一株土传病害生防菌的筛选及其功能开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土传病害是一类种类繁多、易于流行、危害性大、难以防治的重要植物病害,常对农业生产造成严重影响。目前对土传病害的防治多采用化学防治法,但是该方法只对少数病害有效,并且易造成农药残留、抗药性和环境污染等问题。利用微生物生防菌防治可以克服化学防治的上述弊病,且研究和实践已证明其对部分土传病害经济有效,因而成为防治土传病害研究的热点,越来越受到人们的重视。近年来,有报道指出,纤维素酶活力可以作为筛选土传植物病原生防菌株的一个参考指标,供试菌株纤维素酶活力越高,生防潜能越大。
     本研究对从土壤中分离得到的263株具纤维素酶活性菌株的抑菌活性进行了系统筛选和初步研究,并对筛选出的较高抑菌活性F10-2菌株从对部分土传病害的防治效果、菌种鉴定、纤维素酶的产酶特性、固体发酵条件优化和利用植物农药残渣作为发酵基质进行废物综合利用等方面进行了较为系统的研究,取得了以下主要结果:
     1、采用纤维素-刚果红选择性培养基,从采自陕西太白蔬菜基地、秦岭山区和新疆油菜种植区的土壤中分离得到了263株纤维素酶产生菌株。其中,放线菌181株,细菌64株,真菌18株。采用平板对峙法和菌丝生长速率法对这些菌株用7种重要土传病害病原菌(油菜菌核病菌、黄瓜枯萎病菌、茄子黄萎病菌、辣椒疫霉病菌、黄瓜立枯病菌、棉花黄萎病菌和小麦根腐病菌)进行了抑菌活性测定。平板对峙法测定结果表明,对至少一种供试病原菌菌丝生长抑制率达到60%以上的活性菌株有84株(即活性菌株),占总分离菌株株数的31.94%;其中放线菌菌株最多,有62株;其次是细菌,有15株;真菌只有7株。抑制生长速率法测定结果表明,上述84株活性菌株中,有16株菌株的发酵产物具有较强的抑菌作用。
     离体油菜叶片法测定结果表明,上述16株具较高抑菌活性菌株的发酵上清液和孢子悬浮液(或菌悬液)对油菜菌核病均有一定的防治效果。16株测试菌株中,F10-2菌株对油菜菌核病的防治效果最好,其上清液的防治效果为85.29%,孢子悬浮液的防治效果达到93.4%。盆栽药效试验测定结果表明,F10-2菌株发酵原液对辣椒疫霉病和茄子黄萎病均有较好的防治效果。特别是该菌发酵原液及孢子悬浮液对油菜菌核病表现出更好的防治效果。其发酵上清液喷雾处理的植株病叶率为4.75%,防治效果为86.81%;经F10-2菌株孢子悬浮液(107个孢子/mL)喷雾处理后的植株病叶率仅为6.67%,防效可达95.56%。2、对峙培养试验结果表明, F10-2菌株可有效控制油菜菌核菌菌丝的生长。3 d后F10-2菌株菌落即可与油菜核病菌菌落相接触,并开始包围、覆盖病原菌菌落,从而使油菜菌核病原菌生长受到显著抑制。菌核萌发结果发现,用F10-2菌株孢子悬浮液处理油菜菌核3 d后,整个菌核表面呈青绿色并开始腐烂崩溃,从而完全抑制了菌核的正常萌发;连续2周对被F10-2菌株侵染的菌核进行纤维素酶、葡聚糖酶和蛋白酶活性检测,结果表明,葡聚糖酶和纤维素酶在检测2周内活性相对较高,而蛋白酶活性很弱,几乎检测不到。这些酶类可能对抑制油菜菌核的萌发起着一定的作用。
     3、根据Pitt青霉鉴定方法,并结合分子生物学技术和比对分析,将F10-2菌株鉴定为青霉属瓦克青霉菌(Penicillium wakmanii Zalessky)。
     4、通过对纤维素酶液中各组分酶活力的测定,可以看出各酶组分中内切葡聚糖酶活性最高,其次为外切葡聚糖酶,而?-葡萄糖苷酶活性最低;内切葡聚糖酶在发酵第4 d,外切葡聚糖酶在第6 d,?-葡萄糖苷酶在第8 d时活性达最高,分别为8.79 U/mL、4.30 U/mL和1.71 U/mL。由F10-2菌株木聚糖酶产酶曲线可知,在发酵第6 d木聚糖酶活性达最高值为2.21 U/mL。通过F10-2菌株纤维素酶酶学特性研究结果可知,该酶作用最适pH为5~6之间,此区间酶活性较稳定;该酶活性在50~60℃比较稳定,酶反应最适温度为55℃,在60℃以上酶稳定性逐渐下降。
     5、为了解决植物源农药生产中的植物残渣二次污染问题,本研究以7种不同植物农药残渣作为主要发酵基质,对F10-2菌株产纤维素酶条件进行优化,发现川楝残渣为较为理想的发酵基质。通过单因子和响应面试验法获得了菌株F10-2固体发酵产纤维素酶的较佳条件为(按质量计算):川楝树皮残渣:麦麸:蛋白胨: KH2PO4为80: 20: 1.4: 0.4,水料比2:1,初始pH 6.2,在此条件下纤维素酶活力可达6.47 U/g,较原始培养条件提高了46.38%。
     6、以川楝残渣为主要发酵基质,研究了木质纤维素酶分泌特性及降解后残渣结构的变化情况。发现F10-2菌株可在固体川楝树皮残渣基质中生长,并可产生木质纤维素降解酶类。对川楝残渣扫描电镜和红外光谱分析表明,降解后残渣结构变得疏松且具有部分空隙,各官能团也发生了一定的变化,F10-2菌株对纤维素、半纤维素和木质素的降解率分别达到42.7%、33.96%和24.62%。由结果可推测,川楝树皮残渣的降解是纤维素酶、半纤维素酶、木素过氧化物酶和锰过氧化物酶共同作用的结果。
     以川楝残渣为主要培养基质进行固体发酵,7 d后对发酵产物进行浸提(产物与水质量比1:10),其浸提液纤维素酶活性(以FPase表示)可达到4.08 U/mL,孢子含量为4.3×107个/mL。对其浸提液进行简单的制剂加工,得到F10-2菌株活菌制剂,该制剂2倍稀释液对油菜苗期菌核病的防治效果仍可达91.43%,与F10-2菌株发酵原液的防效相当,说明对浸提液进行简单的制剂加工后,可以明显的提高其抑菌活性。
     对本试验的整体研究结果进行综合分析,可以初步说明,所筛选出的F10-2菌株可以在以纤维素为唯一碳源的培养基上正常生长,甚至可以高效利用植物农药残渣进行发酵而生产出具有较高纤维素酶活性的制剂,从而为消除植物农药残渣的二次污染及其综合利用开辟了一条新途径。F10-2菌株的产酶性能高,木质纤维素降解酶系齐全,为一株优良的纤维素酶产生菌株;由该菌株发酵产生的活菌酶制剂,可以通过降解菌体细胞壁、营养竞争和抑制菌丝生长等作用而有效的防治油菜菌核病等重要土传病害;直接利用具有产纤维素酶特性的生防菌制剂来防治可严重威胁农业生产的重要土传病害,是在IPM(有害生物综合管理)及IPP(农业综合生产与保护)理论指导下充分发挥生防菌潜能的初步尝试。
Soil-borne disease, with large number of species, easily transmitted, great harm and hardly prevent, cause great effects on agriculture production. Chemical controls are effective against those diseases. However, repeated application of synthetic pesticides has resulted in a rapid increase in resistance, pesticide residue and environment pollution, so new control measure are needed. Recently, use of biocontrol microorganism to control soil-borne disease become research focuses because of its control effect and safety. Recent studies stimulated the investigation of properties of biocontrol microorganism and concluded that the enzyme activity of cellulase can be as screening index of biocontrol microorganism strain against soil-borne disease.
     In this paper, 236 strains of microorganisms with cellulase activity were isolated from soil samples, and their antifungal activity was systemic studied. The results showed that among these strains, the strain labeled F10-2 have higher antifungal activity. Then, the control efficacy strain F10-2 against soil-borne pathogen, strain identification, enzyme-producing character of cellulase, optimization of solid state fermentation, integrated utilization of plant pesticide residues degradation were researched systemically . The main results and conclusions were showed as follows:
     1. 236 strains of microorganisms with cellulase activity were isolated from soil samples, which dug from Taibai vegetable field of Shaanxi Province, Qingling mountain aera and rape field of Xinjiang uighur autonomous region, by using cellulose-congo red selective medium. There were 181 strains of actinomycetes, 64 strains of bacteria, 18 strains of fungi. The antifungal activities of those trains were tested against 7 soil-borne diseases by using method of plate test and mycelium growth rate method. Plate test showed that there are 84 strains of microorganisms with high antifungal activity, which inhibitory rate were greater than 60% against at least one plant pathogen, and possess 31.94% of the total separated microoganisms. Among them, actinomycetes strain was 62 strains (34.25% of all actinomycetes seperated), bacteria was 15 strains (23.44% of all bacteria separated), and fungi was 7 strains (38.89% of all fungi separated). Among 84 strains of microorganisms, mycelium growth rate method showed that inhibitory rates of fermentation broth of 16 strains (active strains) possess higher antifungal activity, and inhibitory rate of 5 strains of them were greater than 60% against 7 test soil-borne pathogen.
     Rape leaf test result showed that supernatant of fermentation broth and spore suspension (or bacterium suspension) of the above 16 active strains had control effect against Sclerotinia sclerotiorum. Among them, supernatant of fermentation broth of 11 strains, and spore suspension of 3 strains showed higher inhibitory rates, which control effects were greater than 60%. The strain labeled F10-2 have the best control effect, the fermentation broth and spore suspension possessed 85.29% and 93.4% control efficacy, respectively. Pot culture test showed fermentation broth of F10-2 strain had certain control effect against Phytophthora capsici and Verticillium dahliae. The protect effect and therapy effect were 73.82 % and 56.87 % against Phytophthora capsici respectively, and which were 65.21 % and 50.72 % against Verticillium dahliae respectively.
     2. Antagonistic culture test between F10-2 and Sclerotinia sclerotiorum showed the growth ratio of F10-2 was faster than that of Sclerotinia sclerotiorum. After the 3 days of antagonistic culture, colony of F10-2 began contact with, and then surrounded and covered Sclerotinia sclerotioru. Final, the growth of Sclerotinia sclerotiorum was inhibited, and the pathogen colony was wilt. The result showed the F10-2 had strong inhibitory action. The sprouting test of Sclerotinia sclerotiorum showed that surface of sclerotia was covered by turquoise spore of F10-2, and decayed after 7 days. All results showed spore liquid of F10-2 could control sprouting of sclerotia absolutely. Enzyme activity of ligninase, glucanase and protease were tested in 2 weeks, and results showed ligninase and glucanase had higher activities, while protease activity was too weak to identify. Glucanase arrived the highest activity after 8 days culture, reach to 11.2 U/mL. Ligninase activity arrived the highest activity at 6th day’s culture, reach to 7.5 U/mL. The bioassay under the room temperature showed that supernatant of fermentation broth of F 10-2 had higher inhibitory activity than spore suspension against Sclerotinia sclerotiorum. Pot culture test showed percentage of the disease leaves was 4.75%, and the control effect was 86.81% treated by fermentation broth. The inhibitory ratio was decreased following the concentration reduce of fermentation broth. Under the concentration of 10 times’dilution, the control effect was 39.44% only. Series of spore concentration treating of F10-2 spore showed the lowest percentage of the disease leaves was 6.67%, and the control effect was 95.56 % after treatment by 107 spores per micro litter.
     3. According to identification method of Pitt Penicillium, combined with molecular biology method and alignment analyses, the F10-2 strain was identified as Penicillium wakmanii.
     4. Enzyme activity test of cellulase liquid showed that endoglucanase had the highest enzyme activity, followed by exoglucanase, and activity ofβ-glucosidase was the lowest. At the 4th, 6th and 8th day of fermentation, enzyme activities of endoglucanase, exoglucanase andβ-glucosidase were up to the maximum, which was 8.79 U/mL、4.30 U/mL and 1.71 U/mL, reseparately. According the producing curve of xylanase of F10-2, the quantity of enzyme was rising rapidly after 2 days’culture. The enzyme activity was trend to stability between 6 and 8 days’culture. At the 6th day of culture, activity of xylanase reached to maximum value of 2.21 U/mL. Cellulase characters of F10-2 indicated that the optimum pH was 5~6, and the optimum temperature was 55℃for enzyme action. Enzyme stability decreased when the temperature was higher than 60℃.
     5. In order to solve the secondary pollution of plant extract residue, 7 plant pesticide draffs were used as fermentation substrate and the optimized fermenting conditions were determined by using single factor method and the response surface method. The results showed that chinaberry residues can be as optimum fermentation substrate, and the optimum composition of the fermentation medium (g/L) and conditions: chinaberry residues 8 g, bran 2 g, peptone 0.14 g, KH2PO4 0.04 g, initial pH 6.2, water ration 2:1. After optimization, ,the cellulose activity of strain F 10-2 was 6.47 U·g-1, which improved by 46·38% than original culture conditions.
     6. Chinaberry residues was used as fermentation substrate, and excrete character of cellulose and change of draff in structure after degradation were explored. The result showed that Penicillium wakmanii (F10-2) can grow in bark draff of chinaberry residues, and produce cellulose degrading enzyme. The scanning electron microscope and infrared spectrum analysis showed that the draff become loosen and have arisen interspace, the relative chemical functional group change, Degradating rate of F10-2 was 42.7%, 33.96% and 24.62% against cellulose, hemicellulose and lignin, reseparately. Those indicated that the degradating of bark draff was as a result of joint action of cellulase, hemicellulase, lignin peroxidase, manganese peroxidase.
     The fermentation production of chinaberry residues after 7 day fermentation was extract with water (Product:Water=1:10 in quality), and the cellulase activity can reach to 4.08 U/mL, and spore concentration can reach to 4.3×107 per micro litter. The fermentation liquid were formulated by simply formulation study, the liquid possesses excellent antifungal activities, the 2 fold dilution of fermentation liquid had control effect of 91.20% against Sclerotinia sclerotiorum, is higher than original fermentation liquid.
     The comprehensive analysis results indicated that separated F10-2 strain can culture cellulose as unique carbon source, and even high efficiently utilize plant pesticide draff to ferment and produce high cellulose activity formulation. Those finding provided a new approach to eliminate secondary pollution of plant pesticide draff and integrated utilization of plant draff. The enzyme activity of F10-2 strain fermentation is higher and enzyme system have completed function, can be as excellent cellulase producing strain. The formulation of the strain fermentation can control Sclerotinia sclerotiorum and other important soil-borne disease efficiently by nutrition competition and mycelium growth inhibition. Furthermore, direct utilization of bio-control strain of cellulase producing for prevention and cure of important soil-boron disease is a preliminary attempt under the guide of IPM and IPP theory.
引文
操海群,岳永德,花日茂,等. 2000.植物源农药研究进展.安徽农业大学学报, (1): 40-44
    陈彪,叶红,欧阳平凯. 1999.植物纤维资源的利用.化工时刊, (8): 8-10
    陈灏,唐小树,林洁,等. 2002.不经培养的农田土壤微生物种群构成及系统分类的初步研究.微生物学报, 4(42): 478-483
    陈合,张强. 2008.菌酶共降解玉米秸秆的工艺研究.农业工程学报, 24(3): 270-273
    陈丽华,张爱香,韬朱,等. 2008.禾谷丝核茵拮抗细菌的鉴定及其拮抗产物分析.植物病理学报, 38(1): 88-95
    陈庆云,王云海. 2002.农作物秸秆综合利用新技术.再生资源研究, (2): 33-35
    陈嵘,关珊珊,吕国忠,等. 2008.产蛋白酶毛霉菌株的初步筛选.微生物学杂志, 28(1): 101-104
    陈士云,杨宝玉,高梅影,等. 2005.一株抑制油菜核盘菌菌核形成的解淀粉芽孢杆菌.应用与环境生物学报, 11(3): 373-376
    陈侠甫,阎维公. 1998.应用纤维素酶治疗马牛胃肠病.中国兽医杂志, (2): 32-33
    迟乃玉,张庆芳,刘长江,等. 2000.纤维素酶高产菌株最适发酵条件的研究.沈阳农业大学学报, 31(4): 380-382
    董锡文,杜春梅,林建强,等. 2006.响应面法优化斜卧青霉Ju-A10产CMCase的条件.微生物学通报, 33(3): 31-35
    段金柱,曹淡君. 2000.固体发酵与液体发酵生产纤维素酶产率与催化性能比较.粮食与饲料工业, 3: 24-26
    方中达. 1979.植病研究方法:农业出版社:
    高春生,程会昌,霍军,等. 2006b.纤维素酶在鲤鱼饲料中的应用试验.粮食与饲料工业, 9: 32-33
    高春生,范光丽,李建华,等. 2006a.纤维素酶对草鱼生长性能和饲料消化率及体成分的影响.中国农学通报, 22(10): 473-475
    高培基,曲音波,王祖农. 1992.绿色木霉产生的葡萄糖苷酶类.生物化学杂志, 8: 735
    葛红莲,赵红六,郭坚华. 2004.植物土传病害微生物农药的研究开发进展.安徽农业科学, 32(1): 153-155
    何迎春,高必达. 2000.立枯丝核菌的生物防治.中国生物防治, 16(1): 31-34
    胡俊,刘正坪,周洪友,等. 2006.向日葵菌核病生防放线菌的分离筛选及拮抗作用的初探.华北农学报, 21(1): 96-99
    纪丽莲,张强华,崔桂友. 2004.芦竹内生真菌F0238对植物病原菌的拮抗作用.微生物学通报, 31(2): 82-86
    贾学文,闫伟,白淑兰,等. 2007.根际土壤微生物最佳分离条件筛选研究.华北农学报, 22(6): 147-151
    江木兰,赵瑞,胡小加,等. 2007.油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用.植物病理学报, 37(2): 192-196
    康振生. 1996.植物病原真菌的超微解构.北京:中国科学技术出版社: 1-29
    李晶晶,张拥华,陈巧云,等. 2007.粉红黏帚霉67-1菌株寄生核盘菌菌核的酶学动态研究菌物研究, 5(2): 107-109
    李丽丽. 1994.世界油菜病害研究概述.中国油料, 16(1): 79-81
    李新社,陆步诗,黎小武. 2007.曲酒丢糟培养白地霉生产富硒饲料蛋白的研究.酿酒科技, 8(158): 144-145, 149
    廖晓兰,罗宽. 2000.油菜花上细菌的分离及其对菌核菌的拮抗作用.湖南农业大学学报, 16: 296-298
    刘东波,高培基. 1990.纤维素诺卡氏菌的一个新菌株.微生物学报, 30(1): 70-72
    刘娜,周宝利,李轶修,等. 2008.茄子/番茄嫁接植株根系分泌物对茄子黄萎病菌的化感作用.园艺学报, 35(9): 1297-1304
    刘淑娟,文成敬. 2005.防治油菜菌核病的木霉和粘帚霉菌株筛选及生防的初报.四川农业大学学报, 23(1): 33- 38
    鲁素芸. 1993.植物病害生物防治学.北京:北京农业大学出版社
    陆燕华,刘忠. 2005.纤维素酶及其在造纸工业中的应用.西南造纸, 34(4): 40-42
    罗珊,夏黎明,林建平,等. 1998.纤维素酶水解及同时糖化和乳酸发酵过程动力学.化工学报, 49(2): 162-168
    马炳田,文成敬. 2002几种核盘菌菌核重寄生真菌生物防治潜能的研究.中国农学通报, 18(6): 58-63
    马桂珍,高会兰,张拥华,等. 2007.粘帚霉对核盘菌菌核的寄生作用及其细胞壁降解酶活性分析吉林农业大学学报, 29(6): 628-632
    马艳,常志州,赵江涛,等. 2006a.一株疫病拮抗青霉P.st10菌株的抗菌活性及其对辣椒疫病的盆栽防效.中国生物防治, 22(3): 239-243
    马艳,常志州,赵江涛,等. 2006b.一株疫病拮抗青霉P.st10菌株的抗菌活性及其对辣椒疫病的盆栽防效.中国生物防治22(3): 239-243
    毛连山,余世袁. 2006.木聚糖酶在纸浆漂白中应用的研究现状.中国造纸学报, 21(3): 93-98
    猛杨,宗兆锋,郭小芳,等. 2005.生防菌FO47和FO47B10的应用研究.西北农林科技大学学报(自然科学版), 33(5): 57-60
    曲音波,高培基,王祖农. 1984.青霉的纤维素酶抗降解物阻遏突变株的选育.真菌学报, 3(4): 238-243
    邵碧英,吴祖建,林奇英. 2001.烟草花叶病毒弱毒株筛选及交互保护作用.福建农业大学学报, 30(3): 297-303
    邵红涛,许艳丽. 2007.具有生防能力的木霉菌(Trichoderma spp.)与两株大豆根腐病病原菌(Fusarium oxysporum, Rhizoctonia solani)对碳、磷、铁的竞争研究.黑龙江大学自然科学学报, 24(1): 26-29
    石军,陈安国. 2001.木聚糖酶生产与应用研究进展.饲料工业, 22(9): 40-43
    史占全,蒋林树,叶宏伟. 2000.稻草加酶青贮饲喂育成牛的效果研究.中国奶牛, (5): 24-26
    宋安东,张百良,吴坤,等. 2005.杂色云芝产木质纤维素酶及对稻草秸秆的降解.过程工程学报, 5(4): 414-419
    隋晓播,王超,永吉,等. 2005.均匀设计优化纤维素酶解提取三七工艺的研究.中医药学报, 33(4): 8-10
    孙启利,陈夕军,童蕴慧,等. 2007.地衣芽孢杆菌W10抗菌蛋白对油菜菌核病菌的抑制作用及防病效果.扬州大学学报(农业与生命科学版), 28(3): 82-86
    唐家斌,马炳田,王玲霞,等. 2002.用木霉、类木霉对水稻纹枯病进行生物防治的研究.中国水稻科学, 16(1): 63-66
    田波. 1985.植物病毒生物防治途径的探讨.生物防治通报, (2): 41-45
    万海清,何泽超,杨晓燕,等. 1999.霉菌利用纤维素生产SCP的研究.饲料研究, (6): 10-13
    王彩华,余惠生,付时雨. 1999.贝壳状革耳菌和黄孢平革菌固体培养酶系比较.微生物学报, 39(2): 127-131
    王宏志,喻春皓,高钧,等. 2007.酶法提取黄岑中黄岑素、汉黄岑素.中药材: 851-854
    王菁莎,王颉,刘景彬. 2005.康宁木霉固体发酵秸秆生产纤维素酶的研究.纤维素科学与技术, 13(4): 26-31
    王沁,赵学慧. 1992.稻草酶水解糖生产单细胞蛋白(SCP)的研究.饲料研究, (4): 2-4
    王未名,陈建爱,孙永堂. 1999.六种土传病原真菌被木霉抑制作用机理的初步研究.中国生物防治, (3): 142-143
    王希国,杨谦. 2008.梅林青霉Z18纤维素酶降解纤维素的研究.哈尔滨工业大学学报, 40(6): 919-922
    王岩岩,李文娟. 2008.纤维素酶提取陈皮黄酮的工艺条件.食品与生物技术学报, 27(2): 71-74
    王玉万,徐文玉. 1987.木质纤维素固体基质发酵物中半纤维素、纤维素和木质素的定量分析程序.微生物学通报, 14(2): 81-84
    王悦,肖旭萍,李秉超. 2007.桔皮中提取黄酮类化合物方法的比较研究.食品研究与开发, 28(4): 73-76
    吴创之,马隆龙. 2003.生物质能现代化利用技术:化学工业出版社
    吴健胜,王金生. 2000.解毒菌株W-1对油菜菌核病的防病作用及初步鉴定.西南农业大学学报, 22(6): 487-489
    吴士良,钱晖,周亚军. 2004.生物化学与分子生物学试验教程.北京:科学出版社
    夏黎明,庆萧,余世袁. 1994.碳源对固定里氏木霉合成纤维素酶的影响.纤维素科学与技术, 2: 72-77
    夏振强,暴增海,超周,等. 2009.抗真菌海洋细菌L19菌株的几种胞外酶活性测定.河南农业科学, (7): 74-77
    徐坚平,刘均松,孔维,等. 1995.利用秸秆类物质进行微生物共发酵生产单细胞蛋白.微生物学通报, 22(4): 222-225
    薛艳林,白春生,玉柱,等. 2007.乳酸菌和纤维素酶制剂对小麦秸黄贮饲料品质的影响.中国饲料, 15: 38-40
    阎伯旭,高培基. 1995.纤维素酶分子结构与功能研究进展.生命科学, 7: 22-25
    晏立英,乐聪,宇俊,等. 2005.油菜菌核病拮抗细菌的筛选和高效菌株的鉴定.中国油料作物学报, 27(2): 55-58,61
    杨吉霞,蔡俊鹏,祝玲. 2005.纤维素酶在中药成分提取中的应用.中药材, 28(1): 64-67
    杨金水,袁红莉,陈文新. 2004.褐煤降解真菌-青霉菌P6的胞外酶研究.中国环境科学, 24(1): 24-27
    杨水英,张学昆,李加纳,等. 2003.土壤拮抗细菌对油菜菌核病菌的抑制作用研究中国农学通报, 19(1):
    姚粟,李辉,程池. 2006. 23株曲霉属菌种的形态学复核鉴定研究.食品与发酵工业, 32(12): 37-43
    叶克林,陈广琪,于文吉. 1996.国内外城市废弃植物纤维材料的利用.世界林业研究:勇强. 2002.植物纤维资源高效生物利用.林业科技开发, 16(3): 6-9
    郁红艳,曾光明,黄国和,等. 2005.简青霉Penicillium simplicissimum木质素降解能力.环境科学, 26(2): 167-171
    袁红莉,蔡亚岐,周希贵,等. 1999.降解褐煤菌种选育及降解产物研究.应用与环境生物学报, 5: 21-24
    袁秀英,白红霞,白玉明,等. 2006.杨树内生真菌的分离和拮抗生防菌的筛选.林业科学研究, 19(6): 713-717
    翟金玲,张鹏,宋淑霞,等. 2008.我国植物源农药研究现状.河北林业科技, 3: 34-35
    张龙翔,张庭芳,李令媛. 1997.生化试验方法和技术.北京:高等教育出版社:
    张瑞福,崔中利,李顺鹏. 2004.土壤微生物群落结构研究方法进展.土壤, 36(5): 476-480
    张武岗,冯俊涛,方香玲,等. 2009.放线菌19G-317菌株的鉴定及其抑菌活性研究.浙江大学学报(农业与生命科学版), 35(3): 243-248
    张兴,马志卿,李广泽. 2002.试谈生物农药的定义和范畴.农药科学与管理, 23(1): 32-36
    张秀华,李国么,梁锡娴,等. 1980.植物病毒弱毒系及应用(1)烟草花叶病毒株弱毒系的诱变和性质研究.植物病理学报, 10(1): 49-53
    张诒仙. 2006.芒果炭疽病生物防治研究瓦克青霉(T-141株)的防治效果.世界热带农业信息, 44(4): 24-25
    赵昕,曲音波,高培基,等. 1989.利用亚硫酸铵法制浆废液废渣生产纤维素酶的研究.工业微生物, 19(5): 15-19
    赵昕,曲音波,高培基,等. 1993.抗黑液毒性的纤维素酶产生菌选育的探讨.纤维素科学与技术, 1(2): 28-32
    郑立颖,魏彦明,陈龙. 2005.纤维素酶在黄芪有效成分提取中的应用.甘肃农业大学学报, (1): 94-96
    周乐聪. 1994(增刊).油菜菌核病流行与防治的研究概况.中国油料: 101-108
    周怡,杨守志,薛茂杰,等. 1992.由纤维素制取单细胞蛋白的反应机理模型.化工学报, 43(4): 395-400
    朱凯,汪洋,王传槐. 2006.高活性生物复合酶废纸脱墨的研究.中华纸业, 27(11): 29-32
    庄馥萃. 2001.植物纤维和纤维植物.生物学通报, 36(11): 16-18
    Abe S I, Takagi M. 1991. Simultaneous saccharification and fermentation of cellulose to lactic acid. BioresoureTechnol, 37: 93-96
    Ait M S, Hadjadj A. 1990. Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis. Radiat Phys Chem, 35: 451-455
    Akhtar M. 1994. Biochemical pulping of aspen wood chips with three strains of ceriporiopsis subvermispora. Holzforschung, 48: 199-202
    Arshad M, Frankenberger W T J. 1998. Plant growth-ergulating substances in the rhizosphere:microbial production and functions. Adv Agorn, 62: 145-151
    Bajpai P. 1999. Applications of enzymes in the pulp and paper industry. Biotechnol prog, 15: 147-157
    Baker R. 1991. Diversity in biological control. Crop Protection, 10: 85-94
    Baker R A, Bruemmer J H. 1989. Quality and stability of enzymically peeled and sectioned citrus fruit, In: Nagy S, Attaway JA, editors. Citrus Nutrition and Quality. Washington: American Chemical Society:
    Baker R A, Wicher L. 1996. Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol, 7: 279-284
    Barlaz M A, Ham R K, Schaefer D M. 1989. Mass-balance analysis of anaerobically decomposed refuse. J Environ Eng, 115: 1088-1102
    Benitez T, Limon C, Delagado J J, et al. 1998. Glucanolytic and other enzymes and their genes. London: Taylor and Francis: 101-127
    Bernalier A, Fonty G, Bonnemoy F, et al. 1992. Degradation and Fermentation of Cellulose by the Rumen Anaerobic Fungi in Axenic Cultures or in Association with Cellulolytic Bacteria. Curr Microbiology, 25: 143-158
    Bhat M K, Bhat S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv, 15: 583-620
    Biswas K K, Chitreswas S, Sen C. 2000. Management of stem rot of groundnut caused by Sclerotium rolfsii through Trichoerma harzianum. Indian Phytopathology, 53: 290-295
    Blakeman J P. 1978. Microbial competition for nutrients and germination of fungal spores. Ann Appl Biol, 89: 151-155
    Bohar G A. 2004. potential success story in biological control: Coniothyrium minitans. Novenyvedelem, 40: 121-124
    Boland G J, Hall R. 1994. Index of plant hosts of Scleriotinia sclerotiorum. Can J Plant Pathol, 16: 93-108
    Brown H L, Bruce A, Staines H J. 1999. Assessment of the biocontrol potential of a Trichoderma viride isolates part II: Protection against soft rot and basidiomycete decay. International Biodeterioration and Biodegradation, 44: 225-231
    Buchert J, Oksanen T, Pere J, et al. Applications of Trichoderma reesei enzymes in the pulp and paper industry. In: Teichoderma & Gliocladium enzymes, biological control and commercial applications London & Bristol: Taylor & Francis Ltd:
    Caldini C, Bonomi F, Pifferi P G, et al. 1994. Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine. Enzyme Microb Technol, 16: 286-291
    Camarero S, Galletti G C, Martinez A T. 1994. Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol, 60: 4509-4516
    Carpita N C, Gibeaut D M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant Journal, 3: 1-30
    Chabal D S. 1982. Growth characteristics of microorganisms in solid state fermentation for upgrading protein values of lignocelluloses and cellulase production, In: Blanch HW and Popoutsakt ET (ed) Foundation of biochemical engineering:Kinetics and thermodybamics in biological system. Washington Ameriacan Chemical Society:
    Chet I. 1987a. Trichoderma-application, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. In: Innovative approaches to plant disease control. New York: John Wiley and Sons: 137-160
    Chet I. 1987b. Trichoderma : application, mode of action ,and potential as a biocontrol agent of soilborne plant pathogenic fungi. In:Chet I (ed) . Innovative approaches to plant disease control. New York:Wiley:
    Chet I, Baker R. 1981. Isolation and biocontrol potential of Trichoderma hamntum from soil naturally suppressive to Rhizoctonia solani. Phytopathology, 71: 286-290
    Cheung S, Anderson B. 1996. Ethanol Produetion from wastewater solids. EWater Environ Teehnol, 8: 55-60
    Childs R E, Bardsley W G. 1975. The steady-state kinetics of peoxidase with 2, 2-azino-di-(3-ethyl-benzthiazoline-6-Sulphonic acid) as chromogen. Biochem J, 145: 93-103
    Cho K M, Yoo Y J, Kang H S. 1999.δ-Integration of endo/exo-glucanase and ?-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol, 25: 23-30
    Chosdu R, Hilmy N E, Erlinda T B, et al. 1993. Radiation and chemical pretreatment of cellulosic waste. Radiat Phys Chem, 42: 695-698
    Clarkson W W, Xiao W. 2000. Bench-scale anaerobic bioconversion of newsprint and office paper. Water Sci Technol, 41: 93-100
    Cook R J, Thomashow L S, Weller D M, et al. 1995. Molecular mechanisms for biological control of Plant Pathogens. PhytoPathology, 31: 53-80
    Couteaucdier Y. 1992. Competition for carbon in soil and rhizosphere, mechanism involved in biological control of Fusarium wilts. In: Tjamos EC, PapavizasAC, Cook RJ, eds.Biological control of plant diseases. New York: Plenum Press:
    Cowan W D. 1996. Animal feed. In: Godfrey T, Weat S, editors, Industrial Enzymology. 2 nd ed. London: Macmillan Press:
    Davet P. 1987. Criteria for selectingTrichoderma clones antagonistic to sclerotia fungi in soil. Bulletin OEEP, 17(4): 535-540
    Davies J E. 1990. What are antibiotics Archaic functions for modern activities. Mol Microbiol, 4: 1227-1232
    Deepak P, Alok A. 2007. Identification, ligninolytic enzyme activity and decolorization potential of two fungi isolated from a distillery effluent contaminated site. Water, Air& SoilPollution(S0049-6979), 183: 165-176
    Deshpande M V, Eriksson K E, Pettersson L G. 1984. An assay for selective determination of exo-1,4,-β-glucanases in a mixture of cellulolytic enzymes. Analytical Biochemistry, 138: 481-487
    Dobbelaere S, Croonenborghs A, Thys A. 1999. Analysis and relevance of the phytostimulatory effect of genetically modified Azospirillum brasilienxe strains upon wheat inocu lation. Plant soil, 212: 155-164
    Dobbelaere S, Croonenborghs A, Thys A, et al. 2001. Responses of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol, 28: 871-879
    Duenas R, Tengerdy R P, Gutierrez-Correa M. 1995. Cellulase production by mixed fungi in solid state fermentation of bagasse. World J Microbiol Biotechnol, 11: 333-337
    Duiff B J, Pouhair D, Olivain C, et al. 1998. Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescensWCS 417r and by non-pathogenic Fusarium oxysporum Fo47. Eur JPlant Pathol, 104: 903-910
    Durand A, Pichol P, Desgranges C. 1988. Approaches to Kla measurements in solid-state fermentation. Biotechnol Technique, 2: 11-16
    Elad Y. 2000. Biological control of foliar pathogens by means of Trichoderma harzianum and potentialmodes of action. Crop Protection, 19: 709-714
    Elad Y, Chet I, Boyle P, et al. 1983. Parasitism of Trichodrema spp. on Rhizoctonia solina and Sclerotium rolfsii scanning electron microscopy and fluorescence microscopy. Phytopathogy, 73: 85-88
    Emtiazi G, Nahvi I. 2000. Multi-enzyme production by cellulomonas sp. grown on wheat straw. Biomass and Bioenergy, 19: 31-37
    Epavier A, Alabouvette C. 1994. Use of ELISA and GUS-transformed strains to study competition between pathogenic and nonpathogenic Fusarium oxysporum for root colonization. Biocontrol Sic Technol, 4: 35-47
    Esterbauer H, Steiner W, Labudova I, et al. 1991. Production of Trichoderma cellulase in laboratory and pilot scale. Biores Technol, 36: 51-65
    Fang J G, Tsao P H. 1995. Efficacy of Penicillium funiculosum as a biological agent against Phytophthora root rots of azalea and citrus. Phytopathology, 85: 871-878
    Filippov N A. 1989. The present state and future outlook of biological control in USSR. Acta Entomological Fennia, 53: 11-18
    Fuchs J G, Locloz M, Defago G. 1997. Nonpathogenie Fusarium oxysporum strain Fo47 induces resistance to Fusarium wilt in tomato. Plant Disease, 81: 492-496
    Fuchs J G, Moenne-Loccoz J G, Defago G. 1999. Ability of nonpathogenic Fusarium oxysporum Fo47 to protect tomato against Fusarium wilt. Biol Control, 14: 105-110
    Galante Y M, De-Conti A, Monteverdi R. 1998. Application of Trichoderma enzymes in textile industry. In: Harman GF, Kubicek CP, editors. Trichoderma & Gliocladium enzymes, biologicalcontrol and commercial applications London: Taylor & Francis:
    Gaudin V, Vrain D, Jouanin L. 1994. Bacterial genes modifying hormonal balance in plant. Plant Physiol Biochem, 32: 11-29
    Gerlagh M, Geijn H M G-v d, Hoogland A E, et al. 2003. Quantitative Aspects of Infection of Sclerotinia sclerotiorum Sclerotia by Coniothyrium minitans– Timing of Application, Concentration and Quality of Conidial Suspension of the Mycoparasite Eur J Plant Pathol, 109: 489-502
    Ghisalberti E L, Rowland G Y. 1993. Antifungal metabolites from Trichoderma harzianum. J Nat Prod, 56: 1799-1804
    Glick B R, Jacobson C B, Schwarze M M K, et al. 1994. 1-aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacteria Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Micorbiol, 40: 911-915
    Gossen B D, Rimmer S R, Holley J D. 2001. First report of resistance to benomyl fungicide in Sclerotinia sclerotiorum. Plant Disease, 85: 1206
    Graham H, Lowgren W, Pettersson D, et al. 1988. Effect of enzyme supplementation on digestion on digestion of a barley/pollard based peg feed. Nutrition report Intenational, 38: 1073-1079
    Grant T J, Costa A S. 1951. A mild strain of the tristeza virus of citrus. Phytopathology, 41: 114
    Hadar Y, Kerem Z, Gorodecki B. 1993. Biodegradation of lignocellulosic agricultural waste by Pleurotus ostreatus. J Biotechnol, 30: 133-139
    Haran S, Schickler H, Chet I. 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology, 142: 2321-2331
    Hatakka A. 1994. Lignin-modifying enzymes from selected white-fungi: Production and role in lignindegradation. FEMS Micro Rev, 13: 125-135
    Henning J, Tomy E, Johan B, et al. 2003. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianumIBT 20888. Enzyme Microb Technol, 32: 851-861
    Hiroyuki W, Khadar V, Michael H G. 1992. Manganese(II)Oxidation by Manganese Peroxidase from the Basidiomycete Phanerochaete Chrysosporium. The Journal of Biological Chemistry, 267: 23688-23694
    Holtzapple M T, Humphrey A E. 1984. Effect of organosolv pretreatment on the enzymatic hydrolysis of poplar. Biotechnology and Bioengineering 26: 670-676
    Hong J, Tamaki H, Akiba S, et al. 2001. Cloning of a gene encoding a highly stable endo-β-1,4-glucanase from Aspergillus niger and its expression in yeast. J Biosci Bioeng, 92: 434-441
    Huang H C. 1980. Control of Sclerotinia wilt of sunflower hyperparasite. Can J Plant Pathol, 2: 26-32
    Huang H C, Bremer E, KHynes R, et al. 2000. Foliar application of fungal biocontrol agents for the control of white mold in dry bean caused by Sclerotinia sclerotiorum. Biol Control, 18: 270--276
    Humpf H U, Schrier P. 1991. Bound aroma compounds from the fruit and the leaves of Blackberry (Rubus laciniata L.). J Agric Food Chen, 39: 1830-1832
    Hutton P, Szuhay D, Kough J, et al. 2000. Biopesticide Registration Action Document Bacillus subtilis Strain QST 713(PC Code 006479)
    http://www.epa.gov/oppbppd1/biopesticides/ingredients/tech_docs/brad_006479.pdf [2010-01-06]
    Ikeda Y, Park E Y, Okuda N. 2006. Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus nige. Bioresource Technology, 97: 1030-1035
    Ingram L O, Gomez P F, Lai X, et al. 1998. Metabolic engineering of baeteria for ethanol Produetion. Bioteehnol Bioeng, 58: 204-212
    Jenkinson D S, Powlson D S. 1976. The effect of biocidal treatments on metabolism in soil V.Amethod for measuring soil biomass. Soil Biol Biochem, 8: 179-188
    Kang S W, Park Y S, Lee J S, et al. 2004. Production of celluloses and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass. Bioresource technology, 91: 153-156
    Katrib F, Chambat G, Joseleau J P. 1992. Effect of pretreatment of poplar wood upon enzymatic saccharification. J Wood Chem Technol, 12: 355-366
    Keller F A, Hamilton J E, Nguyen Q A. 2003. Microbial Pretreatment of Biomass Potential for Reducing Severity of Thermo-chemical Biomass Pretreatment. Appl Biochem Biotechnol, 105: 27-41
    Kenyon W J, Esch S W, Buller C S. 2005. The curdlan-type exopolysaccharide produced by Cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation. Antonie van Leeuwenhoek, 87: 143-148
    Koch E. 1999. Evaluation of commercial products for microbial control of soil-brone plant diseases. Crop Protection, 18: 119-125
    Kortemaa H, Pennanen T, Smolander A, et al. 1997. Distribution of Antagonistic Streptomyces griseoviridis in Rhizosphere and Non-rhizosphere. Sand JPhytopathology, 145: 137-143
    Krishna S H, Chowdary G V. 2000. Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. JAgric Food Chem, 48: 1971-1976
    Kubicek C P. 1982.β-glucosidase Excretion by Trichoderma pseudokoningii Correlation with Cell Wall Bound ?-1,3-glucanase Activities. Arch Microbiol, 132: 349-354
    Kung L J, Kreck E M, Tung R S, et al. 1997. Effects of a live yest culture and enzymes on in vitro ruminalfermentation and milk production of dairy cows. J Dairy Sci, 80: 2045-2051
    Laborda F, Monistrol I F, Luna N, et al. 1999. Processes of liquefaction/solubilization of Spanish coals by microorganisms. Appl Microbiol Biotechnol, 52: 49-56
    Lahdenpera M L. 1987. The control of Fusarium wilt on carnation with a Streptomyces preparation. Acta Hortic, 216: 85-92
    Lakshmikant. 1990. Cellulose degradation and cellulase activity of five cellulolytic fungi. World J Microbiol Biotechnol, 6: 64-66
    Larena I, Melgarejo P, Cal A D. 2002. Production, survival, and evaluation of solid-substrate inoculate ofPenicillium oxalicum,a biocontrol agent againstFusariumwilt of tomato. Phytopathology, 92: 863-869
    Leatham G, Myers G, Wegner T. 1990. Biochemical pulping of aspen chips:energy savings resulting from different fungal treatment. Tappi J, 73: 197-200
    Lemanceau P, Alabouvette C. 1991. Biological Control of Fusarium diseases by fluorescent Pseudomonas and nonpathogenie Fusarium. Crop Protection, 13: 279-286
    Lemanceau P, Bakker P, De-Kogel W J, et al. 1993. Antagonistic effect of nonpathogenic Fusarium oxysporum stain Fo47 and pseuclobactin 358 upon pathogenic Fusarium oxysporum f . sp. dianthi. Appl Environ Microbiol, 59: 74 - 82
    Lewis G E, Hunt C W, Sanchez W K, et al. 1996. Effect of directfed fibrolytic enzymes on the digestive characterstics of a forage-based diet fed to beef steers. J Animal Sci, 74: 3020-3028
    Li X. 1997. Streptomyces cellulolyticus sp. nov., a New Cellulolytic Member of the Genus Streptomyces. Int J Syst Bacteriol, 47(2): 443-445
    Li Y H, Ding M, Wang J, et al. 2006. A novel thermoacidophilic endoglucanase, Ba-EGA, from a new cellulose-degrading bacterium, Bacillus sp. AC-1. Appl Microbiol Biotechnol, 70: 430-436
    
    Liu C, Liu Y, Liao W, et al. 2003. Application of statisticaly-based experimental designs for the optimization of nisin production from whey. Biotechno Letters, 25(11): 877-882
    Lonsane B K, Castaneda G S, Raimbaul M, et al. 1992. Scale-up strategies for solid state fermentation systems. Process Biochemistry, 27(5): 259-273
    Lorito M, Farkas V, Rebuffat S, et al. 1996. Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. JBacteriol, 178: 6382-6385
    Lorito M, Hayes C K, Pietro A D, et al. 1993. Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet, 24: 349-356
    Lorito M, Hayes C K, Zoina A, et al. 1994. Potential of genes and gene products fromTrichoderma sp. and Gliocladium sp.for the development of biological pesticides. Mol Biotechnol, 2: 209-217
    Lumsden R D, Locke J C. 1989. Biological control of damping-off caused by Pythiumultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathogy, 79: 361-366
    Lumsden R D, Ridout C J, Vendemia M E, et al. 1992. Characterization of major secondary metabolites produced in soilless mix by a formulated strain of the biocontrol fungus Gliocladium virens. Can J Plant Pathol, 38: 1274-1280
    Lynd L R, Weimer P J, Zyl W H, et al. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol Biol Rev, 66: 506-577
    Mandel Q, Baker R. 1991. Mechanisms involved in biological control of Fusarium wilt on cucumberwith strains of non-pathogenic Fusarium oxysporum. Phytopathogy, 81(462-469):
    Mandels M, Andreotti R, Roche C. 1976. Measurement of saccharifying cellulose. Biotechnology and Bioengineering Symposium, 6: 21-33
    Mandels M, Reese E T. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacterial, 73: 263-278
    Martins L F, Kolling D, Camassola M, et al. 2008. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technol, 99: 1417-1424
    Mathivanan N, Srinivasan K, Chelliah S. 2000. Field evaluation of Trichoderma viride Pers. Ex. S. F. Gray and Pseudomonas fluorescence Migula against foliar diseases of groundnut and sunflower. J Biol Contl, 14: 31-34
    McCarter J P, Withers S G. 1997. Mechanisms of enzymatic glycoside hydrolysis. Curr Po Struct Biol, 4: 885~892
    Miller G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry, 31: 426-428
    Mochizuki D, Miyahara K, Hirata D, et al. 1994. Overexpression and secretion of cellulolytic enzymes by b-sequence-mediated multicopy integration of heterologous DNA sequences into the chromosomes of saccharomyces cerevisiae. J Ferment Bioeng, 77: 468-473
    Moiser N, Wyman C, Dale B. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol, 96: 673-686
    Morii H, Nakamiya K, Kinoshita S. 1995. Isolation of a lignin-decolorizing bacterium. J Ferment Bioeng, 80: 296-299
    Nakasaki K, Akakura N, Adachi T, et al. 1999. Use of wastewater sludge as a raw material for Produetion of L-lactic aeid. Environ Sci Teehnol, 33: 198-200
    Noe P, Chevalier J, Mora F, et al. 1986. Action of enzymes in chemical pulp fibres. Part II:enzymatic beating. J Wood Chem Techonl, 6: 167-184
    Ogana K. 1983. Biological control of fusarium wilt of sweet potato with cross- protection by nonpathogenic Fusarium oxysporium. Phytopathology, 73: 463-469
    Pabst A, Barron D, Etievant P, et al. 1991. Enzymetic hydrolysis of bound aroma constituents from raspberry fruit pulp. J Agric Food Chem, 39: 173-175
    Pandey A. 1992. Recent developments in solid-state fermentation. Process Biochemistry, 27: 109-117
    Paulitz T C. 2001. Belanger R R.Biological control in greenhouse systems. Annu Rev Phytopathol, 39: 103-133
    Petita K E, Mondeguerb F, Roquebertc M F, et al. 2004. Detection of griseofulvin in a marine strain of Penicillium waksmanii by ion trap mass spectrometry. Journal of Microbiological Methods, 58(1): 59-65
    PhiliPPidis G P, Smith T K, Wyman C E. 1993. Study of the enzymatic hydrolysis of cellulose for Production of fuel ethanol by the simultaneous saccharifieation and fermentation Proeess. Biotechnol Bioeng, 41(9): 846-853
    Pitt J I. 1988. A laboratory guide common penicillium species. Australia: CSIRO, Division of Food Research Sydney.Academic Press:
    Pommier J C, Goma G, Fuentes J L, et al. 1990. Using enzymes to improve the process and the productquality in the recycled paper industry. Part 2: industrial applications Tappi J, 73: 197-202
    Postma J, Rattink H. 1992. Biological control of Fusarium wilt of carnation with anonpathogenic isolate of Fusarium oxysporum. Can J Bot, 70: 1199-1205
    Postma J, Willemsen-de K M, Rattink H, et al. 2001. Disease suppressive soilless culture systems:charactetization of its microflora. Acta Hortic, 306: 66-76
    Poutanen K. 1997. Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol, 8: 300-306
    Prasad R D, Rangeshwaran R. 2000. An improved medium for mass production of the biocontrol fungus Trichoderma harzianum. Journal of Mycology and Plant Pathology, 30(2): 233-235
    Raeder U, Broda P. 1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiol, 1: 17-20
    Ram D, Kusum M, Lodha B, et al. 2000. Evaluation of resident biocontrol agents as seed treatments against ginger rhizome rot. Indian Phytopathology 53: 450-454
    Rao A V, Sethunathan N. 1974. Degradation of Parathion by Penicillium waksmani Zaleski Isolated from Flooded Acid Sulphate Soil Arch Microbiol, 97: 203--208
    Rapp P, Grote E, F W. 1981. Formation and location of 1,4-beta-glu-canases and 1,4-beta-glucosidases fromPenicillium janthinellum. Appl Environ Microbiol, 41: 857-866
    Rattink H. 1992. Biological control of Fusarium wilt disease of carnation by a non-pathogenic isolate of Fusarium oxysporum. Acta Hortic, 307: 37-42
    Reese E T, Mandel M. 1996.β- glucanase sother than cellulose. Methods in EnzymologyⅧ, 104: 602- 607
    Roose-amsaleg C L, Garnier-Sillam E, Harry M. 2001. Extraction and purification of microbial and from soil and sediment samples. Applied Soil Ecology, 18: 47-60
    Sakon J, Adney W S, Himmel M E, et al. 1996. Crystal structure of thermostable family 5 endocellulase E1 from Acidothermus cellulolyticus in complex with cellotetraose. Biochem J, 35: 10648-10660
    Sawada T, Nakamura Y, Kobayashi F. 1995. Effects of fungal pretreatment and steam explosion on enzymatic saccharification of plant biomass. Biotechnol Bioeng, 48: 719-724
    Saxena A, Garg S K, Verma J. 1992. Simultaneous saccharification and fermentation of waste newspaper to ethanol Bioresource Technol Biomass Bioenergy Biowastes Convers Technol Biotransform Prod Technol, 42: 13-15
    Schwarz W H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol, 56: 634-649
    Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A, et al. 1993. Only specific tobacco (Nicotiana tabacum) chitinases and ?-1,3-glucanases exhibit antifungal activity. Plant Physiol, 101: 857-863
    Simon A K. 1989. Sivasithamparan Pathogen suppession a case study of Gaeumannomyces gramlnlsvar. Soil Biol Biochem, 21: 331-337
    
    Singh H P, Singh T A. 1993. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate -solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza, 4: 37-43
    Sivan A, Chet I. 1989. The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology, 79: 1998-2003
    Solov'eva I V, Okunev O N, Vel'kov V V. 2005. The selection and properties of Penicillium verruculosummutants with enhanced production of cellulases and xylanases. Microbiology, 74: 141-146
    Swain T. 1997. Secondary compounds as protective agents. Ann Rev Plant Physiol 28: 479-501
    Tan L U L, Yu E K C, Louis-Seize G W. 1987. Inexpensive, Rapid Procedure for Bulk Purification of Cellulose-free -1,4-D-Xylanase for High Specific Activity. Biotechnol Bioeng, 30: 96-106
    Teeri T T. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol, 15: 160-167
    Theurer B, Woods W, Burroughs W. 1963. Influence of enzyme supplements on lamb fattening rations. J Anim Sci, 22: 150-154
    Thomma B P, Penninckx I A, Broekaert W F, et al. 2001. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol, 13: 63-68
    Tien M, Kirk T K. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Method in Enzymology, 161: 238-249
    Uhlig H. 1998. Industrial enzymes and their applications. New York: John Wiley & Sons:
    Van-Dijk K V, Nelson E B. 1997a. Inactivation of seed exudates stimulants of Pythiumm ultimum sporangium germination by biocontrol strain of Enterobacter cloacaeand other seed-associated bacteria. Soil Biol Biochem, 29: 331-355
    Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass. Soil Biol Biochem, 19: 703-707
    Vrije T D, Antoine N, Buitela R M, et al. 2001. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing Appl Microbiol Biotechnol, 56: 58-68
    Walsh G A, Power R F, Headon D R. 1993. Enzymes in animal feed industry. Trends Biotechnol, 11: 424-430
    Wang A Y, Brown H N, Crowley D E, et al. 1993. Evidence for direct utilization of a siderophore,ferrtioxamine B,in axenically grown cucumber. Plant Cell Environ, 16: 579-585
    Whipps J M, Davies K G. 2000. Biocontrol of plant pathogens and nematodes by microorganisms. In:(Gurr G and Wratten SD) Measures of success in biological contro 1.: Kluwer Academic 231-269
    Wood T M, Bhat K M. 1988. Methods for measuring cellulase activities. Methods in EnzymologyⅧ, 160: 87-112
    Wood T M, McCrae S I, Macfarlane C C. 1980. The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochem J, 189: 51-65
    Wood T M, Wilson C A, McCrae S I. 1994. Synergism between components of the cellulase system of the anaerobic rumen fungus Neocallimastix frontalis and those of the aerobic fungi Penicillium pinophilum and Trichoderma koningii in degrading crystalline cellulose. Appl Microbiol Biotechnol, 41: 257-261
    Zhang Q, Lo C M, Ju L K. 2007. Factors affecting foaming behavior in cellulase fermentation by Trichoderma reesei Rut C-30. Bioresource Technology, 98: 753-760

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700