石油类污染物在土壤表面光化学转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了了解土壤中石油类污染物的光化学转化过程,深入探索石油类污染物在土壤-水-气相间的迁移转化规律及生态风险,本文以某种实际石油为反应基质,模拟自然环境条件,考察石油在土壤表面的光化学行为。主要研究工作如下:
     (1)将传统的土壤薄层光化学实验方法进行一定的改进,进行密封处理,研究石油在土壤表面的光化学行为。结果表明,氙灯照射下,土壤表面石油发生了光化学转化。
     考察了土壤中的初始含油量、土壤类型和土壤pH值对土壤表面石油光化学反应的影响。含油量在较低范围内变化时,对其光降解速率的影响不大,但当土壤的含油量很高时,其光降解速率明显变慢;土壤的有机质含量越高,石油在土壤表面的光降解速率越慢;土壤pH值对于石油的光降解过程没有显著的影响。不同实验条件下,石油在60h的光反应期间内能较好的遵循准一级反应动力学。
     (2)通过紫外可见分光光度法、红外分光光度法和气相色谱法分别对土壤表面石油的光降解过程进行定量分析,考察石油中不同组分的光降解规律。
     紫外可见分光光度法主要反映的是芳香烃组分的光降解规律;红外分光光度法反映的是总石油烃的光降解规律;气相色谱法主要反映的是饱和烃组分的光降解规律。它们测定的石油光转化率依次降低,此结果表明,石油中的芳香烃组分较饱和烃组分更易进行光降解反应。
     (3)选择石油饱和烃和芳香烃的代表性组分正十六烷和蒽,考察典型石油烃在土壤表面的光化学过程,有助于推测石油组分的光降解规律。
     光照60 h土壤表面正十六烷的光转化率明显低于蒽的光转化率。此结果也表明,石油中的芳香烃组分更容易发生光化学转化,且正十六烷的光降解速率大于实际石油中饱和烃总体的光降解速率,蒽的光降解速率与实际石油中芳香烃的光降解速率较为一致。
     (4)通过紫外可见分光光度法、气相色谱、傅立叶红外光谱、气-质联用对石油的光降解演变规律进行定性分析,考察石油在土壤表面的光化学反应规律。
     结果表明,土壤萃取液中石油的UV-Vis吸收峰形保持相对不变,但吸收强度发生变化;光照后芳香烃组分的大部分色谱峰有明显降低或消失,低碳数的饱和烃相对含量提高;利用正构烷烃标准系列物可直接对照定性;光照60 h后土壤萃取液的红外谱图中出现一个比较明显的羰基吸收峰,说明石油在光降解过程中逐渐发生氧化。研究结果表明,光氧化是石油光化学的一个重要降解机理,石油的光氧化产物具有更高的生态风险。
To understand photochemical transformation of petroleum pollutants in soil,photoreactions of crude oil on soil surface in simulated natural conditions were studied, whichis available to investigate its transfer and transformation regulations among the soil-water-airphases as well as its ecological risks. The main work is as follows:
     (1) Photoreaction experiments of petroleum on soil surface were operated according tothe amended classical approach which effectively reduces the volatilization loss. The resultsshow that photoreactions of petroleum occur on soil surface under xenon light exposure.
     The influence of the initial oil concentration in soil, soil types and pH on photoreactionof petroleum was investigated. Changes in loWer oil concentrations affect the photochemicalprocesses of petroleum slightly. However, the higher oil concentration reduces thephotoreaction rate distinctly. The photolysis rate of petroleum on soil surface decreases whenthe content of organic matter in soil increases. Different soil pH results in similar reactionrates of petroleum. Kinetic analyses illustrate that photochemical degradation of petroleum onsoil surface, in the initial 60 h, follows pseudo first-order kinetics well under differentexperimental conditions.
     (2) Photolytic regulations of different petroleum fractions were investigated throughvarious quantitative analyses including UV-Visible, IR Spectrometer and GasChromatography.
     UV-Vis Spectrometer mostly reflects the photolytic processes of aromatic hydrocarbonswith the highest phototransformation ratio of petroleum. IR Spectrometer responds totalpetroleum hydrocarbons with the medium phototransformation ratio. The lowestphototransformation ratio of petroleum is determined by GC-FID, which reveals thephotochemical rules of saturated hydrocarbons. These results indicate that aromatichydrocarbons of petroleum are readier to photodegrade than saturated ones.
     (3) Two petroleum hydrocarbons, hexadecane and anthracene, were selected asrepresentative compounds of saturated and aromatic hydrocarbons and then photoreactions oftypical petroleum hydrocarbons were evaluated to speculate on photolytic regulations ofdifferent petroleum components.
     After 60 h irradiation, the phototransformation ratio of hexadecane on the soil surface islower than that of anthracene obviously. This result also reveals that it is easier for aromatichydrocarbons to degrade under irradiation than saturated ones. In addition, the photolysis rate of hexadecane is higher than that of the whole saturated hydrocarbons in crude oil.Furthermore, the photolysis rate of anthracene is consistent with that of the whole aromatichydrocarbons in petroleum.
     (4) UV-Vis, GC-FID, FTIR and GC-MS were used for the characterization of petroleumhydrocarbons in the photochemical processes to review phototransformation regulations ofpetroleum on soil surface.
     Experimental results indicate that absorption peak shapes of the extract from soil almostremain the same in UV-Vis Spectra, but the peak intensities change. GC-FID analyses showthat, after 50 h irradiation, most chromatogram peaks of aromatics are weakened or disappear.Moreover, the content of saturated hydrocarbons with longer chain decreases, while theproportion of shorter chain ones increases slightly. In addition, direct comparison between.unknown compounds and the standard series of n-C_(10)~n-C_(44) is performed for qualitativeanalysis. After 60 h photolysis, the appearance of carbonyl compounds in FTIR spectra of theextract from soil demonstrates that petroleum is gradually oxidized in the photolytic process.The results demonstrate that photooxidation is one of the important photodegradationmechanisms of petroleum, and the photooxidation products of petroleum exhibit moreecological risks.
引文
[1] 解岳.延河流域石油类污染物非点源污染特征及其在河流沉积物中的吸附与释放:(硕士学位论文).西安:西安建筑科技大学,1999.
    [2] Wang Z, Fingas M. Developments in the analysis of petroleum hydrocarbons in oils,petroleum products and oil-spill-related environmental samples by gas chromatography. J.Chromat. A, 1997, 774:51-78.
    [3] 戴树桂.环境化学进展.北京:化学工业出版社,2005.
    [4] 赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响.海洋环境科学,1998,17(2):68-72.
    [5] Callahan M A, Slimak M W, Gabelc N W. Water-related Environmental Fate of 129 Priority Pollutants. Washington DC: US Environmental Protection Agency, 1979.
    [6] 陈绍洲,徐佩若.石油化学.上海:华东化工学院出版社,1993.
    [7] 李建政,于秀娟,刘章现.环境毒理学.北京:化学工业出版社,2006.
    [8] 任磊,黄廷林.土壤的石油污染.农业环境保护,2000,19(6):360-363.
    [9] Wu S C, Gschwend P M. Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ. Sci. Technol., 1986, 20 (7):717-725.
    [10] Shen L, Jaffe R. Interactions between dissolved petroleum hydrocarbons and pure and humic acid-coated mineral surfaces in artificial seawater. Mar. Environ. Res., 2000,49:217-231.
    [11] 张大庚,依艳丽,郑西来等.土壤对石油烃吸附及其释放规律的研究.沈阳农业大学学报,2005,36(1):53-56.
    [12] 黄廷林,史红星.黄土地区石油类挥发试验与挥发动力学.西安建筑科技大学学报(自然科学版),2003,35(2):111-115.
    [13] Ziolli R L, Jardim W F. Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO_2. J. Photochem. Photobiol. A: Chem., 2002, 147:205-212.
    [14] Broholm M M, Christophersen M, Maier U et al. Compositional evolution of the emplaced fuel s.ource in the vadose zone field experiment at airbase v(?)r1(?)se, Denmark. Environ. Sci. Technol., 2005, 39:8251-8263.
    [15] 刘晓艳,李兴伟,纪学雁等.油田城市地表土壤石油污染特点及其防治对策.国土与自然资源研究,2004,4:68-69.
    [16] 黄廷林,史红星,任磊.石油类污染物在黄土地区土壤中竖向迁移特性试验研究.西安建筑科技大学学报,2001,33(2):108-111.
    [17] 黄廷林,任磊.黄土地区石油类污染物的径流污染模拟及模型预测.中国环境科学,2000,20(4):345-348.
    [18] Prince R C, Elmendorf D L, Lute J R et al. 17 a (H),21 β (H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ. Sci. Technol., 1994, 28(1):142-145.
    [19] Bragg J R, Prince R C, Harner E J et al. Effectiveness of bioremediation for the exxon valdez oil spill. Nature, 1994, 368:413-418.
    [20] 齐永强,王红旗,刘敬奇.土壤中石油污染物微生物降解及其降解去向.中国工程科学,2003,5(8):70—75.
    [21] Salanitro J P, Dorn P B, Huesemann M H et al. Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Technol., 1997, 31 (6):1769-1776.
    [22] Jonge H D, Freijer J I, Verstraten J M et al. Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils. Environ. Sci. rechnol., 1997,31:771-775.
    [23] 李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况.微生物学通报,2001,28(5):89-92.
    [24] 郭楚玲,郑天凌,洪华生.多环芳烃的微生物降解与生物修复.海洋环境科学,2000,19(3):24—29.
    [25] Mill T. Predicting photoreaction rates in surface waters. Chemosphere, 1999,38(6):1379-1390.
    [26] 邓南圣,吴峰.环境光化学.北京:化学工业出版社,2003.
    [27] Rontani J F. Identification by GC/MS of acidic compounds produced during the photosensitized oxidation of normal and isoprenoid alkanes in seawater. Intl. J. Environ.Anal. Chem., 1991, 45:1-9.
    [28] Rontani J F, Giral P J P. Significance of photosensitized oxidation of alkanes during the photochemical degradation of petroleum hydrocarbon fractions in seawater. Intl. J. Environ. Anal. Chem., 1990, 42:61-68.
    [29] Hirai T, Shiraishi Y, Ogawa K et al. Effect of photosensitizer and hydrogen peroxide on desulfurization of light oil by photochemical reaction and liquid-liquid extraction. Ind. Eng. Chem. Res., 1997, 36 (3):530-533.
    [30] Clements P, Wells C H J. Soil sensitized generation of singlet oxygen in the photodegradation of bioresmethrin. Pestic Sci., 1992, 34:163-166.
    [31] Hebert V R, Miller G C. Depth dependence of direct and indirect photolysis on soil surfaces. J. Agric. Food Chem., 1990, 38:913-918.
    [32] Romero E, Dios G, Mingorance M D et al. Photodegradation of mecoprop and dichlorprop on dry, moist and amended soil surfaces exposed to sunlight. Chemosphere, 1998, 37 (3):577-589.
    [33] Si Y B, Zhou J, Chen H M et al. Effect of humic substances on photodegradation of bensulfuron-methyl on dry soil surfaces. Chemosphere, 2004, 56 (10):967-972.
    [34] Gong A, Ye C M, Wang X J et al. Dynamics and mechanism of ultraviolet photolysis of atrazine on soil surface. Pest Manag. Sci., 2001, 57:380-385.
    [35] Mathew R, Khan S U. Photodegradation of metolachlor in water in the presence of soil mineral and organic constituents. J. Agric. Food Chem., 1996, 44:3996-4000.
    [36] William S C, Mark M L, Rex A L et al. Photolysis of imidazolinone herbicides in aqueous solution and on soil. Weed Sci., 1992, 40:143-148.
    [37] 郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解.环境化学,2002,21(2):117-122.
    [38] Fan X Z, Lu B, Gong A J. Dynamics of solar light photodegradation behavior of atrazine on soil surface. J. Hazard. Mater., 2005, 117 (1):75-79.
    [39] Adams R L, Weber E J, Baughman G L. Photolysis of smoke dyes on soils. Environ. Toxic.Chem., 1994, 13 (6):889-896.
    [40] Balmer M E, Goss K U, Schwarzenbach R P. Photolytic transformation of organic pollutants on soil surfaces-an experimental approach. Environ. Sci. Technol., 2000, 34 (7):1240-1246.
    [41] Gan J Y, Hussain M, Perschke H et al. The effect of substituted benzophenones on the photochemical fate of fenitrothion insecticide. Chemosphere, 1990, 21 (4/5):589-596.
    [42] 刘廷良,刘京,齐文启等.水中石油类分析方法的现状.环境科学研究,2000,13(5):58—60.
    [43] Nadim F, Liu S L, Hoag G E et al. A comparison of spectrophotometric and gas chromatographic measurements of heavy petroleum products in soil samples. Wat. Air Soil Pollut., 2002, 134:97-109.
    [44] Watson J S, Jones D M, Swannell R P J et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes. Org. Geochem.,2002, 33:1153-1169.
    [45] Mills M A, McDonald T J, Bonnet J S et al. Method for quantifying the fate of petroleum in the environment. Chemosphere, 1999, 39 (14):2563-2582.
    [46] Richter B E. Extraction of hydrocarbon contamination from soils using accelerated solvent extraction. J. Chromat. A, 2000, 874:217-224.
    [47] Arthur C L, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62:2145.
    [48] Liang S, Tilotta D C. Determination of total petroleum hydrocarbons in soil by dynamic on-line supercritical fluid extraction with infrared photometric detection. J. Chromat. A, 2003, 986:319-325.
    [49] Andersson J T, Bobinger S. Polycyclic aromatic sulfur heterocycles. Ⅱ. Photochemical oxidation of benzo[b]thiophene in aqueous solution. Chemosphere, 1992, 24 (4):383-389.
    [50] Andersson J T, Bobinger S. Polycyclic aromatic sulfur heterocycles. Ⅵ. Photochemical degradation of crude oil components: 2-methyl- , 3-methyl- and 2,3-dimethylbenzo[b]thiophene. Polycyclic Aromat. Compd., 1996, 11 (1~4):145-151.
    [51] Ehrhardt M G, Burns K A, Bicego M C. Sunlight-induced compositional alterations in the seawater-soluble fraction of a crude oil. Mar. Chem., 1992, 37:53-64.
    [52] Rontani J F, Giusti G. Photosensitized oxidation of phytol in seawater. J. Photochem.Photobiol. A, 1988, 42:347-355.
    [53] Burns K A. Evidence for the importance of including hydrocarbon oxidation products in environmental assessment studies. Mar. Pollut. Bull., 1993, 26 (2):77-85.
    [54] Tapan K, Durra, Harayama S. Fate of crude oil by the combination of photooxidation and biodegradation. Environ. Sci. Technol., 2000, 34:1500-1505.
    [55] Rontani J F, Bonin P, Giusti G. Mechanistic study, of interactions between photooxidation and biodegradation of n-nonylbenzene in seawater. Mar. Chem., 1987, 22:1-12.
    [56] Ni'matuzahroh, Gilewicz M, Guiliano M et al. In-vitro study of interaction between photooxidation and biodegradation of 2-methylphenanthrene by Sphingomonas sp. 2MP Ⅱ.Chemosphere, 1999, 38:2501-2507.
    [57] Donaldson S G, Miller G C. Coupled transport and photodegradation of napropamide in soils undergoing evaporation from a shallow water table. Environ. Sci. Technol., 1996,30:924-930.
    [58] 徐学仁.海洋环境中石油的光化学氧化.海洋环境科学,1987,6(4):58-66.
    [59] Nicodem D E, Guedes C L B, Correa R J. Photochemistry of petroleum I. Systematic study of a brazilian intermediate crude oil. Mar. Chem., 1998, 63:93-104.
    [60] Nicodem D E, Fernandes M C Z, Guedes C L Bet al. Photochemical processes and the environmental impact of petroleum spills. Biogeochemistry, 1997, 39:121-138.
    [61] Ehrhardt M G, Weber R R. Formation of low molecular weight carbonyl compounds by sensitized photochemical decomposition of aliphatic hydrocarbons in seawater. Fresenius J. Anal. Chem., 1991, 339:772-776.
    [62] Ehrhardt M G, Petrick G. The sensitized photooxidation of n-pentadecane as a model for abiotic decomposition of aliphatic hydrocarbons in seawater. Mar. Chem., 1985,16:227-238.
    [63] Larson R A, Bott T L, Hunt L Let al. Photooxidation products of a Fuel oil and their antimicrobial activity. Environ. Sci. Technol., 1979, 13 (8):965-969.
    [64] (?)stgaard K, Aarberg A, Klungsoyr J et al. Comparative studies of phytotoxicity and chemical composition of aqueous oil solutions affected by evaporation, illumination and extraction. Water Res., 1987, 21:155-164.
    [65] Ziolli R L, Jardim W F. Photochemical transformations of water-soluble fraction of crude oil in marine waters-a comparison between photolysis and accelerated degradation with TiO_2 using GC-MS and UVF. J. Photochem. Photobiol. A: Chem., 2003, 155:243-252.
    [66] 何良菊,魏德洲,张维庆.土壤微生物处理石油污染的研究.环境科学进展,1999,7(3):110-115.
    [67] 李培军,台培东,郭书海等.辽河油田石油污染土壤的2阶段生物修复.环境科学,2003,24(3):74-78.
    [68] 李晓华,许嘉琳,王华东.污染土壤环境中石油组分迁移特征研究.中国环境科学,1998,18(S):54-58.
    [69] 中国环境监测总站.土壤元素的近代分析方法.北京:中国环境科学出版社,1992.
    [70] 王敬贤.土壤中部分酚类污染物的光化学行为研究:(博士学位论文).大连:大连理工大学,2006.
    [71] Fu H B, Quan X, Zhao H M. Photodegradation of γ-HCH by a -Fe_2O_3 and the influence of fulvic acid. J. Photochem. Photobiol. A: Chem., 2005, 173:143-149.
    [72] Kieber R J, Li A, Seaton P J. Production of nitrite from the photodegradation of dissolved organic matter in natural waters. Environ. Sci. Technol., 1999, 33:993-998.
    [73] 李爱民,冉炜,代静玉.天然有机质与矿物间的吸附及其环境效应的研究进展.岩石矿物学杂志,2005,24(6):671—680.
    [74] 戚佳琳,杨桂朋.海洋石油光化学降解的研究.黄渤海海洋,2000,18(2):83—89.
    [75] Hong C S, Wang Y B, Bush B. Kinetics and products of the TiO_2 photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 1998, 36 (7):1653-1667.
    [76] 周林红,吴燕.紫外分光光度法测定炼油废水中的石油类含量.石化技术与应用,2004,22(6):456-458.
    [77] Garrett R M, Pickering I J, Haith C E et al. Photooxidation of crude oils. Environ. Sci. Technol., 1998, 32:3719-3723.
    [78] Ellis L, Langworthy T A, Winans R. Occurrence of phenylalkanes in some Australian crude oils and sediments. Org. Geochem., 1996, 24 (1):57-69.
    [79] El Anba-Lurot F, Guiliano M, Doumenq Pet al. Sensitized photooxidation of n-hexadecane in seawater: identification of non-acidic photoproducts. Int. J. Environ. Anal. Chem., 1996,63:289-299.
    [80] 张珞平,吴瑜端.石油的海洋地球化学行为.海洋环境科学,1986,5(2):53-61.
    [81] 沈海林,宋又群,崔卉等.化学演进过程数据的自动分辨一复杂石油样品的GC-MS分析.化学学报,2000,58(4):438-442.
    [82] Roussis G, Proulx R. Molecular weight distributions of heavy aromatic petroleum fractions by Ag~+ electrospray ionization mass spectrometry. Anal. Chem., 2002, 74(6):1408-1414.
    [83] Briker Y, Ring Z, Iacchelli A et al. Diesel fuel analysis by GC/FIMS: Aromatics, n-Paraffins, and Isoparaffins. Energy & Fuels, 2001, 15:23-37.
    [84] 汪双清,王培荣.沉积物和原油中常见含氧化合物的分离分析.分析化学,2001,29(3):276—279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700