盾构法隧道施工期流固耦合问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构法修建隧道一般都与地下水密切相关,其位置大都处于江河湖海水底复杂的工程地质和水文地质环境当中,盾构隧道穿越的地层既有砂质等软弱地层,也有较硬的裂隙岩体,不论何种地层,都将遇到盾构隧道施工过程中的流固耦合问题。在盾构隧道工程中,荷载的取值是设计和施工中关键参数,围岩和地下水两者耦合问题,会带来荷载的分布特征发生很大改变,因此,在含地下水的盾构隧道研究中,施工期的流固耦合问题是一个复杂而重要的课题。
     论文依托国家自然科学基金项目“大型跨江海盾构法隧道施工期流固耦合问题研究”,以重庆主城排水盾构隧道和成都地铁1号线盾构区间隧道为工程背景,采用理论分析、数值模拟计算、现场测试、室内模拟试验等多种分析方法,围绕盾构隧道施工中的流固耦合问题和泥水盾构机的模拟试验问题,对不同地层条件下的盾构隧道衬砌结构的施工期内力和可靠性进行了系统的研究。为弥补理论分析方法和数值计算不能处理及不可表征的因素对隧道结构物的影响问题,研制了泥水平衡式模型盾构试验系统,作为其他研究手段的补充。主要研究成果如下:
     1、针对盾构隧道施工过程中的流固耦合问题,从岩体力学、渗流力学和弹塑性理论出发,具体推导了盾构隧道围岩和结构的渗流场和应力场计算公式。分析了围岩塑性理论的不同屈服准则,选择适用于工程的Drucker-Prager准则作为解析法计算的基础,进行围岩和衬砌结构的内力分析。根据土体和岩体不同的力学特性,给出了其相应的渗透系数和应力之间的关系式,以此为中间桥梁,得出了按流固耦合理论计算的盾构隧道管片衬砌内力的解析解。
     2、以渗流场-应力场耦合机理为基础,采用大型有限元软件,针对围岩以岩质为主的地层结构,结合高水压条件下盾构隧道的实际工程——重庆主城排水过长江盾构隧道工程,对施工期盾构隧道围岩及主体结构的渗流场和应力场进行了二维流固耦合分析,研究了高水压作用下盾构隧道围岩及主体结构的流固耦合问题,分别针对不同水压情况下和隧道掘进过程中的工况进行了分析,探明了地下水压对于施工期的管片结构的影响,并与现场试验结果进行相互验证;针对含围岩以含地下水丰富的砂卵石地层为主的成都地铁1号线盾构区间隧道,进行了施工期流固耦合的二维和三维计算,研究了流固耦合条件下结构主体的内力分布和盾构掘进对周边结构的影响。
     3、提出了将有限元程序与区间解法相结合以求解隧道衬砌内力的方法,分析了单个随机变量对隧道衬砌内力的影响水平,将各随机变量进行参数的最不利组合,调用有限元程序来求解衬砌的内力区间值。
     4、为了解决泥水盾构机水下掘进控制和泥水平衡机理,研制了可模拟真实地下水加压的物理模拟装置,在此基础上完成了流固耦合条件下功能验证为主的泥水盾构全过程掘进模拟试验,分析了掘进过程中盾构对地表的位移影响,得出了一些规律性的试验结论;进行了泥膜对地层渗透性影响的基本试验,在此基础上,根据成都砂卵石地层参数特点配置了相似土体,采用试验方法确定了泥浆材料,并完成了泥膜形成的模拟试验;模拟了粉质黏土的地层配置,并进行了泥膜的成型试验,通过上述试验,明确了不同地层中泥膜的形态。
     随着我国交通事业的迅速发展,盾构隧道的日益增长,上述关于盾构隧道流固耦合问题的研究,对于保障盾构隧道施工期的安全,具有重要的意义。而泥水平衡模型试验系统的建成,可在盾构隧道建设过程中,针对性地为各类条件的地层提供盾构掘进模拟试验,从而为盾构隧道的施工和盾构机的设计提供重要参考价值。
Construction of shield tunnel generally is closely related to ground water. Its location is usually located in the rivers, lakes, sea bottom where exist the complex engineering geology and hydrogeology environment. Through the strata both soft ground and hard fractured rock, shield tunnel will inevitably encounter the problem of coupled solid-fluid during tunnel construction period. For shield tunnel engineering, the load value is the design and construction of key parameter, the coupling effect on surrounding rock and groundwater will bring the distribution of load changed significantly. Therefore, the problem of coupled solid-fluid during construction period is a complex and important issue in the research on shied tunnel with ground water.
     According to the National Natural Science Foundation of China project'study on solid-fluid coupling of large-scale shield tunnel during construction period', cooperating the drain tunnel project crossing Yangtze River in the downtown of Chongqing city and shield section tunnel in Chendu metro line1as the engineering background, by means of theoretical analysis, numerical simulation, in-situ testing, laboratory tests and other methods considering the problems of coupled solid-fluid caused by shield tunnel construction and slurry shield machine simulation test, the internal forces of segments lining and reliability are studied systematically during construction period of the different soil layers. In order to make up the limitation about theoretical analysis and numerical calculation, a set of slurry shield simulation test system is developed, as a supplementary means of other studies. The main results are as follows:
     1. For the problem about coupled solid-fluid during construction period, using rock mechanics, seepage mechanics and elastic-plastic theory, the calculation formulas of seepage field and stress field for surrounding rock and structure is deduced. Through analyzing different plasticity yield criterion, Drucker-Prager criterion is selected as the basis of analytic method for calculating the internal force of surrounding rock and the lining. In light of the different soil and rock mechanical properties, the formula of the permeability coefficient and the corresponding stress furthermore, analytical solution of shield tunnel lining internal forces is obtained by coupled solid-fluid theory.
     2. Based on coupling mechanism between seepage field and stress field, using finite element software, for the surrounding rock that consists mainly of rock strata, combined with high pressure water shield tunnel of the drain tunnel project crossing Yangtze River in the downtown of Chongqing city, this paper carried out the construction of tunnel surrounding rock and the main structure of the seepage field and stress field analysis of two-dimensional coupled solid-fluid.
     The effects on surrounding rock and the main structure of coupled solid-fluid problems under high water pressure and under different pressure conditions during tunneling period were studied respectively, the research gives the water pressure having effect on the segment of lining structure, and the result is testified by field test data. For the ground consisting of mainly sand and gravel with rich groundwater of the shield interval tunnel in Chengdu metro line1, the two-dimensional and three-dimensional coupled solid-fluid calculation are carried out, the internal force distribution of lining structure and the impact on the surrounding structure caused by excavation the tunneling are studied.
     3. This paper put forward a method which combining FEM and interval solution method for getting the tunnel lining internal forces. A single random variable internal force of the impact of the level of the tunnel lining is analyzed. Parameters of random variables are treated by the most unfavoured combination. Finite element program is called to solve the interval values of lining internal force.
     4. In order to solve the tunneling control of slurry shield machine and mechanism of slurry balanced, a physics simulation device is developed that it can realize the simulation of the real groundwater pressure. On the basis of complete functional verification-based simulation of slurry shield tunneling process of testing, analysis of the shield tunneling having effects on the surface, as a result, the paper draws conclusions regular rules of slurry shield testing.
     Through the membrane formation mechanism of mud, the test that filter-cake for a fundamental impact on the formation permeability is carried out. Based on above, the simulation soil is manufactured cooperating the sand and gravel parameters in Chengdu characteristics. The slurry material is determined by test methods, and the formation of filter-cake simulation test film is completed. The states corresponding different strata is revealed.
     With the rapid development of transport, the growing shield tunnel, the results about coupled solid-fluid has important significance for the protection of shield tunnel construction safety. The slurry shield micro simulation test system is not only to study the problems of slurry shield construction for all types of conditions, but also to provide an important reference value for the construction of shield tunnel and design of machines.
引文
[1]钱七虎,李朝甫,傅德明.隧道掘进机在中国地下工程中应用现状及前景展望[J].地下空间,2002,22(1):1-11.
    [2]张凤祥,朱合华等编著.盾构隧道[M].北京:人民交通出版社,2004
    [3]王振信.盾构法的现状与展望[J].隧道译丛,1991,2:16-22.
    [4]肖明清南京纬三路长江隧道总体设计的关键技术研究[J].现代隧道技术,2009,46(6): 1-5.
    [5]王梦恕.水下交通隧道发展现状与技术难题——兼论“台湾海峡海底铁路隧道建设方案”[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [6]《重庆主城排水工程过长江盾构隧道修建关键技术研究》研究报告[R],重庆市排水有限公司、西南交通大学,中煤工程设计咨询集团重庆设计研究院,2006年.
    [7]刘成宇.土力学[M].北京:中国铁道出版社,2000.
    [8]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [9]Buekley S E, Leverett M C. Mechanism of fluid displacement in sands[J]. Trans. AIME. 1942,146:107-116.
    [10]Warrant J E, Root P J. The behavior of naturally fractured reservoirs[J]. SPEJ, Sep.1963, 245-255.
    [11]Closmann P J. An aquifer model for fissured reservoirs [J]. SPEJ,1975:385-389.
    [12]HANSBO S. Consolidation of clay with special reference to influence of vertical drains[J]. Swedish Geotechnical Institute,1960,18:45-50.
    [13]Shlomo P Neuman. Saturated-unsaturated seepage by finite elements[J]. Journal of the Hydraulics Division, ASCE,1973,99(12):2233-2251.
    [14]Neuman S P. Galerkin approach to unsaturated flow in soils. Int:Finite Element Method in Flow Problem,1974,517-522.
    [15]W C Desai. Finite element methods for flow in porous media in fluids[M]. New York: Wiley,1975.
    [16]Lam L, Fredlund D G, Barrour S L. Transient seepage model for saturated-unsaturated soil system:a geotechnical engineering approach[J]. Canadian Geotechnical Journal, 1987,24(4):565-580.
    [17]吴良骥,G L Bloomsburg.饱和非饱和区中渗流问题的数值模型[J].水利水运科学研究,1985,(6):213-217.
    [18]汪自力,高骥,李信,等.饱和—非饱和三维瞬态渗流的高斯点有限元分析[J].郑 州工学院学报,1991,12(3):84-90.
    [19]张家发.土坝饱和与非饱和稳定渗流场的有限元分析[J].长江科学院院报,1994,11(3):41-45.
    [20]独仲德,赵英杰,程金茹.黄土非饱和渗流试验研究[J].水文地质工程地质,1997,(2):50-52.
    [21]严飞,詹美礼,速宝玉.饱和-非饱和渗流计算参数分析长江科学院院报,2004,21(5):28-31.
    [22]切尔内绍夫.水在裂隙网络中的运动[M].盛志浩,田开铭,译.北京:地质出版社,1987.
    [23]Snow D T. Anisotropic permeability of fractured media [J]. Water Resource Res.,1969, 5(6):1273-1289.
    [24]Barenblatt G I. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematical Mechanics.1960,24(5):1286-1303.
    [25]Wilson C. R., P. A. Witherspoon et al. Large-scale hydraulic conductivity measurements in fractured granite [J]. Int. j. Rock Mech. Min, Sci.& Geomech. Abstr..1983.20(6): 269-276.
    [26]Louis C. Rock Hydraulics in Rock Mechanics [M]. New York, Wiley,1974.
    [27]Witherspoon P. A., et al. Validity of cubic law for fluid flow in a deformable rock fracture [J]. Water Resour. Res.,1980,16(6):016-1024.
    [28]Wang J. S. Y, and T. N. Narasimhan. Hydrologic mechanisms gonerning fluid flow in a partially saturated, fractured, porous medium. Water Resour. Res..1985, 21(12):1861-1874.
    [29]Peters R. r., and E. A. Klavetter. A continuum model for water movement in an unsaturated fractured rock mass. Water Resour. Res..1988,24(3):416-430.
    [30]张有天,张武功.隧洞水荷载的静力计算[J].水力学报,1980(3):52-62.
    [31]毛昶熙,陈平.岩石裂隙渗流的计算与试验[J].水利水运科学研究,1984(3):29-37.
    [32]毛昶熙,段祥宝,李定方.网络模型程序化及其应用[J].水利水运科学研究,1994(3):197-07.
    [33]田开铭.裂隙水交叉流的水力特性[J].地质学报,1986(2):202-214.
    [34]张家发.裂隙岩体渗流参数讨论和渗流场有限元计算与分析[J].长江科学院院报,1990(2):56-64.
    [35]王恩志,杨成田等.裂隙网络及地下水网络流数值方法的研究[J].勘察科学技术,1991, (4):13-16.
    [36]万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型[J].水利水运科学研究,1993,(4):347-353.
    [37]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [38]速宝玉,詹美礼,赵坚.光滑裂隙水流模型实验及其机理初探[J].水利学报,1994(5):19-24.
    [39]谢和平.分形—岩石力学导论[M].北京:科学技术出版社,1996.
    [40]周创兵,叶自桐,何炬林等.岩石节理张开度的概率模型与随机模拟[J].岩石力学与工程学报,1998,17(3):267-272.
    [41]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [42]杨栋,赵阳升,段康廉等.广义双重介质岩体水力学模型及有限元模拟[J].岩石力学与工程学报,2000,19(2):182-185.
    [43]许光祥,张永兴,哈秋舲.粗糙裂隙渗流的超立方和次立方定律及其试验研究[J].水利学报,2003(3):74-79.
    [44]宋晓晨,徐卫亚.非饱和带裂隙岩体渗流的特点和概念模型[J].岩土力学,2004,25(3):407-411.
    [45]于青春,刘丰收,大西有三.岩体非连续裂隙网络三维面状渗流模型[J].岩石力学与工程学报,2005,24(4):662-668.
    [46]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1994.
    [47]Tsang C. F., Coupled behavior of rock joints. Proc International Symposium on Rock Joints.1990(6):505-518.
    [48]Terzaghi K. Theoretical soil mechanics [M]. New York:Wiley and sons Inc.,1943.
    [49]Biot MA. General theory of three dimensional consolidation [J]. Appl. Phy.,1941(12): 155-164.
    [50]Nelson R. Frcature Permeability in Porous reservoirs:Experimental and Field Approach, PH D Dissertation, Department of Gelogy, Texas A& M University, College Station, TX 77843,1975.
    [51]Ayatollahi M S, Noor ishad J, Witherspoon P A. Stress fluid flow analysis of fractured rocks. J. of Eng. Mech.,1983,109(1):1-13.
    [52]Barton N, Bandis S. Bakhtar K. Strength Deformationand Conductivity Coupling of Rock Joints, Int J Rock Min Sci& Geomech Abstr,1985,22(3).
    [53]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rockmasses [J]. Water Resource Research,1986(13):1854-1865
    [54]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,1987(2):22-28.
    [55]陶振宇,唐万福,张黎明,沈小莹.水库诱发地震预测的新途径[J].第二次全国岩石力学与工程学术会议论文集,北京:知识出版社,1989.
    [56]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [57]刘亚晨,吴玉山,刘泉声.核废料贮存裂隙岩体耦合分析研究综述[J].地质灾害与环境保护,1999,10(3):72-78.
    [58]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4):338-344.
    [59]张玉卓.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997,18(4):59-62.
    [60]高海鹰,夏颂佑.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19(2):102-105.
    [61]王媛.裂隙岩体渗流及其与应力的全耦合分析[博士学位论文][D].南京:河海大学,1995.
    [62]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报,1997,19(4):73-77.
    [63]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析[J].河海大学学报,1998,26(2):26-30.
    [64]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998(7):55-59.
    [65]郑少河.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [66]忤彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2002(1):1-4.
    [67]陈卫忠,邵建富,G. Duveau等.粘土岩饱和-非饱和渗流应力耦合模型及数值模拟研究[J].岩石力学与工程学报,2005,24(17):3011-3016.
    [68]刘先珊,周创兵.裂隙岩体非饱和水力应力耦合的不连续介质模型研究[J].岩石力学与工程学报,2007,26(7):1485-1491.
    [69]张玉军,张维庆.考虑裂隙的几何-力学特性的双重孔隙介质水-应力耦合模型及其有限元分析[J].水利学报,2009,40(12):1452-1459.
    [70]吉小明.隧道工程中水力耦合问题的探讨[J].地下空间与工程学报,2006,2(1):149-154.
    [71]水利电力部.水工隧洞设计规范.1984.
    [72]张有天,张武功.隧洞水荷载的静力计算[J].水利学报,1980(6):52-62.
    [73]张有大,张武功,王镭.再论隧洞水荷载的静力计算[J].水利学报,1985(3):22-32.
    [74]董国贤.水下公路隧道[M].北京:人民交通出版社,1984.
    [75]Brekke T. L., B. D. Ripley. Design guidelines for pressure tunnels and shafts. Prepared by California University at Berkeley. EPRI.1987.
    [76]王建宇.对我国隧道工程中2个问题的思考[J].铁道建筑技术,2001,(4):1-4.
    [77]Lee I M. Analysis of an underwater tunnel with consideration of seepage force [J]. Tunnels and Metropolises,1998.
    [78]王建秀,杨立中,何静.深埋隧道外水压力计算的解析—数值法[J].水文地质工程地质,2002,(3):17-19.
    [79]#12
    [80]关宝树译.青函隧道土压研究报告-第八章隧道衬砌上的压力[J].隧道译丛,1980(10):38-50.
    [81]蔡晓鸿,蔡勇平.水工压力隧洞结构应力计算[M].北京:中国水利水电出版社,2004.
    [82]张黎明,李鹏,孙林娜,等.考虑地下水渗流影响的衬砌隧洞弹塑性分析[J].长江科学院院报,2008,25(5):84-93.
    [83]李宗利,任青文,王亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291-1295.
    [84]P. C. Kelsall, J. B. Case, C. R. Chabannes. Evaluation of excavation-induced changes in rock permeability [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr:1984,21 (3): 37-46.
    [85]L. Zhang, J. A. Franklin. Prediction of water flow into rock tunnels:an analytical solution assuming an hydraulic conductivity gradient [J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1993,30(1):37-46.
    [86]X. Yi. R. Kerry Rowe, K. M. Lee. Observed and calculated pore pressures and deformations induced by an earth balance shield[J]. Can. Geotech. J,1993,30:476-490.
    [87]杨林德,丁文其.渗水高压引水隧道衬砌的设计研究[J].岩石力学与工程学报,1997,16(2):112-117.
    [88]Murad Y. Abu-Farsakh, George Z. Voyiadjis computtional model for the simulation of the shield tunneling process in cohesive soils[J]. Int. J. Anal. Meth. Geomech,1999(23), 23-44.
    [89]黄涛,杨立中.山区隧道涌水量计算中的双场耦合作用研究[M].成都:西南交通大学出版社,2002.4.
    [90]J. H. Shin, T. I. Addenbrooke, D. M. Potts. A numerical study of the effect of groundwater movement on long-term tunnel behaviour [J]. Geotechnique,2002,52(6): 391-403.
    [91]李廷春,李术才,陈卫忠,等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397-401.
    [92]陈卫忠,杨建平,杨家岭,等.裂隙岩体应力渗流耦合模型在压力隧洞工程中的应用岩石力学与工程学报,2006,25(12):2384-2391.
    [93]KASPER T, MESCHKE G. A numerical study of the effect of soil and grout material properties and cover depth in shield tunnelling[J]. Computers and Geotechnics,2006, 33(4):234-247.
    [94]夏炜洋,何川,晏启祥,等.高水压岩质盾构隧道施工期结构内力分析[J].岩石力学与工程学报,2007,S2:2727-3731.
    [95]原华,张庆贺,胡向东,等.大直径越江盾构隧道各向异性渗流应力耦合分析[J].岩石力学与工程学报,2008,27(10):2130-2137.
    [96]靳晓光,李晓红,张燕琼.越江隧道施工过程的渗流-应力耦合分析[J].水文地质工程地质,2010,37(1):62-67.
    [97]Litwiniszyn J. Fundamental principles of the mechanics of stochastic medium, Proc. Of 3th Conf. Theo. Appl. Mech., Bon gal or e, India,1957.
    [98]Atkinson, J. H., Potts, D. M.. Subsidence above shallow tunnels in soft ground [J]. J. Geotech.Eng., ASCE,1977(103):307-325.
    [99]Mair R J. Centrifuge modeling of tunnel construction in soft c lay [D]. London: Cambridge University,1979.
    [100]Chambon P, Corte J F. Shallow tunnels in cohesion less soil stability of tunnel face [J]. Journal of Geotechnica 1 Engineering,1994,120(7):1148-1165.
    [102]Imamura S, Hagiwara T, Mito K, et al. Settlement trough above a model shield observed in a centrifuge[C]. Proceedings of The International Conference Centrifuge 98, Tokyo:Japanese Geotechnical Society,1998:713-719.
    [103]张厚美,过迟,付德明.圆形隧道装配式衬砌接头刚度模型研究[J].岩土工程学报,2000,22(3):309-313.
    [104]何英杰,张述琴,吕国梁.穿黄隧道内外衬联合受力结构模型试验研究[J].长江科学院院报,2002,19(增刊):64-66.
    [105]唐志成,何川,林刚.地铁盾构隧道管片结构力学行为模型试验研究[J].岩土工程学报,2005,27(1):85-89.
    [106]徐前卫.盾构施工参数的地层适应性模型试验及其理论研究[D].同济大学博士论文,2006.
    [107]朱合华,徐前卫,郑七振,等.软土地层土压平衡盾构施工参数的模型试验研究[J].土木工程学报,2007,40(9):87-94.
    [108]张建刚,何川.高水压大断面盾构隧道管片衬砌结构静力学行为模型试验研究[J].水文地质工程地质,2009(4):80-84.
    [109]KASHIMA Y, KONDO N, INOUE M. Development and application of the DPLEX shield method:Results of experiment using shield and segment models and application of the method in tunnel construction[J]. Tunnelling and Underground Space Technology, 1996, 11(10):45-50.
    [111]Nomoto T., Imamura S., Hagiwara T, et al. Shield tunnel construction in centrifuge[J]. Journal of Geotech.& Geoenvir. Eng.,1999, ASCE 125(4):289-300.
    [113]傅德明,李向红,等.大型盾构掘进模拟试验平台:中国,CN200410089260.7[P].2004.
    [114]李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101-1105.
    [115]何於琏,程永亮,蒲晓波,等.盾构机控制系统检测试验台:中国,CN200610160040[P].2006.
    [116]方勇.土压平衡式盾构掘进过程对地层的影响与控制[D].西南交通大学博士论文,2007.
    [117]袁大军,黄清飞,小泉淳,等.水底盾构掘进泥水喷发现象研究[J].岩石力学与工程学报,2007,26(11):2296-2301.
    [118]#12
    [120]Anagnostou G., Kovari K.. The face stability of slurry shield driven tunnels [J]. Tunneling and Underground Space Technology,1994,9(2):165-174.
    [121]蒋顺清,郭熙灵,范一林,等.南水北调穿黄工程盾构施工泥浆特性试验研究[J].长江科学院院报,1997,14(1):50-53.
    [122]J. HE, W. J. VLASBLOM. Effects of filter cake on soil cutting in tunneling[C]. Progress in Tunnelling after 2000, Proceedings of the AITES-ITA 2001 World Tunnel Congress Milan-Italy 10th-13th June 2001, Volume II:181-188.
    [123]程展林,吴忠明,徐言勇.砂基中泥浆盾构法隧道施工开挖面稳定性试验研究[J].长江科学院院报,2001,18(5):53-64.
    [124]韦良文,张庆贺,邓忠义.大型泥水盾构隧道开挖面稳定机理与应用研究[J].地下空间与工程学报,2007,3(1):87-91.
    [125]李昀,张子新.泥浆渗透对盾构开挖面稳定性的影响研究[J].地下空间与工程学报,2007,3(4):720-725.
    [126]毛昶熙.渗流计算分析与控制[M].第二版.北京:中国水利水电出版社,2003.
    [127]潘家铮.水工隧洞和洞压室[M].北京:水利水电出版社,1990.
    [128]孙钧,侯学渊.地下结构(上、下)[M].北京:科学出版社,1991.
    [129]俞茂宏,M. Yoshimine,强洪夫,等.强度理论的发展和展望[J].工程力学,2004,21(6):1-20.
    [130]陆士强.土的本构关系[M].武汉:武汉水利电力大学出版,1997.
    [131]张学言.土塑性力学的建立与发展[J].力学进展,1989,19(4):485-496.
    [132]俞茂宏.各向同性屈服函数的一般性质[R].西安交通大学科学技术报告,1961.
    [133]Hoek E, Brown E T. Underground excavations in rock[M]. London:Institution of Mining and Metallurgy,1980.
    [134]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [135]Drucker D C, Prager W. Solid mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics,1952,10(2):157-165.
    [136]邓楚键,何国杰,郑颖人.基于M-C准则的D-P系列准则在岩土工程中的应用研究[J].岩土工程学报,2006,28(6):735-739.
    [137]郑颖人,沈珠江,龚晓南.广义塑性力学—岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [138]Shi G. H.. Goodman R. E.. Two dimensional discontinuous analysis[J]. Int. J. Num. Anal. Methods Goemech.,1985,9:541-556.
    [139]ABAQUS. ABAQUS scripting reference manuall version6.4[M]. Pawtucket, USA: ABAQUS, Inc.2003.
    [140]朱以文,蔡元奇,徐晗ABAQUS与岩土工程分析[M].香港:中国图书出版社,2005.
    [141]陈卫忠,伍国军,贾善坡.ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社,2010.
    [142]谢红强,何川,李围.江底盾构隧道施工期外水压分布规律的现场试验研究[J].岩土力学,2006,27(10):1851-1855.
    [143]徐军,郑颖人.隧道围岩弹塑性随机有限元分析及可靠度计算[J].岩土力学,2003,24(1):70-74.
    [144]陈虬,刘先斌.随机有限元法及其工程应用[M].成都:西南交通大学出版社,1993.
    [145]宋玉香,刘勇,朱永全.响应面方法在整体式隧道衬砌可靠性分析中的应用[J].岩石力学与工程学报,2004,23(11):1847-1851.
    [146]松尾稔.地基工程学可靠性设计的理论与实际[M].北京:人民交通出版社,1990.
    [147]景诗庭,朱永全,宋玉香.隧道结构可靠度[M].北京:中国铁道出版社,2002.
    [148]夏炜洋,何川,汪洋.隧道衬砌随机分析的区间有限元方法[J].岩土力学,2008,29(10):2877-2881.
    [149]刘长虹,陈虬.单源模糊数的模糊随机有限元方程的解法[J].应用数学和力学,2000,21(11):1147-1150.
    [150]胡国良,龚国芳,杨华勇,等.盾构螺旋输送机液压驱动及控制系统[J].液压与气动,2004(12):33-35.
    [151]Samer Sadek, Magued G., Iskander, et al. Geotechnical properties of transparent silica[J]. Canadian Geotechnical Journal,2002(39):111-124.
    [152]Isknade[M], Lai C Oswald, R Mannheimer. Development of a transparent material to model the geotechnical properties of soils[J]. ASTM Geotehnical Testing Journal, GTJODJ,1994,17(4):425-33.
    [153]韦良文.泥水盾构隧道施工土体稳定性分析与试验研究[D].同济大学博士论文,2007.
    [154]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [155]陆震铨,祝国荣.地下连续墙的理论与实践[M].北京:中国铁道出版社,1987.
    [156]陈福煊,孙嘉戌.泥浆滤液侵入孔隙地层径向导电特性的模拟实验[J].地球物理学报,1996,39(增刊):371-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700