Pollination relations of Lycopersicon esculentum in native and foreigns. Evolution. 1950, 4: 110~112
    104. Rio A H, Bamberg J B, Huaman, Z et al. Assessing changes in the genetic diversity of potato gene banks. I. Effects of seed increase. Theor Appl Genet, 1997, 95: 191~198
    105. Roberts E H. Loss of viability: Chromosomal and genetical aspects, Seed Sci. & Technol. 1973, 1: 515~527
    106. Roberts E H. Seed aging: the genome and its expression. In: Senescence and Aging in Plants. Academic Press, 1989,465~498
    107. Roberts E H, Ellis R H. The implications of the deterioration of orthodox seeds during storage for genetic resources conservation & evaluation. In: Crop Genetic resources: Conservation and Evaluation. George Allen & Unwin London. 1984:19~37
    
    
    108. Roos E E. Genetic change in a collection over time. HortScience, 1988, 23(1): 86~90
    109. Roos E E. Induced genetic changes in seed germplasm during storage. In: the Physiology and Biochemistry of Seed Development, Dormancy and Germination, eds Khan A A. Elsevier, Biomedical Press. Amsterdam, 1982, 409~434
    110. Roos E E. Report of the storage committee working group on effects of storage on genetic integrity. 1980~1983. Seed Sci. & Technol, 1984a, 12:255~260
    111. Roos E E. Genetic shifts in mixed bean population. Ⅰ. Storage effects, Crop Sci,1984b, (24): 240~244
    112. Roos E E. Genetic shifts in mixed bean population. Ⅱ. Effects of regeneration, Crop. Sci, 1984c, 24:711~715
    113. Russell J, Fuller J, Young G, Thomas B, Taramino G, Macaulay, M, Waugh R and Powell W. Determinating between barley genotypes using microsatellite markers. Genome, 1997,40:442~450
    114. Sackville H N R and Chorlton K H. Regeneration of accessions in seed collections: a decision guide. IPGRI. Rome. 1997
    115. Schoen D J, David J L and Bataillon T M. Deleterious mutation accumulation and the regeneration of genetic resources. Proc. Nati. Acad. Sci. USA 1998, (95):94~399
    116. Shands H L, Janisch D C and Dickson A D. Germination response of barley following different harvesting conditions and storage treatment. Crop Sci, 1967, 7: 444~446
    117. Singh R B and Williams J T. Maintenance and multiplication of plant genetic resources. In: Crop Genetic Resources: Conservation and Evaluation. Allen and Unwin Ltd, 1984,120~130
    118. Specht C E, Keller E R J, Freytag U et al. Survey of seed germinability after long-term storage in the Gatersleben genebank. Plant Genetic Newsletter, 1997,(111):64~68
    119. Specht C E, Keller, E R J, Freytag U et al. Survey of seed germinability after long-term storage in the Gatersleben genebank (part 2). Plant Genetic Newsletter, 998, (115): 39~43
    120. Stoyanova S D. Effect of seed ageing and regeneration on the genetic composition of wheat. Seed Sci. Technol, 1992, 20: 489~496
    121. Stoyanova S D. Genetic shifts and variations of gliadins induced by seed aging, Seed Sci, Technol, 1991, (19) 363~371
    122. Struss D, Plieske J. The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet, 1998,97:308~315
    123. Tao K L. Rapid and nondestructive method for detecting composition change in wheat germplasm accessions. Crop Sci. 1992,32:1039~1042
    124. Taramino G, Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize. Genome, 1996, 39: 277~287
    125. Thompson Jeffrey A, Nelson Randall L, Vodkin. Lila O. Identification of Diverse Soybean Germplasm Using RAPD Markers. Crop Sci, 1998, 38: 1348~1355
    126. Tomar J B and Singh M P. Effects of temperature and moisture content during storage on the seed viability in rice. India J. of Agri. Sci, 1986, (56):782~787
    127. Wiliams J C K, Kubellik A R, Livak K J et al. DNA polymorphism amplified by arbitrary primes are useful as genetic markers [J]. Nucleic Acid Research, 1990,18 (22): 6531~6535
    
    
    128. Yang W, de Oliveira A C, Godwin I, Schertz K & Bennetzen J L. Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Science, 1996, 36: 1669~1676
    129. Yeh F C, Yang R, Boyle T. Popgene Version 1.31.
    130. Zabean M, et al. Abstract of Molecular Biology Symposium. Amsterdam. The Netherlands. 1994, 1844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700