变形和热处理对Al-Zn-Mg-Cu系超强铝合金组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al-Zn-Mg-Cu系超强铝合金是大飞机用关键材料,要求具有较高的强度、良好的韧性和优良的耐蚀性。该系合金在变形和固溶过程引发的再结晶和在时效过程链状富集的晶界析出相降低了合金的断裂韧性和应力腐蚀抗力,限制了其应用潜力的发挥。因此,研究变形和热处理对微观组织的影响,对于同时提高合金的强度、韧性和耐蚀性具有重要的意义。
     本论文选择Al-Zn-Mg-Cu系超强铝合金中的7B50轧制板材为研究对象,研究了7B50合金断裂腐蚀机理,研究了变形、固溶和时效对微观组织(未溶相、再结晶以及析出相)的影响,分析了微观组织对力学和腐蚀性能的影响机理,研究结果表明:
     (1)合金局部腐蚀的发生依次为点蚀、晶间腐蚀和剥落腐蚀;腐蚀路径主要沿着再结晶晶界扩展;与未再结晶晶界析出相相比,再结晶晶界析出相不耐蚀。再结晶降低了合金的剥蚀抗力,降低了合金纵向和长横向应力腐蚀抗力。沿轧制方向排列的未溶相降低了材料长横向的拉伸性能和T-L方向的断裂韧性;再结晶降低了材料纵向的拉伸性能和L-T方向的断裂韧性。
     (2)热轧变形量越大,合金的未溶相越少,晶粒尺寸越小,时效析出相更加密集,但基体再结晶越严重;对应合金的拉伸性能越高;断裂韧性先升高后降低,剥蚀和应力腐蚀抗力变差。当热轧温度降低时,合金在固溶过程中发生严重的静态再结晶,极大降低合金的拉伸和腐蚀性能。
     (3)固溶升温的中温阶段(350℃-460℃)发生第二相粗化现象,严重危害后续固溶效果,据此,提出了快速升温固溶工艺;研究了固溶保温过程中固溶温度和固溶时间对合金未溶相和基体再结晶的影响,提出了高温短时固溶保温工艺;快速升温和高温短时两种工艺综合使用保证未溶相溶解的同时,能有效抑制基体再结晶,提高合金的综合性能。
     (4)回归过程中,晶内析出相溶解的同时,晶界析出相发生粗化和不连续,后续的时效过程中,晶内析出相重新密集析出,而晶界析出相保持粗大不连续状态,该组织在保证强度的同时,能有效提高合金的耐蚀性。据此,提出多次回归再时效处理,在保持合金强度的前提下,进一步提高合金的耐蚀性。回归次数在3次以内,随着回归次数的增加,晶内析出相粗化不明显,晶界析出相更加粗大且不连续,其铜含量不断增加,而锌含量不断减少,强度与一次回归再时效处理样品相当,断裂韧性、剥蚀抗力和应力腐蚀抗力随着回归次数的增加而变大。回归次数达到4次时,晶内析出相有所粗化,但仍比T76处理合金要细小,强度、断裂韧性和应力腐蚀抗力有所下降。
Al-Zn-Mg-Cu alloy is a key material for large aircraft, which demands high strength, good toughness and superior corrosion resistance when it is used as the primary structural materials in aerocraft field. However, recrystallization induced by deformation and solution treatment and continuous distribution grain boundary precipitates(GBPs) decrease fracture toughness and the resistance to stress corrosion cracking, which limits its potential for application. Therefore, it is very important to study the effect of deformation and heat treatment on the microstructure in order to improve strength and fracture toughness as well as the resistance to stress corrosion.
     The paper investigated rolling7B50plates provided by Northeast Light alloy Co. Ltd. The effect of deformation, solution treatment and aging treatment on the undissolved particles, recrystallization and precipitates was studied. The mechanism of special microstructure influence on the tensile, toughness and corrosion resistance was discussed. The research results are stated as the following:
     (1) The local corrosion is pitting corrosion, intergranular corrosion and exfoliation corrosion, respectively; corrosion route develops along the recrystallized grain boundary due to GBPs on the recrystallization boundary are readily dissolved. The recrystallization decreases the EC resistance of rolling surface and SCC resistance of L-T and T-L direction; the recrystallization decreases the tensile property of L direction and fracture toughness of L-T direction while the undissolved particles decrease the tensile property of LT direction and fracture toughness of T-L direction.
     (2) The greater hot roll-deformation amount is, the less undissolved particles is, the smaller the grain size is, the denser the aging-precipitates are, but the more serious the recrystallization is, resulting in the tensile property increases, EC and SCC resistance get worse, and fracture toughness increases first, then decreases. When deformation temperature decreases, recrystallization during solution treatment is serious, leading to degrade the tensile and corrosion properties.
     (3) At mediate temperature of solution heating-up treatment(350℃-460℃), phases get coarse and hazards the effect of solution treatment, therefore, increasing the heating rate during the solution heating-up treatment is suggested; high solution temperature and short solution time is suggested by studing the effect of solution temperature and time on the undissolved particles and recrystallization; therefore, combined rapid heating rate and high temperature and short time solution treatments could maximize the undissolved particles dissolve and minimize the recrystallization occur, corresponding to the best comprehensive properties of alloy.
     (4) When retrogression occurs, intra-grain precipitates dissolve and GBPs become coarse and discrete; Re-aging treatment make intra-grain precipitates re-precipitate and GBPs keep coarse and discrete, leading to keep high strength and superior corrosion resistance. Based on it, the repetitive-RRA treatment is proposed in order to keep high strength and further improved corrosion resistance.. It is found that, within3retrogression time, matrix precipitates coarsening do not occur, while GBPs become more discrete and coarser with the time increasing. The Cu element content increases with the time, inversely for Zn element content. The tensile properties maintain RRA strength, while fracture toughness, EC resistance and SCC resistance increase with time increasing. When the retrogression time reached4, matrix precipitates partly coarsen, still smaller than T76treatment, the tensile properties, fracture toughness and SCC resistance decrease.
引文
[1]吴一雷,李永伟,张强俊.超高强度铝合金的发展与应用.航空材料学报,1994,1(14):49~55
    [2]宋仁国.高强度铝合金的研究现状及发展趋势.材料导报,2000,14(1):20~21
    [3]Liu J, Kulak M. A new paradigm in the design of aluminum alloys for aerospace applications. Materials Science Forum,2000,331-337,127-142
    [4]Heinz A, Haszler A, Keidel C, et al. Recent Development in Aluminium Alloys for Aerospace Applications. Materials Science and Engineering A,2000,280(1):102-107
    [5]Murakami Y, Recent Investigations on Precipitation Phenomena of Aluminum Alloys. Sumitomo Light Metals Technology,1988,29(1):3-17
    [6]Speidel M O, The theory of stress corrosion cracking in alloys. Anti-Corrosion Methods and Materials,1972,19,5-10
    [7]弗利德良杰尔.高强度变形铝合金(吴学译).上海科学技术出版社,1963.
    [8]马场义雄.超硬铝(EDS)及飞机铝合金发展动向(孙本良译).1990
    [9]《铝加工技术实用手册》编写组.铝加工技术实用手册.冶金工业出版社,2005,252~254
    [10]钟皓,韩逸,陈琦,等.7150铝合金铸态组织中第二相的形貌及相组成.特种铸造及有色合金,2008,28:106~108
    [11]Li N K, Cui J Z, Microstructural evolution of high strength 7B04 ingot during homogenization treatment. Transactions of Nonferrous Metals Society of China,2008,18(4):769-773
    [12]Xu DK, Birbilis N, Lashansky D, et al. Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150:optimisation for corrosion resistance. Corrosion Science,2011,53,217-225
    [13]Eivani A R, Ahmed H, Zhou J, et al. Evolution of grain boundary phases during the homogenization of AA7020 Aluminum Alloy. Metallurgical and Materials Transactions A,2009,40(3):717-728
    [14]Rokhlin L L, Dobatkina T V, Bochvar N R, et al. Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system. Journal of alloys and compounds,2004, 367(1-2):10-16
    [15]Eivani A R, Ahmed H, Zhou J, et al. Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 Aluminum Alloy. Metallurgical and Materials Transactions A,2009, 40(10):2435-2446
    [16]Robson J D. Optimizing the homogenization of Zirconium containing commercial aluminium alloys Using a novel process model. Materials Science and Engineering A,2002,338(1-2):219-229
    [17]B.И.多巴特金著.铝合金半成品的组织与性能(洪永先,谢继三等译).冶金工业出版社,1984.
    [18]Zhao P Z,Tsuchida T, Effect of fabrication conditions and Cr, Zr contents on the grain structure of 7075 and 6061 aluminum alloys. Materials Science and Engineering: A.2009,499(1-2):78-82
    [19]王东,马宗义.轧制工艺对7050铝合金显微组织和力学性能的影响.金属学报,,2008,44:49~54
    [20]Zhang X, Liu W J, Liu S D, et al. Effect of processing parameters on quench sensitivity of an AA7050 sheet. Materials Science and Engineering:A,2011, 528(3):795-802
    [21]张艳秋,徐福昌,单德彬.变形程度对复杂铝合金锻件组织性能的影响.材料科学与工艺,2009,17:806~809
    [22]张翀,张新明,刘胜胆,朱航飞.轧制变形对7A55铝合金晶间腐蚀的淬火敏感性的影响.矿冶工程,2007,27:69~75
    [23]张新明,张翀,刘胜胆,朱航飞.轧制变形量对7A55铝合金淬火敏感性的影响.中南大学学报,2007,38:589~594
    [24]Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena. Elsevier Ltd,2004
    [25]Chan L H, Weiland H, Cheong S, et al. The Correlation between grain boundary character and intergranular corrosion susceptibility of 2124 aluminum alloy. Ceramic Transactions 2009,201:261-267
    [26]Minoda T, Yoshida H. Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion. Metallurgical and Materials Transactions A,2002,33(9):2891-2898
    [27]Gronsky R, Furrer P. Grain boundary precipitation in aluminum alloys:effect of boundary structure. Metallurgical and Materials Transactions A,1981,12(1):121-127
    [28]Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta materialia,2009,57(14):4148-4157
    [29]Lehockey E M, Brennenstuhl A M, Palumbo G, et al. On the relationship between grain boundary character distribution and intergranular corrosion. Scripta materialia,1997,36(10):1211-1218
    [30]Cai B, Adams B L,Nelson T W. Relation between precipitate-free zone width and grain boundary type in 7075-T7 Al alloy. Acta Materialia,2007,55(5):1543-1553
    [31]Metzger M, Intrater J. Sub-grain boundary corrosion in high-purity aluminium. Nature,1954,547-549
    [32]Yan J, Chunzhi L,Minggao Y, Transmission electron microscopy on the microstructure of 7050 aluminium alloy in the T74 condition. Journal of Materials Science,1992,27(1):197-202
    [33]Deshpande N U, Gokhale A M, Denzer D K, et al. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy:Part Ⅰ. quantitative characterization. Metallurgical and Materials Transactions A,1998, 29(4):1191-1201
    [34]Gokhale A M, Deshpande N U, Denzer D K, et al. Relationship between fracture toughness, fracutre path, and microstructure of 7050 aluminum alloy:Part Ⅱ. multiple micromechanisms-based fracture toughness model. Metallurgical and Materials Transactions A,1998,29(4):1203-1210
    [35]Dorward R C,Beerntsen D J. Grain structure and quench-rate effects on strength and toughness of AA7050 Al-Zn-Mg-Cu-Zr alloy plate. Metallurgical and Materials Transactions A,1995,26(9):2481-2484
    [36]Starke E A. Application of modern aluminum alloys to aircraft. Progress in Aerospace Sciences,1996,32(2-3):131-172
    [37]Kim S H, Erb U, Aust K T, et al. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum. Scripta Materialia,2001, 44(5):835-840
    [38]Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Materialia,1995, 33(9):1387-1392
    [39]McNaughtan D, Worsfold M, Robinson M J. Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminium alloys. Corrosion Science,2003,45(10):2377-2389
    [40]Robinson M J, Jackson N C. The Influence of grain structure and intergranularcorrosion rate on exfoliation and stress corrosion cracking of high strength Al-Cu-Mg Alloys. Corrosion Science,1999,41(5):1013-1028
    [41]Kelly D J, Robinson M J. Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li Alloy 8090. Corrosion,1993,49(10):787-794
    [42]Wloka J, Hack T,Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu Alloys. Corrosion Science.2007, 49(3):1437-1449
    [43]Tsai T C, Chuang T H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys. Materials Science and Engineering A,1997,225(1-2):135-144
    [44]Ou B L, Yang J G,Wei M Y. Effect of homogenization and aging treatment on mechanical properties and stress-corrosion cracking of 7050 Alloys. Metallurgical and Materials Transactions A,2007,38(8):1760-1773
    [45]Itch G, Izumi T, Tohyama T. Effect of microstructure on the hydrogen behavior in 7075 series aluminum alloys. Keikinzoku,2008,58(1):15-21
    [46]Jacobs A J, Stress-corrosion cracking of aluminium. Nature,1966,211:403-404
    [47]Talianker M, Cina B. Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys. Metallurgical and Materials Transactions A,1989,20(10):2087-2092
    [48]Najjar D, Magnin T, Warner T J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium Alloy. Materials Science and Engineering A,1997,238(2):293-302
    [49]Zwickan E C, Freiberg U T. Possibilities for the calculation for the heat treatment diagrams for industrial AlZnMg(Cu) Alloys. Aluminium,1999,75:90-96
    [50]韩颖,马英义,徐克宇,等.Al-Zn-Mg-Cu合金厚板固溶热处理工艺研究.轻合金加工技术,2009,37:30~33
    [51]Chen K H, Liu H W, Zhang Z, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. Journal of Materials Processing Technology,2003,142(1):190-196
    [52]李平,李艳霞,郭俊峰,等.高强Al-Zn-Mg-Cu合金的固溶处理制度.材料与冶金学报,,2005,4:60~64
    [53]陈康华,张茁,刘红卫,等.近固溶度高温析出对7055铝合金时效强化和应力腐蚀的影响.中南工业大学学报,,2003,34:114~118
    [54]陈康华,刘红卫,刘允中.强化固溶对7055合金力学性能和断裂行为的影响[J].金属学报,2001,21(6):528~531
    [55]戴晓元,夏长清,孙振起,等.强化固溶对Al-7.6Zn-2.1Mg-1.3Cu-0.15Zr-0.30Sc合金组织与性能的影响.稀有金属材料与工程,2007,36:195~198
    [56]陈康华,刘红卫,刘允中.升温固溶对Al-Zn-Mg-Cu合金组织与力学性能的影响.中南工业大学学报,,2000,31(4):339~341
    [57]张新明,黄振宝,刘胜胆,等.双级固溶处理对7A55铝合金组织与力学性能的影响.中国有色金属学报,2006,16:1527-1533
    [58]Deng Y L, Wan L, Zhang Y, et al. Evolution of microstructures and textures of 7050 Al alloy hot-rolled plate during staged solution heat-treatments. Journal of alloys and compounds,2010,498(1):88-94
    [59]Nagahama K, Miki I. Precipitation during recrystallization in Al-Mn and Al-Cr Alloys. Trans Jap Inst Met,1974,15(3):185-192
    [60]张新明,吴文祥,唐建国,等.预析出对冷轧3003铝合金析出行为及再结晶晶粒尺寸的影响.中南大学学报,2006,37:212~216
    [61]宁爱林,曾苏民,蒋寿生,等.7A04铝合金高温固溶的微观组织和力学性能.轻合金加工技术,2005,33:48-51
    [62]宁爱林,刘志义,郑青春,等.分级固溶对7A04铝合金组织与性能的影响.中国有色金属学报,2004,14:1211~1216
    [63]郑祥健,李浩言,李勇,等.固溶处理对7475铝合金组织和性能的影响.轻合金加工技术,2004,32:45~51
    [64]Berg L K, Gj N J, Hansen V, et al. GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta materialia,2001,49(17):3443-3451
    [65]Schmuck C, Auger P, Danoix F, et al. Quantitative analysis of GP zones formed at room temperature in a 7150 Al-based alloy. Applied surface science,1995, 87:228-233
    [66]Li X Z, Hansen V, Gj N J, et al. HRTEM study and structure modeling of the η' Phase, the hardening precipitates in commercial Al-Zn-Mg Alloys. Acta materialia,1999,47(9):2651-2659
    [67]Speidel M O, Hyatt M V. Advances in Corrosion Science and Technology. NY, Plenum,1972.115-335
    [68]Sha G, Cerezo A, Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050). Acta materialia,2004,52(15):4503-4516
    [69]Li X W, Xiong B Q, Zhang Y A, et al. Effect of one-step aging on microstructure and properties of a novel Al-Zn-Mg-Cu-Zr alloy. Science in China Series E: Technological Sciences,2009,52(1):67-71
    [70]Marlaud T, Deschamps A, Bley F, et al. Influence of alloy composition and heat treatment on precipitate composition in Al-Zn-Mg-Cu alloys. Acta materialia,2010,58(1):248-260
    [71]Chen J, Zhen L, Yang S, et al. Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy. Materials Science and Engineering:A,2009, 500(1-2):34-42
    [72]刘海江.单级时效对7475合金组织和性能的影响.轻合金加工技术,,2004,32:41-44
    [73]Godard D, Archambault P, Aeby-Gautier E, et al. Precipitation sequences during quenching of the AA 7010 Alloy. Acta Materialia,2002,50(9):2319-2329
    [74]Fan X G, Jiang D, Meng Q, et al. Characterization of precipitation microstructure and properties of 7150 aluminium alloy. Materials Science and Engineering:A,2006, 427(1-2):130-135
    [75]李志辉,熊柏青,张永安,等.7B04铝合金双级时效的微观组织与性能.稀有金属材料与工程,2008,37:521-524
    [76]Wang F, Xiong B Q, Zhang Y, et al. Microstructure and mechanical properties of spray-deposited Al-10.8 Zn-2.8 Mg-1.9 Cu alloy after two-step aging treatment at 110 and 150℃. Materials Characterization,2007,58(1):82-86
    [77]Starink M J,Wang S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys. Acta Materialia,2003,51(17):5131-5150
    [78]Buha J, Lumley R N,Crosky A G. Secondary ageing in an aluminium alloy 7050. Materials Science and Engineering:A,2008,492(1-2):1-10
    [79]Risanti, D D, Yin M, Del C P, et al. A systematic study of the effect of interrupted ageing conditions on the strength and toughness development of AA6061. Materials Science and Engineering:A,2009,523(1-2):99-111
    [80]Feng C, Liu Z Y, Ning A L, ea.al. Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy. Trans.Nonferrous Met.Soc.China,2006,16:1163-1170
    [81]Danh N C, Rajan K,Wallace W. A. TEM study of microstructural changes during retrogression and reaging in 7075 aluminum. Metallurgical and Materials Transactions A,1983,14(9):1843-1850
    [82]Marlaud, T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy. Acta Materialia,2010,58(14):4814-4826
    [83]Baydogan M, Cimenoglu H, Sabri K E, et al. Improved resistance to stress-corrosion-cracking failures via optimized retrogression and reaging of 7075-T6 aluminum sheets. Metallurgical and Materials Transactions A,2008, 39(10):2470-2476
    [84]谷亦杰,李永霞,张永刚,等.7050合金RRA沉淀析出的TEM研究.航空材料学报,2000,20:1-7
    [85]Park J K, Ardell A J. Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651. Metallurgical and Materials Transactions A,1984, 15(8):1531-1543
    [86]Ning A L, Liu Z Y, Peng B S,et.al. Redistribution and re-precipitation of solute atom during retrogression and reaging of Al-Zn-Mg-Cu alloys. Trans.Nonferrous Met.Soc.China,2007,17:1005-1011
    [87]Li G F, Zhang X M, Li P H, et.al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050. Trans.nonferrous met.soc.china,2010,20:935-941
    [88]汝继刚,伊琳娜,张禄山.DSA处理对超高强铝合金性能的影响.稀有金属材料与工程,1999,23:414~416
    [89]Liu J, Burrell L, Michael P, et.al. Heat Treatment of Precipitation Hardening Alloy. US patent,5108520,1992
    [90]汝继刚.缓饱和再时效工艺研究.新技术新工艺,1998,1:22-23
    [91]Huang L P, Chen K H, Li S, et al. Influence of High-Temperature Pre-Precipitation on Local Corrosion Behaviors of Al-Zn-Mg Alloy. Scripta materialia,2007,56(4):305-308
    [92]郑强,陈康华,黄兰萍,等.高温预析出和固溶温度对7A52合金应力腐蚀开裂的影响.金属热处理,2005,30:14~17
    [93]张新明,游江海,张小艳,等.固溶后预析出对7A55铝合金力学及腐蚀性能的影响.中国有色金属学报2007,17:1922~1927
    [94]李海,郑子樵,王芝秀.过时效-重固溶-再时效处理对7055铝合金组织与性能的影响.材料热处理学报,2004,25:57~61
    [95]Dumont D, Deschamps A, Brechet Y. On the relationship between microstructure, strength and toughness in AA7050 Aluminum Alloy. Materials Science and Engineering A,2003,356(1-2):326-336
    [96]Li Z, Xiong B Q, Zhang Y, et al. Investigation on strength, toughness and microstructure of an Al-Zn-Mg-Cu alloy pre-stretched thick plates in various ageing tempers. Journal of Materials Processing Technology,2009,209(4):2021-2027
    [97]Han N M, Zhang X M, Liu S D, et al. Effects of pre-stretching and ageing on the strength and fracture toughness of aluminum alloy 7050. Materials Science and Engineering:A,2011,528:3714-3721
    [98]Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu Alloys. Corrosion Science.2010,12:4073-4080
    [99]Little D A, Connolly B J,Scully J R. An electrochemical framework to explain the intergranular stress corrosion behavior in two Al-Cu-Mg-Ag alloys as a function of aging. Corrosion Science,2007,49(2):347-372
    [100]Song R G, Tseng M K, Zhang B J, et al. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy. Acta Materialia,1996, 44(8):3241-3248
    [101]Pickens J R, Langan T J. The effect of solution heat-treatment on grain boundary segregation and stress-corrosion cracking of Al-Zn-Mg Alloys. Metall. Trans. A,1987,18:1735-1744
    [102]Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu Alloy. Acta Materialia,2004,52(16):4727-4743
    [103]毛杰,唐普洪.时效对Al-Zn-Mg-Cu合金Mg晶界偏析及性能的影响.材料热处理技术,2010,39:120-123
    [104]汝继刚,伊琳娜.不同时效处理对7B04铝合金腐蚀性能的影响.轻合金加工技术,2004,32:45~47
    [105]李志辉,熊柏青,张永安,等.时效制度对7804高强铝合金力学及腐蚀性能的影响.稀有金属,2008,32:794~798
    [106]孙志华,刘明辉,张晓云,等.时效制度对Al-Zn-Mg-Cu铝合金应力腐蚀敏感性的影响.中国腐蚀与防护学报,2006,26:232~236
    [107]潘道召,王芝秀,李海,等.双级时效对6061铝合金拉伸性能和晶间腐蚀性能的影响.中国有色金属学报,2010,20:435-441
    [108]田福泉,崔建忠.双级时效对7050铝合金组织和性能的影响.中国有色金属学报,2006,16:958~963
    [109]刘继华,李获,刘培英,等.7075铝合金耐腐蚀性与热处理的相关性.中国有色金属学报,2002,12:208~211
    [110]Meng Q C, Fan X G, Ren S Y, et.al. Comparison of microstructure and corrosion properties of Al-Zn-Mg-Cu alloys 7150 and 7010. Trans.Nonferrous Met.Soc.China,2006,16:1356-1361
    [111]Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Materials Science and Engineering:A,2008,485(1-2):468-475
    [112]刘继华,李获,刘培英,等.时效和回归处理对7075铝合金力学及腐蚀性能的影响.材料热处理学报,2002,23:50~53
    [113]Ural K. A study of optimization of heat-treatment conditions in retrogressions and reageing treatment of 7075-T6 aluminium alloy. Journal of Materials Science Letters,1994,13(5):383-385
    [114]Wang D, Ma Z Y, Gao Z M. Effects of severe cold rolling on tensile properties and stress corrosion cracking of 7050 aluminum alloy. Materials Chemistry and Physics,2009,117(1):228-233
    [115]刘继华,李荻,朱国伟,等.7075铝合金应力腐蚀敏感性的SSRT和电化学测试研究.腐蚀与防护,2005,26:6~9
    [116]Meng Q, Frankel G S. Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. Journal of the Electrochemical Society,2004,151:B271-B281
    [117]Ramgopal T, Schmutz P, Frankel G S. Electrochemical behavior of thin film analogs of Mg (Zn, Cu, Al). Journal of the Electrochemical Society,2001, 148:B348-B356
    [118]Moreira A H, Benedetti A V, Sumodjo P T A, et al. Electrochemical behaviour of heat-treated Al-Zn-Mg alloys in chloride solutions containing sulphate. Electrochimica Acta,2002,47(17):2823-2831
    [119]Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys. Journal of the Electrochemical Society,2005,152:B140-B151
    [120]Bobby KANNAN M,Raja V S. Influence of heat treatment and scandium addition on the electrochemical polarization behavior of Al-Zn-Mg-Cu-Zr Alloy. Metallurgical and Materials Transactions. A,2007,38(11):2843-2852
    [121]Cabot P L, Centellas F, Garrido J A, et al. Influence of the heat treatment in the electrochemical corrosion of Al-Zn-Mg alloys. Journal of Applied Electrochemistry,1992,22(6):541-552
    [122]饶思贤,张玉波,朱立群,等.外加应力下的LY12CZ电化学行为.北京航空航天大学学报,2007,33:1246~1250
    [123]张正,宋诗哲,墨淑芬.0.1mol/LNaCl溶液中不同剥蚀程度LY12合金的EIS特征.金属学报,2004,40:754~758
    [124]Cabot P L, Garrido J A, Pe'rez E, et al. EIS study of heat-treated Al-Zn-Mg alloys in the passive and transpassive potential regions. Electrochimica Acta,1995, 40(4):447-454
    [125]Jafarzadeh K, Shahrabi T.Hosseini M G. EIS study on pitting corrosion of AA5083-H321 Aluminum-Magnesium alloy in stagnant 3.5% NaCl solution. Journal of Materials Science and Technology,2008,24(2):215-219
    [126]陶蕾,张正,宋诗哲.NaCl溶液中包覆铝层的LY12铝合金阳极极化过程EIS特征.中国腐蚀与防护学报,2008,28:135~140
    [127]杨胜,易丹青,钟利,等.航空Al-Cu-Mg合金剥落腐蚀行为.北京科技大学学报,2007,29:216~219
    [128]刘钧泉,简初.铝合金氧化膜阻抗谱图的研究.轻合金加工技术,1990,11:30~34
    [129]GB/T 228-87.金属材料室温拉伸试验方法.1998
    [130]李有堂,龚俊,刘克仁.环形缺口拉伸圆杆的统一模型和断裂准则.甘肃工业大学学报,1995,12:68~73
    [131]王洪山.几种实用的断裂试验方法.理化检验-物理分册,2001,7:292~294[132]王洪山.用不预裂圆柱试样测试KIC的研究.阜新矿业学院学报,1984,6:57-63
    [133]王洪山.用理想平面应变试件直接测定延性材料KIC的研究.阜新矿业学院学报,1989,6:34~42
    [134]陈篪、蔡其巩、王仁智.工程断裂力学.国防工业出版社,1997,247-248
    [135]GB4161-84.金属材料平面应变断裂韧度KIC试验方法.1985
    [136]И莫连采夫著,B r库德良绍夫.铝合金断裂韧性(高云震译).冶金工业出版社,1980,39-41
    [137]董显娟.时效制度对7B04铝合金组织与性能的影响[硕士学位论文].长沙:中南大学,2004
    [138]HB 5455-90.铝合金剥层腐蚀试验方法.1990
    [139]ASTM G 3-89. Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testingl.1999
    [140]GB/T 15970.7.应力腐蚀试验,慢应变速率试验.2000
    [141]GB 12445.1-90.高强度合金双悬臂(DCB)试样应力腐蚀试验方法.1990
    [142]Peng Y Y, Yin Z M, Li S H. Evaluation of pitting corrosion of Al-Mg-Mn-Sc-Zr alloy in EXCO solution by EIS. Trans. Nonferrous Met. Soc. China,2005, 15:1226-1230
    [143]Xiao Y P, Pan Q L, Li W B, et al. Exfoliation corrosion of Al-Zn-Mg-Cu-Zr alloy containing Sc examined by electrochemical impedance spectroscopy. Materials and Corrosion,2010,10.1002/maco.201005696
    [144]苏景新,张昭,曹发和,等.T6态2090Al-Li合金在EXCO溶液中的剥蚀行为和剥蚀发展过程中的电化学阻抗谱.金属学报,2005,41:974~978
    [145]曹发和.高强度航空铝合金局部腐蚀的电化学研究[博士学位论文]浙江,浙江大学,2005
    [146]李劲风,郑子樵,张昭,等.铝合金剥蚀过程的电化学阻抗谱分析.中国 腐蚀与防护学报,2005,25:48~52
    [147]Pidaparti R M, Patel R R. Correlation between corrosion pits and stresses in Al alloys. Materials Letters,2008,62(30):4497-4499
    [148]Lee W J, Pyun S I The effect of chromate addition to a chloride solution on crack growth in pre-pitted samples of Al-Zn-Mg alloy. Materials Science and Engineering A,2000,279(1-2):172-178
    [149]Prasad N E, Kamat S V, Prasad K S, et al. In-plane anisotropy in the fracture toughness of an Al-Li 8090 alloy plate. Engineering Fracture Mechanics,1993, 46(2):209-223
    [150]Fan X G, Jiang D, Meng Q, et al. The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization. Materials Letters,2006, 60(12):1475-1479
    [151]王东,马宗义. Effects of rolling process on microstructure and mechanical property of 7050 aluminum alloy.金属学报,2008,44:49~54
    [152]Wagner J A,Shenoy R N. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys. Metallurgical and Materials Transactions A,1991,22(11):2809-2818
    [153]Zhang Z, Chen K H, Fang H C, et.al. Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr aluminum alloy. Trans.Nonferrous Met.Soc.China,2008,18:1037-1042
    [154]Cvijovic Z, Vratnica M, Rakin M. Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings. Materials Science and Engineering: A,2006,434(1-2):339-346
    [155]Cvijovic Z, Rakin M, Vratnica M, et al. Microstructural dependence of fracture toughness in high-strength 7000 forging alloys. Engineering Fracture Mechanics,2008, 75(8):2115-2129
    [156]Morere B, Ehrstrom J, Gregson P, et al. Microstructural effects on fracture toughness in AA7010 Plate. Metallurgical and Materials Transactions A,2000, 31(10):2503-2515
    [157]Kamp N, Sinclair I, Starink M J. Toughness-strength relations in the overaged 7449 Al-based alloy. Metallurgical and Materials Transactions A,2002, 33(4):1125-1136
    [158]Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050. Journal of Alloys and Compounds,2011.509:4138-4145
    [159]Li J F, Birbilis N, Li C X. et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Materials Characterization,2009,60(11):1334-1341
    [160]张新明,李鹏辉,刘胜胆,等.回归时间对7050铝合金晶间腐蚀性能的影响.中国有色金属学报,2008,18:1795-1801
    [161]游江海,李鹏辉,李国锋,等.回归处理工艺对7050铝合金力学和晶间腐蚀性能的影响.中南大学学报,2008,39:968~974
    [162]蔡彪,李劲风,贾志强,等.175℃回归7150-RRA铝合金力学性能及剥蚀性能.材料热处理学报,2009,30:109~113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700