废弃钻井泥浆的微生物处理效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用实验室内筛选的6株废弃钻井泥浆高效降解细菌进行小型野外现场实验,研究了废弃钻井泥浆在微生物处理作用下,土壤微生物量动态变化;泥浆一土壤一微生物混合处理体系污染指标的变化;土壤养分变化情况。结果如下:
     (1)泥浆一土壤混合体系和对照土壤中可培养的细菌、真菌和放线菌的数量均呈现先下降后上升再下降最后又上升的变化;在第Od、30d、90d、180d、270d和第360d时,泥浆一土壤混合体系中细菌和放线菌的数量均极显著地高于对照土壤,而真菌数量表现出不尽相同的差异性。
     (2)泥浆一土壤混合体系和对照土壤微生物量碳、氮也均呈现降一升一降一升的变化趋势,这与细菌、真菌和放线菌数量的变化表现出相同的规律性;在第0d、30d、90d、180d、270d和第360d时,泥浆一土壤混合体系中微生物量碳、氮均显著或极显著地高于对照土壤,分别是对照土壤的2.9-3.5倍和1.9-3.2倍。
     (3)对泥浆一土壤混合体系中微生物量碳、氮与各微生物数量的相关性分析表明,微生物量碳、氮与各微生物数量均呈正相关关系。微生物量碳、氮与细菌数量的相关性都达到了显著(P<5%);微生物量碳、氮与放线菌数量的相关性都达到了极显著(p<1%)。
     (4)采用PCR-DGGE分析了不同处理土壤细菌多样性指数和丰富度指数,结果表明,泥浆一土壤混合体系中细菌种群的多样性要高于对照,在0-360d范围内,泥浆一土壤混合体系中细菌种群的变化较大,而对照土壤中的细菌种群较稳定。(5)从Od-360d,泥浆一土壤混合体系的色度、COD、Cl-、SO42-及油类的含量随时间的推移逐渐下降,去除率分别达到48.6%、63.8%、80.5%、61.0%和74.3%;各处理土壤重金属Cd含量均达到国家土壤环境质量标准的二级标准,而Pb、Cu、Zn、Cr含量符合一级标准;泥浆一土壤混合体系种植的三叶草、黑麦草、竹子和桤木等植物,其叶片重金属Cd、Zn、Cr含量与对照土壤种植的各植物体内的含量相比,差异均不显著,而重金属Pb和Cu的含量差异显著。
     (6)在第0d、30d、90d、180d、270d和第360d时,泥浆一土壤混合体系中全氮、有机质、速效钾、碱解氮和速效磷均显著或极显著的高于对照土壤,泥浆一土壤混合体系土壤的肥力状况更有利于植物的生长。
In this paper, we carried out one small-scale field experiment to determine the degrading effect of waste drilling mud by inoculation of effective degrading bacteria. The dynamics of soil microorganisms in different treatments, variation of pollution matter concentration in mud-soil mixture system and the soil nutrient content was determined at different time. The results were as follow:
     (1) The number of cultured bacteria, fungi and actinomycetes appeared the regular variation, i.e. decreasing-increasing-decreasing, and increasing finally, both in the mud-soil mixture system and the control soil during the detection time on the 0th d, 30th d,90th d,180th d,270th d and 360th d. The number of bacteria and actinomycetes in mud-soil mixture system was significantly higher than that of the control all the time.
     (2)Both soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) showed the same regular variation as that of microbial number in the mud-soil mixture system and the control soil. SMBC and SMBN of the mud-soil mixture system was 2.9-3.5 times and 1.9-3.2 times higher than that of the control.
     (3) Correlation analysis showed that there was positive significance correlation (p<5%) between SMBC, SMBN and the bacterial number, and also the positive significance correlation was exited between SMBC, SMBN and the number of actinomycetes (p<1%).
     (4) PCR-DGGE analysis of soil uncultured bacteria showed that the diversity of bacterial populations in the mud-soil mixture system was higher than that in control soil, and the bacterial population was fluctuating in the mud-soil mixture system, but was stable in control soil on the 0th d,30th d,90th d,180th d,270th d and the 360th d.
     (5)From the 0th d to the 360th d, the content of soil elution liquid color, COD, concentration of Cl-, SO42- and oil content of soil elution liquid in the mud-soil mixture system decreased gradually, and the removal rate reached to 48.6%,63.8%, 80.5%,61.0%and 74.3%, respectively, which showed there was a good degradation effect. The content of Cd was according with the national secondary standard of environmental quality for soil, the content of Pb, Cu, Zn, Cr was according with the national primary standard. Compared with the control soil, the content of heavy metals (Cd、Zn、Cr) in Clover、Ryegrass、Bamboo and Alder leaves planting in the mud-soil mixture system had not significant difference, however, the content of Pb and Cu changed significantly.
     (6) On the 0th d,30th d,90th d,180th d,270th d and 360th d, the content of total nitrogen, organic matter, available potassium and available nitrogen in the mud-soil mixture system was significantly higher than that in the control soil. Soil fertility condition of the mud-soil mixture system was more suitable for plant growth.
引文
[1]Delgado, Antonio J., Shell Venezuela, et al. Low Temperature Distillation Technology[J]. SPE46601,1998,(6):55-58.
    [2]Arthur E L, Perkovich B S, Anderson T A, et al. Degradation of an atrazine and met olachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealer ships in Iowa[J].Water, Air and Soil Pollution,2000,119(1-4):75-90.
    [3]Bassam B J, Caetano-Anolles G. Fast ansensitive sliver staining of DNA in polyacrylam ide gels[J].Annual Biochemistry,1991,196:80-83.
    [4]Binet P, Portal J M, Leyval C. Dissipation of 3-6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass[J].Soil Biol Biochem,2000,32(14):2011-2017.
    [5]Daniel D, Emilien P, Frederic C. The influence of temperature on bacterial assem blages during bioremediation of a diesel fuel contaminated subAntarctic soil[J].Cold Regions Science and Technology,2007,48(2):74-84.
    [6]Duineveld B M, Resado A, Elsas J D, et al. Analysis of the namics of bactefial eonrmmities in the rhisophere of the chrysanthemun viadenaturing gradient gel electmphoresis and substrate utilization pattems[J].Appl.Environ.Microbiol,1998,64(12):4950-4957.
    [7]Ferguson S H, Franzmann P D, Revill A T, et al. The effects of nitrogen and water on mineralisation of hydrocarbons in dieselcontaminated terrestrial Antarctic soils[J].Cold Regions Science and Technology,2003,37(2):197-212.
    [8]Filler D M, Lindstrom J E, Braddock J F, et al. Integral biopile components for successful bioremediation in the Arctic[J].Cold Regions Science and Technology,2001,32(2):143-156.
    [9]Francova K, Mackov6 M, Macek T, et al. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants[J].Environ Pollution,2004,127(1):41-48.
    [10]Guenther T, Dornberger U, Fritsche W. Effects of ryegrass on biodegradation of hydrocarbons in soil[J].Chemosphere,1996,33(2):203-215.
    [11]Hu Q, Qi HY, Zeng JH, et al. Bacterial diversity in soils around a lead and zinc mine[J]. Journal of Environmental Science,2007,19:74-79.
    [12]Jean S.Weingarten, Michael L.Bill, Donald E. Andrews. Confinement Of Wastes Injected Below Thawed Permafrost:A 12 Year Update From The North Slope Of Alaska[J]. SPE61098, 2000,11:55-57.
    [13]Joner E J, Leyval C. Phytoremediation of organic pollutants using mycorrhizal plants:A new aspect of rhizosphere interactions[J].Agronomic,2003,23(5-6):495-502.
    [14]Kuiper I, Lagendijk E L, Bloemberg G V, et al. Rhizoremediation:A beneficial plant-microbe interaction[J].Molecular Plant-M icrobe Interactions,2004,17(1):6-15.
    [15]Laidy A. Environmental Control Drainage system upgrade and Drilling Waste disposal [J]. SPE,1996:35-819.
    [16]Lane D J, Field K G, Olsen G J, et al. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods Enzymol.1988,167:138-144
    [17]Lioyd E.Deuel, Jr., George H. Holliday. Observed Contaminant Migration from an Instrumented Reserve Pit. SPE64637,2000,11:53-59.
    [18]Louviere R J, Reddoch J A. Onsite disposal of rig-generateed waste via slurrification and annular injection[J].Drilling Conference-Proceedings,1993:737-751.
    [19]Lovell,R D, Jarvis,S C, Bardgett,R D. Soil microbial biomass and activity in long-term grassland:effects of management changes. Soil Biol. Biochem.,1995,27:969-975.
    [20]Lyle E, Nesbitt. Drilling Fluid Disposal. JPT.1981,33(12):2377-2381.
    [21]Mccarthy Kathleen, Walker Langston, Vigoren Leah, et al. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an Arctic site [J].Cold Regions Science and Technology, 2004,40(1-2):31-39.
    [22]Miya R K, Firestone M K. Phenanthrene-degrader community dynamics in rhizosphere soil from a common annual grass[J].Journal of Environmental Quality,2000,29(2):584-592.
    [23]Muyzer G, Ferris M J, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined Populations inhabiting a hot spring microbial mat community [J]. Appl Environ Microbiol,1996,62:340-346.
    [24]Nichols T D, Wolf D C, Rogers H B, et al.Rhizosphere microbial populations in contaminated soils[J].Water, Air and Soil Pollution,1997,95(1-4):165-178.
    [25]Sorheim R. Oily Drill Cuttings-Form Waste to Resource.SPE61273,2000, (6):66-72.
    [26]Reilley K, Banks M K, Schwab A P. Dissipation of polynuclear aromatic hydrocarbons in the rhizosphere[J].Environ Qual,1996,25:212-219.
    [27]Rooney-Varga J N, Anderson R T, Fraga J L, et al.Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer[J].Appl Environ Microbiol,1999,65(7):3056-3063.
    [28]Tamarin A I, Palchyonok Ct I, Gorgunov K E. Heat and Mass Transfer of Model Particle in a Fluidized Bed of Inert Material[J].Heat Transfer Soviet Research,1985,17(2):136-140.
    [29]Thomas Hart, Jimmy Reid. Method of processing drilling mud earth-boring operation [J]. Environment International,1995,21(3):17-20.
    [30]Tuncan M, Tuncan A, Koyuncu H. Stabilization of petroleum contaminated drilling wastes by additives [J]. Proceedings of the International Offshore and Polar Engineering Conference, 1997:950-953.
    [31]Walworth J L, Woolard C R, Harris K C. Nutrient amendments for contaminated peri-glacial soils:Use of cod bone meal as a controlled release nutrient source [J].Cold Regions Science and Technology,2003,37(2):81-88.
    [32]Wilmotte A, Van der Auwera G, De Wachter R. Structure of the 16S ribosomal RNA of the thermophilic cynobacterium Chlorogloeopsis HTF ('Mastigocladus laminosus HTF') strain PCC7518, and phylogenetic analysis. FEBS Lett.1993,317:96-100.
    [33]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [34]毕道金.废钻井液对环境影响分析及处理方法[M].油气田环境保护,2000,10(3):27-29.
    [35]蔡利山,刘四海.石油钻井环境保护技术综述[J].西部探矿工程,2002,73(3):132-134.
    [36]蔡燕飞,廖宗文.土壤微生物生态学研究方法进展[J].土壤与环境,2002,11(2):167-171.
    [37]陈鹏,张坤.高科1井废弃钻井液的固化处理[J].钻井液与完井液,2000,17(3):34-35.
    [38]陈章.中江丹参连作土壤微生物特性研究[D].雅安:四川农业大学,2010.
    [39]邓浩,马廷雷等.石油工业环境保护[M]北京:石油工业出版社,2002.
    [40]丁克强,郑昭佩,孙铁珩,等.石油污染土壤的生物降解研究[J].生态学杂志,2001,20(4):16-18.
    [41]董娅玮.废弃钻井泥浆固化处理技术研究[D].西安:长安大学,2009.
    [42]董志辉.生物治理技术处理废钻井液的研究[J].大众科学(科学研究与实践),2007(4):48
    [43]冯士明.油田钻井废泥浆的再利用和回收研究[J].天津建材,1998(3):37-39.
    [44]桂召龙,邓波,田鲁兴.胜利乐安油田污泥无害化应用研究[J].水处理技术,2003,29(3):182-184.
    [45]郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复[J].海洋环境科学,2000,19(3):24-29.
    [46]国家环境保护局科技标准司.工业污水土地处理技术指南[M].北京:中国环境科学出版社,1997,151-164.
    [47]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [48]郝文英.中国农业百科全书·土壤卷[M].北京:农业出社.1996,385-400.
    [49]何远信.国内外泥浆材料的现状及发展趋势[J].探矿工程,2001(5):47-49.
    [50]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,2:61-69.
    [51]籍国东,隋欣,孙铁珩,等.封闭式芦苇湿地处理钻井泥浆的可行性研究[J].环境科学学报,2001,21(4):426-430.
    [52]贾建丽,李广贺,张旭,等.基于PCR-DGGE技术的石油污染土壤微生物多态性[J].清华大学学报(自然科学版),2005,45(9):1217-1220.
    [53]姜子东,朱墨.废水基泥浆的初步分析[J].钻井液与完井液,1992,9(1):28-34.
    [54]李浩.内蒙古荒漠草原土壤微生物季节动态变化的研究[D].呼和浩特:内蒙古师范大学,2008.
    [55]李建山.完钻井井场混合液固化处理技术研究[D].成都:西南石油大学,2006.
    [56]李瑞龙.磷石膏与粉煤灰用于钻井废泥浆固化处理的实验研究[D].成都:四川大学,2005.
    [57]李世清,李生秀.土壤微生物体氮测定方法的研究[J].植物营养与肥料学报,2000,6(1):75-83.
    [58]李智冬.石油类污染物在土壤表面光化学转化的研究[D].大连:大连理工大学,2007.
    [59]廖玲.钻井废弃泥浆降解菌的分离及特性研究[D].雅安:四川农业大学,2010.
    [60]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-68.
    [61]刘德昌.流化床燃烧技术[M].北京:水力电力出版社,1995:118-120.
    [62]刘罡.废弃钻井液固化处理实验研究[J].江汉石油学院学报,2000,22(3):95-96.
    [63]刘国良,苏幼明,顾书敏,等.石油污染土壤生物修复研究新进展[J].化学与生物工程,2008,25(8):24-28.
    [64]刘惠君,刘维屏.农药污染土壤的生物修复技术[J].环境污染治理技术与设备,2001,2(2):74-80.
    [65]刘晓娟,刘静,张宁生.油气田污泥无害化处理途径探讨[J].油气田环境保护,2004,14(2):32-35.
    [66]龙安厚,何庆申.大庆油田废钻井液固化处理研究[J]_钻井液与完井液,2003,20(2):4-6.
    [67]龙安厚.废钻井液无害化处理发展概况[J].西部探矿工程,2003(3):165-168.
    [68]毛飞跃,邓建国.钻井废弃泥浆无害化处理原理及工艺要求[J].中国西部科技,2008(28):37.
    [69]倪怀英.废钻井液处理方法及实用技术[J].油气田环境保护,1992:9-13.
    [70]彭园,杨旭,孙长健.废弃泥浆无害化处理方法研究[J].环境科学与管理,2007,32(4):102-104.
    [71]屈玉成,梅平,许立铭,等.钻井废弃泥浆固化研究[J].湖北化工,2001(1):16-18.
    [72]任天志.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [73]史贤志.冀东油田废钻井液固化处理技术[J].钻井液与完井液,2003,20(5):43-46.
    [74]宋明全,蔡利山.钻井废浆液固化剂HB-1的研制与应用[J].石油钻探技术,2001,29(3):53-55.
    [75]宋延博.胜利油田钻井废弃泥浆固化处理技术研究[D].山东:山东大学,2008.
    [76]孙铁珩,区自清,李培军.城市污水土地处理系统研究[M].北京:科学出版社,1997,222-225.
    [77]陶水龙,林启美,赵小蓉.土壤微生物量研究方法进展[J].土壤肥料,1998,5:15-18.
    [78]万春黎,杨雪,杜茂安,等.石油污染土壤中细菌群落结构特征[J].石油学报,2010,26(6):928-933.
    [79]王秋敏,王晓健,王新.应用综合技术解决钻井泥浆污染问题[J].煤矿设计,1998,9:14-16.
    [80]王寿光.油田钻井废泥浆工业化再利用技术研究[J].油气田地工程,2002,21(4):69-70.
    [81]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    [82]魏平方,邹斌,陈俊.油田废钻井液固化处理实验研究[J].化学与生物工程,2003(6):34-35.
    [83]吴芳云,陈进富,赵朝成等.石油环境工程[M].北京:石油工业出版社,2002:301-303.
    [84]胥尚湘.国外钻井废泥浆处理技术发展动向[J].石油与天然气化工,1992,21(2):122-125.
    [85]许光辉,李振高.微生物生态学[M].南京,东南大学出版社,1991
    [86]颜森.重金属污染对土壤微生物多样性的影响[D].雅安:四川农业大学,2010.
    [87]杨明杰,梁万林,金庆荣,等.钻井废泥浆综合治理技术研究[J].矿物岩石,2003,23(1):109-112.
    [88]杨云根,Paterson, E. Compbell, C苏格兰阿伯丁城市土壤的微生物特性研究.矿物学报,2000,20(4):342-348
    [89]余红波,李忠庆,韩志田,等.浅论钻井废弃泥浆对环境的危害及处理技术[J].资源与环境,2006(4):148-149.
    [90]张兴礼,李德贵.钻井废泥浆固化剂GH一1现场应用[J].钻井液与完井液,1995,12(4):20-25.
    [91]张瑜瑾,杜青忠.含油污泥固液分离技术的实验研究[J].石油机械,2002,30(6):4-6.
    [92]赵斌,何绍江.微生物学实验[M]北京:科学出版社,2002.
    [93]赵吉平.废弃钻井物的二次利用和无害化处理[J].石油钻探技术,2003,31(1):37-39.
    [94]赵玉霞,杨珂.石油污染土壤修复技术研究综述[J].环境科学,2009,22(1):60-63.
    [95]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004,134-142.
    [96]周迅.废钻井液的处理技术综述[J].油气田环境保护,2001,11(4):10-12.
    [97]朱家骅等编,化工原理[M].北京:科学出版社,2001.
    [98]朱墨.废钻井液无害化处理的室内研究[[J].钻井液与完井液,1995,12(3):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700