番茄叶霉病菌对氟硅唑抗药性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验系统地研究了目前辽宁省主要保护地蔬菜种植区的番茄叶霉病菌[Fulvia fulva(Cooke)Ciferr]对杀菌剂氟硅唑(flusilazole)的抗药性现状、敏感菌株抗药性诱导、抗药性菌株生物学特性以及与其它药剂的交互抗药性关系。明确了番茄叶霉病菌对氟硅唑的抗药性水平、抗药性分布情况、抗药性突变体的适合度、与其它药剂的交互抗药性,试验结果表明针对番茄叶霉病菌而言,氟硅唑属于低抗药性风险杀菌剂。本研究对辽宁省番茄叶霉病的防治具有重要指导意义。
     主要研究结果如下:
     从辽宁省各保护地番茄植株上采集分离到200个番茄叶霉病菌菌株,经室内敏感性测定分别检测到了番茄叶霉病菌对氟硅唑的敏感、低抗、中抗、高抗菌株,这四类菌株分别占到42%、47.5%、7.5%、3%。从这个结果看,敏感和低抗菌株是辽宁省内的优势菌株。虽然检测到6株高抗菌株,但其数量少还未形成规模且地域比较集中,因此认为辽宁省内的番茄叶霉病菌还未对氟硅唑产生严重的抗药性。
     用紫外线诱导、药剂驯化、紫外线和药剂共同作用三种方法对目标敏感菌株XY1进行了抗药性诱导,共获得了三种抗药性突变体。经检测发现,紫外线诱导的突变体为低抗水平,药剂诱导的为中抗水平,两者共同诱导的为高抗水平。这一结果说明,氟硅唑在叶霉菌产生抗药性的过程中起主要作用,阳光中的紫外线起到辅助作用,两者可以产生累加效应促使高抗菌株的产生。
     抗药性菌株生物学特性的试验表明叶霉病菌在产生抗药性的初期它的适合度不会受到影响,但一旦抗药性水平达到高抗,则生长繁殖能力较敏感菌株显著下降。从渗透敏感性的试验结果可以初步判断叶霉菌随着抗药性的增加致病性降低。遗传稳定性的结果试验证明抗药性突变体的抗药性不能以
    
     摘要
    无性繁殖稳定遗传,可逐步恢复为敏感菌株。这些结果说明,叶霉菌对氟硅
    哇的抗药性遗传应该是由多基因控制的,抗药性具有累加效应。从抗药性突
    变体生物学特性看,突变体的竞争能力较敏感菌株下降,难以发展成为优势
    菌株。
     室内交互抗药性测定表明:氟硅哇与多菌灵、腐霉利、啼菌酷均无交互
    抗药性,但与同属三哇类的睛菌哇、三哇酮有正交互抗药性。叶霉菌对新药
    啼菌醋极其敏感,是生产上值得推广的一种新的有效药剂。
     以上试验结果表明,氟硅哇对番茄叶霉菌是一种低度抗药性风险的杀菌
    剂。
In this paper the resistance of Fulvia fulva to flusilazole, inducing resistance of sensitive isolates, biological characteristics of mutant-isolate and cross-resistance to other fungicides were studied. The level and distribution of F.fulva resistance in Liaoning, the fitness of mutants, the relation of cross-resistance between flusilazole and other fungicides were confirmed. It showed that the inherent risk of flusilazole to F. fulva is low. The results can support to build fungicide resistance management strategies and offer references to develop new fungicides. The results were as the follows:
    1. Two hundred isolates of F. in tomato was obtained in 2002 and 2003 from several main protection fields in Liaoning province. Sensitivity of these isolates to flusilazole was determined by the methods of mycelium growth inhibition. Four kinds of isolates were found, they are sensitive isolates, low level resistant isolates, moderate level resistant isolates, high level resistant isolates, the percentage of them was 42%, 47.5%, 7.5%, 3% respectively. Sensitive and low level resistant isolates are predominant isolates. Six high level resistant isolates were detected but the quantities and distribution is not abroad. The results showed that F.fulva in Liaoning hasn't developed severe resistance.
    2. Flusilazole-resistant mutants to F. fulva have been acquired by ultraviolet-inducing and chemical-traming and the two methods use together. The resistant level of mutants by three methods belonged -to low level resistance, moderate resistance and high level resistance respectively. This results showed that fungicide played an important role in development of resistance while ultraviolet is secondary. When used together they can accelerate the emergence of high level resistante isolates.
    3. Significant differences in mycelium growth, fresh weight and osmotic sensitivity were observed between sensitive and high level resistant isolates. This means the fitness of the high level resistante isolates decreased significantly. But the other kinds of isolates exhibited no difference with sensitive isolates. The resistance of mutants and field-mutants can't pass down stably, they can become sensitive isolates after they were continuously transferred in PDA medium without fungicide, but the high level resistante isolates is difficult to do this. The research indicated that the heredity of resistance in F. fulva to flusilazole is control by polygene. Mutants have lower competition capacity than that of sensitive isolates, and it is difficult to become predominant isolates.
    4. There was no cross-resistance between flusilazole and procymidone as well as azoxystrobin, carbendazim, whereas there was positive cross-resistance between flusilazole and myclobutanil as well as triadimefon. Azoxystrobin is a kind of effective
    
    
    
    
    new fungicide to control Fulviafulva and is good for spreading. 5. On the whole, we assumed that the inherent risk of flusilazole to F.fulva is low.
引文
1.陈宇飞.2000.我国番茄叶霉病研究进展.东北农业大学学报.31(4):411-414.
    2.陈建新,叶钟音.1999.芦笋茎枯病菌对甲基托布津的抗药性初步研究.南京农业大学学报.22(1):25-31.
    3.董庆周.1985.植物保护学报,12(2):79-85.
    4.韩文华.1997.番茄叶霉病菌研究进展.沈阳农业大学硕士论文
    5.韩文华,许文奎,邓纯宝,等.1999.辽宁省番茄叶霉病菌生理小种分化研究.中国蔬菜.6:6-9.
    6.何秀萍,张博润.1998.微生物麦角固醇的研究进展.微生物学通报,25(3):166.
    7.何祖钿,梁皇英.1990.农药的抗药性问题.山西农业科学.6:30-33.
    8.黄大坊,王侠,周淑芝.1982.甜菜褐斑病菌对苯并咪唑类杀菌剂抗药性的研究.植物保护学报.9(2):131-134.
    9.李桂英,李景富,李永镐.1996.东北三省番茄叶霉病菌生理小种分化的研究.东北农学报,(2):132-136.
    10.李林,徐作铤,林相璀.1996.福星防治大棚番茄叶霉病试验.山东农业科学,4:35
    11.李宝笃,李梅,沈崇尧.1994.霜霉威、甲霜灵对我国辣椒疫霉菌作用方式比较及交互抗药性的比较.植物病理学报.24(2):169-173.
    12.李显春,王荫长.1997.农业植物病虫抗药性问答.中国农业出版.10.L刘波,叶钟音,刘经芳,等.1993.药剂紫外线外光诱导灰葡萄孢产生速克灵抗药性菌株的研究(研究简报).植物病理党报.23(1):79-80.
    13.刘波,叶钟音,刘经芳,等.1993.药剂紫外线外光诱导灰葡萄孢产生速克灵抗药性菌株的研究(研究简报).植物病理党报.23(1):79-80.
    14.刘波,叶钟音,刘经芬,等.1992.速克灵抗药性灰霉病菌菌株性质的研究.植物保护学报.19(4):297-301.
    15.马忠华,周明国,王建新,等.1996.水稻白叶枯病菌对噻枯唑的抗药性.南京农业大学学报,19(2):22-25.
    16.潘洪玉,张浩,丁利,等.1997.番茄叶霉病菌对几种杀菌剂敏感性测定.中国蔬菜.2:32-33.
    17.潘洪玉,张浩.1997.黄瓜黑星病菌对多菌灵抗药性的测定.植物保护学报.27(3):285-286.
    
    
    18.彭云良,刘经芬,叶钟音.1990.稻瘟病菌对异稻瘟净的抗药性研究.南京农业大学学报,13(4):45-48.
    19.彭云良,刘经芬,叶钟音.1993.稻瘟病菌对稻瘟灵耐药性研究.植物保护学报,20(1):77-81.
    20.祁之秋,纪明山,张驰,等.2003.番茄叶霉病菌对氟硅唑敏感基线及抗药性风险研究.植物保护.30(1):53-55.
    21.沈嘉祥.1988.云南稻瘟病菌抗药性研究.植物保护学报。15(1):50-54.
    22.王文桥,刘国容,张小凤,等.2000.葡萄霜霉病菌和马铃薯晚疫病菌对三种杀菌剂的抗药性风险研究.植物病理学报.30(1):48-52.
    23.王文桥,马志强,张小风,等.2001.植物病原菌对杀菌剂抗药性风险评估.农药学学报.3(1):6-11.
    24.王文相,顾江涛.1998.水稻白叶枯病菌抗药性现象的室内研究.植物保护学报,25(2):171-174.
    25.徐作铤,李林.1999.蔬菜灰霉病菌对速克灵抗药性变异研究.山东农业科学,2:25-32.
    26.徐义宽.1992.农用杀菌剂面临抗药性.农药.31(5):3-4.16
    27.许修宏,刘亚光,郭亚芬,等.1999.番茄叶霉病药剂防治研究.东北农业大学学报1:36-40.
    28.许修宏,刘亚芬,郭亚芬.1999.番茄叶霉病菌分生孢子生物学特性研究.植物保护,2:12-15.
    29.杨涛,关天舒,等.2002.番茄叶霉病菌抗药性研究.辽宁农业科学.4:17-18.
    30.叶正和,王文相,张爱芳,蒋绍明,陈宁.2000.安徽农业科学.28(4):530—533.
    31.叶钟音,周明国,等.1987b.植物病原菌对苯并咪唑类及相关杀菌剂的抗药性.植物保护,13(2):31-33.
    32.叶钟音,周明国,等.1987a.植物病原菌对杀菌剂抗药性的概况.南京农业大学学报,(4):154-165.
    33.印东生,何莉莉,葛晓光.1999.化学诱抗剂诱导番茄抗叶霉病效果的研究.辽宁农业科学.2:9-11.
    34.张丙炎,陈海贵,罗小勇,等.1991.复方代森锌防治番茄早疫病和叶霉病药效试验.甘肃农业科技.6:31-32.
    
    
    35.周明国,刘经国,叶钟音.1987.关于杀菌剂抗药性研究方法的综述.南京农业大学学报(增刊)
    36.周明国,D.W.Hollomon.1997.Neurospora crassa对三唑醇的抗药性分子机制研究.植物病理学报.27(3):275-280.
    37. Bernhard U. 1999. Proceedings of First International Powdery Mildew Conference, Avignon, France, France, 32
    38. Brent K.J.,Hollomon D.W.,Shaw M.W..1990. Managing Resistance to Agrochemicals,Washington DC:hmerican Chemical Society. 303-319.
    39. Brent K.J..Hollomon D.W.. 1999. FRAC Monograph No. 2 GCPF, Brussels. 1-48.
    40. Brown J M. Jessop A C, Thomas S et al.,1992. Genetics control of the response of Etysiphe graminis f. sp. hordei to ethirimol and triadimenol. Plant Pathol. 41:126-135.
    41. Bruin, G.C.h, Edgington, L.V..1982. Induction of fungal resistance to metalaxyl by ultraviolet irradiation. Phytopathology. 72:1209-1212.
    42. Dekker J.. 1982. Fungicide Resistance in Crop Protection, Wageningen. 128-138.
    43. Dixon G R. 1981. Pathogens of solanaceous crops, In: Vegetable crop diseases. First Published macmillan published LTD:Hong Kong,:341-344.
    44. Duan X.,Zhou Y.,Sheng B, et al. 2000. Proceedings of the First Asian Conference on Plant Pathology. Beijing, China, 342
    45. de Waard, M.A. et al. 1977. Neth. J. Pl. Path.,83(1)177-188.
    46. de Waard, M.A. et al. 1979. Pestic. Biochem. Physiol, 10 219-229.
    47. de Waard, M.A. et al. 1982. Neth. J. Pl. Path.,88 99-112.
    48. Eckert, J. W.1982. Fungicide Resistance in Crop Protection. eds J. Dekker and S. G.Georgopoulos, 231-250.
    49. Engels AJ, De Waard MA. 1996. Fitness of isolates of Erysiphe framinis f. sp. titici with reduced sensitivity to fenpropimorph. 15:771-777.
    50. Engels AJ, Holub E F, Swart K et al.,1998. Genetic analysis of resistance to fenpropimorph in Aspergillus niger, cuur Genet. 33:145-150.
    51. Fuch A. Drandarevski CA. 1976. The likelihood of development of resistance
    
    to systemic fungicides which inhibit ergosterol bilsyntheses Neth J Plant Pathol, 82:85-87.
    52. Fuch A. et al. 1977. Neth. J. Pl. path.,83(1):189-205.
    53. Fuchs, A. 1984. Pestic. Sci. 15:78-84.
    54. Gisi U. 1988. Staehle-Csech U.. Fungicide Resistance in North America. St Paul, Minnesota:American Phytopathological Society. 101-106.
    55. Hitchcock C A. 1993. Resistance of Candida albicans to azole antifungal agent, Biochem Soc Trans. 21:1039-1047.
    56. Hilber U.W.,Schuepp H.,Schwinn F.J.,Fungicide Resistance, Farnharm, Surrey:British Crop Protection Council. 397-402.
    57. Hollomon D W. 1994. Do morpholine fungicides select for resistance in "fungicide resistance-Monograph N60" Surrey. UK:BCPC 281-289.
    58. Kalamaralis A E, Demopoulos V P, Ziogas B N et al.,1989. A high mutable major gene for tradimenol resistance in Nectria haematococca var. cucurbitae. Neth. J. Plant Patho1.95(suppl.1),109-115.
    59. Koller W,Smith F D and Reynolds K L. 1991. Phenotypic instability of flusilazole sensitivity in Venturia inaequalis. Plant pathology. 608-611.
    60. Kato T.,et al.1984. Hournal of Pestcide Science. 9:489-495.
    61. Lasseron-De Falandre A, Daboussi M J, Leroux P, 1991. Inheritance of resistance to fenpropimorph and terbinafine, two sterol biosynthese inhibitors in Nectria haematococca Phytopathol. 81:1432-1438.
    62. LD Falandre, M J Daboussi et al..1991. Inheritance of resistance to fenpropimorph and terbinafine, two sterol biosynthesis inhibitors, in Nectra haematococca, phytopathol, 81:1432-1438.
    63. MA De Waard, M Banga et al..1992. Characterrization of the sensitivity of Erysiphe graminis f. sp. Tritici to morpholines, Pestici. Sci.,34:365-377.
    64. McGranth M.T. 1999. Proceedings of First International Powdery Mildew
    65. Conference, Avignon, France, 31
    66. P.E.Russell. 1995.Fungicide resistanceoccurrence and management,J.Agri.Sci. 124:317-323.
    
    
    67. Peever T L. Milgroom M G. 1992. Inberitance of triadimcnol resistance in Pyrenophora teres. Phytopathol. 82:821-828.
    68. Reese, R.L. et al. 1982. Phytopathology. 72:980
    69. Rotteveel T.J.W.,de goeij J.W.F.M.,van Gemmerden A.F..1997. pesticide Science, 51:407-411.
    70. Sholberg P L. Haag P D. 1993. Sensitivity of Venturia inaequalis isolates from British Columbia to flusilazole and myclobutanil. Can J. Plant Pathol. 15:102-107.
    71. Stanis V F, Jonos A L. 1985. Reduced sensitivity to sterol inhibiting fungicides in field isolates of Venturia inaequalis Phytopathol 75:1098-1101.
    72. Stefan K, Holger D and Kurt M.1997. Acquisition of Resistance to Sterol Demethylation Inhibitors by Populations of Venturia inaequalis. Phytopathol. 87:1272-1278.
    73. Tirilly Y. 1991 .Function of the fungicide Forstyl-Al to F.fulve.Canadian Journal of Botany, 69(2):306-310.
    74. T.Staub.1991.Fungicide Resistance:Practical Experience with Antiresistance Strategies and the role of Integrated use ,Anu.Rev.Phytopathol.29:401-442.
    75. Van Tuyl J. M. 1977. Genetics of fugal resistance to systemic fungicides. Mededelingen Landbouwhogeschool Wageningen 77:1-136.
    76. Wellman H and Schauz K, 1992. Characterization and genetics analysis of tradimefon-resistant laboratory mutants, Petic. Biochem. Physiol, 43:171-179.
    77. Wilson D. 1978.control of several important disease by chlorothalonil in fruit and vegetable crops where MBC tolerance is occurring[J].Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, 43:2, Ⅱ943-949.
    78. W. Koller, H Scheinpflug. 1987. Fungal resistance to sterol biosynthesis inhibitors:a new challenge, Plant Dis, 71(12):1066-1074.
    79. Wolfe, M.S. et al. 1981. Crop Prot. 87 239
    80. Yu D. 2000.[ PhD Thesis of Wageningen University ], Netherlands, 1-134
    81. Yourman, L.F.,Jeffers, S.N.,et al. 2001. Phenotype instability in Botrytis cinerea in the absence of benzimidazole and dicarboximide
    
    fungicides. Phytopathology. 91:307-315.
    82. Yourman, L.F.,Jeffers, S. 1999. Resistance to benzimidazole and dicarboximide fugicides in greenhouse isolates of Botrytis cinerea. Plant Disease. 83:569-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700