离子型化合物对菲吸附解吸影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统研究了一系列离子型化合物,氯化钠、有机酸五氯酚、4种有机碱(正己胺、三甲胺、苯胺、1-萘胺)、阴离子表面活性剂十二烷基苯磺酸钠(SDBS)、阳离子表面活性剂十二烷基三甲基氯化胺(DDTMA)、溶解性有机质(DOM)在不同水化学条件下对菲在天然地质吸附剂上吸附解吸的影响,此外还对氯化钠、阴离子表面活性剂、阳离子表面活性剂存在时对菲在人工碳纳米材料上吸附的影响规律进行了初步研究。主要研究结果包括:(1)随pH降低,五氯酚吸附显著增加,而菲的吸附受pH影响较小;五氯酚在纯菲晶体颗粒上的吸附远强于在土壤天然有机质上的吸附能力;pH为8时,五氯酚抑制菲的吸附,除了竞争疏水点位抑制吸附外,水溶液中高浓度五氯酚与菲分子形成二聚物,也是造成菲吸附降低的原因;pH为5和3时,五氯酚对菲的吸附有一定促进作用,因为分子态的五氯酚在溶液中形成二聚物的能力较差,而且以极性端吸附的五氯酚可以通过π-π作用促进菲的吸附;低浓度菲对五氯酚吸附没有明显影响,高浓度菲促进五氯酚吸附,因为高浓度吸附态菲通过π-π作用为五氯酚提供了更多的疏水吸附点位。(2)以阳离子形态存在的有机碱的吸附能力强于以分子形态存在的有机碱,而当有机碱的存在形态相同时,其疏水性越强吸附能力越强;以阳离子形态存在的有机碱可以促进菲的吸附,如正己胺促进菲的吸附,但当有机碱的溶解性强,疏水性弱,吸附能力弱,且没有长的疏水烷基链时,其对菲的吸附则没有明显促进作用,如三甲胺;当以分子形态存在的有机碱疏水性很强时,如1-萘胺,能够竞争菲的吸附点位,从而抑制菲的吸附,而当以分子形态存在的有机碱的疏水性很弱时,如苯胺,则不能有效的竞争菲的吸附点位,对菲的吸附不产生影响;极性分子1-萘胺抑制非极性分子菲的吸附,而菲对1-萘胺的吸附没有明显影响。(3)不同类型表面活性剂的吸附规律不同,其对菲吸附的影响也有不同的规律。DDTMA浓度较低时,盐度增加抑制DDTMA吸附;而高浓度DDTMA的吸附随着盐度增加而增强。SDBS的吸附随着盐度增加显著增强;表面活性剂浓度较低时对菲的增溶作用不显著,当达到临界胶束浓度(CMC)之后,表面活性剂对菲的增溶作用随着表面活性剂浓度增加迅速增加。盐度增加使得表面活性剂CMC值降低,对菲的增溶作用大大增强;阴离子表面活性剂抑制菲的吸附,且抑制作用随盐度增加而增强;阳离子表面活性剂促进菲的吸附,且促进作用随盐度增加而增强,这些现象不能仅仅通过盐析效应来解释,而是因为盐度增加降低了表面活性剂CMC,增加了胶束聚集程度,从而改变了表面活性剂对菲的界面过程的影响。(4)菲在纳米碳管上的吸附能力很强,远高于其在沉积物颗粒上的吸附,而且吸附等温线呈现高度非线性,菲在单壁纳米碳管上吸附能力强于多壁纳米碳管;SDBS和DDTMA都抑制菲在纳米碳管上的吸附,抑制程度随表面活性剂浓度增加而增加,随菲浓度增加而减弱;SDBS和DDTMA的存在使菲在纳米碳管上吸附非线性减弱,NaCl的加入促进菲在纳米碳管上的吸附,但对菲在纳米碳管上的吸附非线性没有明显影响。(5)DOM是一种天然的表面活性剂,可以形成胶束聚集体。DOM浓度低于CMC时,以单体存在,导电能力强,而当DOM聚集成胶束时,即浓度大于CMC时,导电能力下降;当DOM浓度低于临界胶束浓度时,对菲的溶解度没有明显影响,但DOM浓度达到CMC后对菲有显著的增溶作用,而继续增加DOM浓度,对菲的溶解度增加变缓,这是因为在高浓度时,DOM胶束结构发生变化;DOM浓度较低时,沉积物颗粒对其吸附强,随着DOM浓度增加,由于吸附接近饱和,沉积物颗粒继续吸附DOM的能力减弱;随DOM浓度增加,在一定程度上抑制了菲的吸附。(6)研究了阴离子表面活性剂SDBS对沉积物中菲和芘的解吸作用,结果表明:SDBS对芘的增溶作用比菲强,但由于芘的疏水性强,更难于解吸,SDBS对芘的解吸率低于对菲的解吸率;SDBS对菲和芘的解吸率与菲和芘的初始浓度无关,随SDBS浓度增加而增加,菲和芘的解吸率不受另一个多环芳烃存在的影响;菲和芘在固-水-表面活性剂三相中的分配关系为:随着SDBS浓度增加,固相中菲和芘所占比例逐渐降低;而菲和芘在表面活性剂相所占比例逐渐增加,尤其是当溶液中表面活性剂浓度达到CMC后,菲在表面活性剂相所占比例显著增加;在达到表面活性剂临界胶束浓度之前,菲在水相中的浓度基本保持不变,这意味着固相中菲减少的量主要转移到表面活性剂相中了,而不是水相中;当表面活性剂平衡浓度达到CMC后,水相中的菲所占比例下降,说明这时表面活性剂相容纳菲的能力相当强,使得固相和水相中菲的比例都显著减少,菲大量进入到表面活性剂相中;另外菲在三相中的比例及其变化规律与菲的初始染毒浓度无关。(7)研究了菲的不可逆吸附行为,结果表明:菲在不同天然地质吸附剂上的吸附都有一定的迟滞性,菲的迟滞性与吸附剂的不可逆吸附点位含量有关,还与其在可逆点位和不可逆点位间的扩散速率有关,即受吸附解吸时间的影响;土壤用氢氧化钠处理后,破坏了颗粒物的空间结构,使被无机物包裹的有机质暴露出来,有利于被吸附的污染物的解吸,使得菲的解吸不可逆性减弱;由于盐析作用,氯化钠的存在促进菲的吸附,而菲的解吸迟滞性减弱;通过液氮吸附进行吸附剂微孔含量测定结果表明,盐度增加使得土壤颗粒中微孔体积减少。
Impact of series ionic compounds, such as NaCl, pentachlorophenol (PCP),4 organic base (n-hexylamine, trimethylamine,1-naphthylamine, aniline), an anionic surfactant sodium dodecylbenzene sulfonate (SDBS), a cationic surfactant dodecyltrimethylammonium chloride (DDTMA), dissolved organic matter (DOM), on the sorption-desorption of phenanthrene (PHE) under various water chemistry condition was studied. (1) Sorption of PCP on geosorbents (soil and sediment) increased with decreasing pH, whereas pH has no obvious effect on PHE sorption. PCP reduced PHE sorption at pH 8, due to the competition of hydrophobic sorption sites on geosorbents, as well as the forming of dimmer of PHE with anionic PCP in aqueous phase. PCP could enhance PHE sorption at pH 5 and 3, because low pH favors PCP sorption on geosorbents via ionic or polar head, and PHE can sorbe on the sorbed PCP throughπ-πinteraction. Moreover, PHE sorption on sorbed PCP was rather stronger than on natural organic matter in geosorbents.At low PHE concentration, PHE had no effect on PCP sorption, while enhanced PCP sorption at high concentration, as a result of more hydrophobic sorption sites andπ-πinteraction provided by the sorbed PHE. (2) Sorption capacity of cationic organic bases is stronger than neutral ones. When existing as the same species, the greater the hydrophobicity, the stronger the sorption. Some cationic organic bases, such as n-hexylamine, enhanced PHE sorption. However, other cationic organic base, such as trimethylamine, had no effect on PHE sorption, because of its low hydrophobicity, and weak sorption ability. Some neutral organic base, such as 1-naphthylamine, could reduce PHE sorption, as a result of competition for hydrophobic sorption sites. And other neutral organic base, such as aniline, due to its low hydrophobicity and weak sorption ability, had no effect on PHE sorption.1-naphthylamine, as a polar compound, reduced PHE sorption, whereas PHE, as an apolar compound, had no effect on 1-naphthylamine sorption. (3) At low DDTMA concentrations, salinity slightly reduced DDTMA sorption. Conversely, at higher DDTMA concentrations, salinity increased DDTMA sorption. Sorption of SDBS increased significantly with salinity. There was practically little or no solubility enhancement for PHE below the critical micelle concentration (CMC) of the surfactants, while the water solubility of PHE was significantly enhanced by the two surfactants above their CMCs. With salinity increasing, PHE solubility enhancement by surfactants increased significantly, and the CMC of surfactants decreased. SDBS reduced PHE sorption, and the reduction extent increased with salinity. DDTMA enhanced PHE sorption, and the extent also increased with salinity. Hence, the change of PHE sorption could not be explained by "salt out" effect only but due to the change of micelle structure at elevated salinity. (4) PHE sorption on carbon nanotubes was much higher than those on natural geosobents, and the sorption isotherms were nonlinear. Single-walled carbon nanotube exhibited the greater sorption ability for PHE than multi-walled carbon nanotube. Both of SDBS and DDTMA reduced PHE sorption on carbon nanotubes. The extent of PHE sorption reduction by surfactants increased with surfactant concentration, and decreased with PHE concentration. Sorption of PHE on carbon nanotubes increased with salinity. The sorption nonlinearity of PHE was weakened by SDBS and DDTMA, and had no change in the present of NaCl. (5) DOM, as a natural surfactant, can form micelles. The electricity conductivity of DOM was higher when it existed as a monor as compared to when it existed as micelles. DOM enhanced PHE solubility at concentrations above CMC, and the extent of PHE solubility enhancement decreased when DOM concentration was too high. This is because the structure of DOM micelle changed at high concentration. The sorption capacity of sediment to DOM decreased with DOM concentration increased. PHE sorption was reduced by DOM in some extent. (6) The extent of solubility enhancement by SDBS for pyrene was greater than for PHE, but the desorption percent of pyrene was smaller than PHE, due to its greater hydrophobicity. The desorption percent of pyrene and PHE was not dependent on their initial concentrations and the coexisting of each other, but increased with SDBS concentration. PHE and pyrene sorbed on geosorbents decreased, and the amount involved in surfactant micelle phase increased with SDBS concentration. Below CMC, PHE sorbed on the teosorbent transferred to surfactant phase with the increasing of SDBS concentration, but not to the water phase. Above CMC, PHE both in the geosorbent and water transferred to the surfactant phase, indicating the strong ability of surfactant to "dissolve" PHE. The partition of PHE and pyrene in soil-surfactant-water system was not dependent on their initial concentration. (7) Desorption of PHE all exhibited hysteresis to some extents. The irreversibility is time-dependent, and the irreversible entrapment in hydrophobic nanopores is the mechanism of sorption-desorption hysteresis, whereas slow kinetic mechanism for pollutant molecule transferring between irreversible and reversible sorption sites can exert effect in short time desorption process. Geosorbent treated by NaOH showed a reduced sequestration ability on PHE than the origin geosorbent did. PHE sorption was enhanced, whereas sorption-desorption hysteresis was weakened with salinity increasing. N2 sorption illustrated that soil organic matter changed to a more condensed conformation at higher salinity, losing lots of its hydrophobic nanopores, which were unfavorable for irreversible sorption.
引文
[1]. Zou S., Yu X., Tang J.S. et al. Combined pollution of karst water in the process of urbanization in the south suburb of Liuzhou.12th international symposium on water-rock interaction, Kunming, China,2007.
    [2].龚平,李培军,孙铁珩Ecotoxicological effects of Cd,Zn,Phenanthrene and MET combined pollution on soil microbe.中国环境科学,1997,17:58-62
    [3]. 周启星,孙繁翔,朱琳主编生态毒理学科学出版社北京2004
    [4]. Wang L., Govind R. Sorption of toxic organic compounds on wastewater solids:Mechanism and modeling. Environ. Sci.Technol., 1993,27:152~156
    [5]. Fabrega J. R., Jafvert C. T., Li H., et al. Modeling competitive cation exchange of aromatic amines in water-saturated soils. Environ. Sci. Technol.,2001,35:2727~2733
    [6]. McGinley P. M., Katz L. E., Weber W. J. Jr. A distributed reactivity model for sorption by soils and semdiments.2.Multicomponent systems and competitive effect. Environ. Sci. Technol.,1993,27:1524-1531
    [7]. Weber W. J., Sung H. K., Johnson M. D. A distributed reactivity model for sorption by soils and sediments.15.High-concentration co-contaminant effects on phenanthrene sorption and desorption. Environ. Sci. Technol.,2002,36:3625~3634
    [8]. Dentel S. K., Jamrah A. I., Sparks D. L. Sorption and cosorption of 1,2,4-trichlorobenzene and tannic acid by organoclays. Water Res.,1998,32:3689~3697
    [9]. Sheng G., Xu S., Boyd S. A. Corsorption of organic contaminants from water by hexadecyltrimethylammonium-exchanged clays. Water Res.,1996,29:312~320
    [10]. Carter M. C., Weber W. J. Modeling Adsorption of ICE by activated carbon preloaded by background organic matter. Environ. Sci. Technol.,1994,28:614~623
    [11]. Chiou C. T., Kile D. E. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ. Sci. Technol.,1998,32:338~ 343
    [12]. Ajai C.H., Rajiv A.P., David A.S., et al. Effect of pH and cationic and nonionic surfactants on the adsorption of pharmaceuticals to a natural aquifer material. Environ. Sci. Technol., 2005,39:2592~2598.
    [13].王连生.环境化学进展.北京:化学工业出版社.1995.315-344
    [14].聂麦茜,张志杰.环境中多环芳烃污染环境规律及生物净化技术.环境导报,2001,1:18-21
    [15].于晓丽,张江.多环芳烃污染与防治对策.油气田环境保护,1996,6:53-56
    [16].周宏仓,金保升,仲兆平等.煤电厂多环芳烃的生成与控制.环境污染治理技术与设备,2003,4:50-53
    [17]. Suess M. J. The environmental load and cycle of polycyclic aromatic hydrocarbons. Environ. Sci. Technol.,1976,6:239~250
    [18]. Shabad L. M. Circulation of carcinogenic polycyclic aromatic hydrocarbons in the human environment and carcer prevention. J Natl Carcer Inst.,1980,64:405v410
    [19].戴树桂.环境化学.北京:高等教育出版社.2001
    [20].金相灿,程振华,徐南妮等.有机化合物污染化学—有毒有机物污染化学.北京:清华大学出版社.1990
    [21]. Neff J. M. Polycyclic aromatic hydrocarbons in the aquatic environment source, fates and biological effects. London:Applied Science Publishers Ltd.1979,1:259~263
    [22]. Lee M. L., Novotny M. V., Bartle K. D. Analysis chemistry of polycyclic aromatic compounds. New York:Academic Press.1981,1:451~456
    [23].郑一,王学军,李本刚.天津地区表层土壤多环芳烃含量的中尺度空间结构特征.环境科学学报,2003,23:25-30
    [24].陈静,王学军,陶澍等.天津地区土壤多环芳烃在刨面中的纵向分布特征.环境科学学报,2004,24:286-290
    [25]. Cornelissen G., Rigterink H., Ferdinandy N. M. A. et al. Rapidly desorbing fractions of PAHs on contaminated sediments as a predictor of the extent of bioremediation. Environ. Sci. Technol.,1998,32:966~970
    [26].谢重阁等.环境中的苯并[a]芘及其分析技术.北京:中国环境科学出版社.1991
    [27]. Wang. X., Hong H., Xu L. et al. Distribution and transportation of polycyclic aromatic hydrocarbons in suspended particulate matter and surface sediment from the Pearl river estuary. J. Envion. Sci. Health,2002, A37:451~463
    [28]. Zeng Y., Hong A. P. K., Wavrek D. A. Integrated chemical-biological treatment of benzo[a]pyrene. Environ. Sci. Technol.,2000,34:854~862
    [29].张民,顾宇飞,顾颖等.低浓度五氯酚对鲫鱼血液细胞毒性的体外研究.环境化学,2005,24:302-306
    [30].周海云,洪华嫦,王喜梅等.五氯酚对鱼鳃丝组织结构及电解质元素的影响.应用与环境生物学报,2004,10(1):084-087
    [31].杨淑贞,韩晓冬,陈伟。五氯酚对生物体的毒性研究进展。环境与健康杂志,2005,22(5):396-398
    [32]. Fingerhut M.A., Halperm W.E., Marlow D.A. Cancer mortality in workers exposed to 2,3,7,8,TCDD. N Engl J Med,1991,324:212~215
    [33].梁忠明,王继宗,王立。气相色谱法分离测定空气中的有机胺类物质。分析化学,1992,20:79-81
    [34]. Guest I., Varma D.R., Teratogenic and macromolecular synthesis inhibitory effects of trimethylamine on mouse embryos in culture. J. Toxicol. Environ. Health,1992,36:27~41
    [35].高大明,邱祖民,余淑娴.甲胺-水、二甲胺-水和三甲胺-水系统的汽液平衡。南昌大学学报,2003,27:62-67
    [36].王爱香.阻抑动力学分光光度法测定纺织品中1-荼胺。印染,2009,19:34-36
    [37]. Diaz T.G., Acedo M.I., Munoz D.L. Determination of 1-naphthylamine and the related pesticides, naptalam and antu, in river-water by high performance liquid chromatography. Application to the study of the degradation processes of naptalam. Analyst,1994,119: 1151~1155.
    [38]. Younis T.I., Bashir W.A. Multisyinge flow injection analysis for determination of 1-naphthylamine in water samples. Talanta,1995,42:1121~1125.
    [39].王景华著。水体污染。北京:科学出版社,1985.
    [40]. Smith J.G. The poisonous mechanism of aniline. Envin. Let,1975,53:1238~1240
    [41]. Itoh N., Naoki M., Toyoko K. Oxidation of aniline to nitrobenzene by nonheme B romoperoxidase. Biochem Mol Biol. Intl,1993,29:785~791.
    [42]. Loidle M., Hinteregger C., Ditzemuller G. Degradation of aniline and monochlorinated anilines by soil-born pseudomonas acidovorans strains. Arch Microbiol 1990,155:56~60
    [43].张逸飞,何卿,焦涛,程城,王贯中。微生物降解苯胺的研究进展。污染防治技术。2009,22:35-39
    [44].魏福祥,郝莉莉,王金梅。表面活性剂对环境的污染及检测研究进展。河北工业科技,2006,23:57-60
    [45].马晓梅,刘少敏,陈宗琪。洗涤剂用阴离子表面活性剂的发展及应用前景。表面活性剂工业,1997,4:1-4
    [46].丛培凯,冷家峰,叶新强。合成洗涤剂对生态环境的污染与防治对策。山东环境,2003,1:45-46
    [47]. Lipnitska Y., Parshikova T.V. Change in strength of binding in the chlorophyll protein-lipid complex of algae in the presence of surfactants. Hydrobiol J,1993,29:70~78
    [48]. Singer M.M., Georga S., Tjeerderna, R.S. Relationship of some physical properties of oil dispersants and their toxicity to marine organisms. Arch Environ. Contam. Toxicol.1995, 29:33-38.
    [49]. Whiting V.K. Effect of the anionic surfactant SDS on newly hatched blue crabs, callinectes sapidus, and other routinely tested esturine crustaceans. Arch. Environ. Conta. Toxical.1996, 31:293-295
    [50].郑雯君油分散剂应用于海面溢油的综合评价。海洋环境科学。1993,12:68-74.
    [51].周晓见。表面活性剂对海洋微藻的生理生化影响。大连海事大学,2000.
    [52]. Lambert S. M., Porter P. E., Schieferstein R. H. Movement and sorption of chemicals applied to soil. Weeds,1965,13:185~190
    [53].朱利中,冯少良.混合表面活性剂对多环芳烃的增溶作用及机理.环境科学学报,2002,22:774-778
    [54].王晓蓉,吴顺年,李万山等.有机粘土矿物对污染环境修复的研究进展.环境化学,1997,16:1-13
    [55]. Lee J. F., Crum J. R., Boyd S. A. Enhanced retention of organic contaminants by soils exchanged with organic cations. Environ. Sci. Technol.,1989,23:1365~1372
    [56]. Sheng G., Xu S., Boyd S. A. Mechanism(s)-controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environ. Sci. Technol.,1996, 30:1553~1557
    [57]. Xu S., Sheng G., Boyd S. A. Use of organoclays in pollution abatements. Adv. Agron., 1997,59:25-62
    [58]. Sheng G., Wang X., Wu S., et al. Enhanced sorption of organic contaminants by smecititic soils modified with a cationic surfactant. J. Environ. Qual.,1998,27:806~814
    [59]. Zhu L., Chen B., Tao S., et al. Interactions of organic contaminants with mineral-adsorbed surfactants. Environ. Sci. Technol.,2003,37:4001~4006
    [60]. Corvasce M., Zsolnay A., D'Orazio V., et al. Characterization of water extractable organic matter in a deep soil profile. Chemosphere 2006,62:1583~1590.
    [61]. Lam B., Baer A., Alaee M., et al. Major structural components in freshwater dissolved organic matter. Environ. Sci. Technol.2007,41:8240~8247
    [62]. Kalbitz K., Solinger S., Park J.H. Controls on the dynamics of dissolved organic matter in soils:a review. Soil Sci.2000,165:277~304.
    [63]. Guggenberger G., Zech W., Composition and dynamics of dissolved organic carbonhydrates and lignin-degeneration products in two coniferous forests, N.E. Bavaria, Germany. Soil Bio. Biochem.1994,26:19~27.
    [64].郑立臣,解宏图,张威等。秸秆不同还田方式对土壤中溶解性有机碳的影响。生态环境,2006,15:80-83
    [65]. Park J.H., Kalbitz K., Matzner E. Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Bio. Biochem.2002,34:813~822
    [66]. Zafiriou O.C., Joussot-Dubien J., Zepp R.G., et al. Photochmistry of natural waters. Environ. Sci. Technol.1984,18:358A-371A
    [67]. Schulten H.R., Schnitzer M. Chemical model structures for soil organic matter and soils. Soil Sci.1997,162:115~130
    [68]. Schwarzenbach R.P., Gschwend P.M., Imboden D.M. Environmental organic chemistry,2nd ed. John Wiley&L Sons,2004.
    [69]. Ferreira J.A., Nascimiento O.R., Martin-Neto L. Hydrophobic interactions between spin-label 5-SASL and humic acid as revealed by ESR spectroscopy, Environ. Sci. Technol. 2001,35:761~765
    [70]. Simpson A.J., Kingery W.L., Shaw D.R., et al. The application of organic components at the solid-aqueous minterface of a whole soil. Environ. Sci. Technol.2001,35:3321~3325.
    [71]. Kerner M., Hohenberg H., Ertl S., et al. Self-organization of dissolved organic matter to micelle-like microparticles in river water. Nature 2003,422:150~154.
    [72]. von Wandruszka R. The micelle model of humic acid:evidence from pyrene fluorescence measurements. Soil Sci.1998,163:921~930.
    [73]. Simpson A.J., Kingery W.L., Hayes M.H.B., et al. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschften 2002,89:84~88
    [74]. Lippold H., Gottschalch U., Kupsch H. Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere 2008,70:1979~1986.
    [75]. Schlautman M.A., Morgan J.J. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol.1993,27:961~ 969
    [76]. Carter C.M., Suffet I.H. Binding of DDT to dissolved humic materials. Environ. Sci. Technol.1982,16:735-740
    [77]. Terashima M., Fukushima M., Tanaka S. Evaluation of solubilizing ability of humic aggregate basing on the phase-separation model. Chemosphere 2004,57:429~445
    [78]. Chiou C.T., Malcolm R.L., Brinton T.I., et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol.1986, 20:502-508
    [79]. Ben-Hur M., Letey J., Farmer W.J., et al. Soluble and solid organic matter effects on atrazine adsorption in cultivated soils. Soil Sci. Soc. Am. J.2003,67:1140~1146
    [80]. Von Oepen B., Kordel W., Klein W. Sorption of nonpolar and polar compounds to soils:processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere,1991,22:285~304
    [81]. Nzengung V. A., Wampler J. M. Organic cosolvent effects on sorptiong equilibrium of hydrophobic organic chemicals by organoclays. Environ.Sci.Technol.,1996,30:89~96
    [82]. Leboeuf E. J., Weber W. G. Macromolecular characteristics of natural organic matter. Environ. Sci. Technol.,2000,34:3632~3640
    [83]. Chiou C.T., Shoup T.D., Porter P.E. Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions. Organic Geochem.,1985,8:9~14
    [84]. Chiou C. T., Peters L. J., Fried V. H. A physical concept of soil-water equilibria for nonionic organic compounds. Science (Washington D.C.),1979,206:831~832
    [85]. Nguyen T.H., Cho, H.H., Poster D.L., et al. Evidence for por-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environ. Sci. Technol.2007,41: 1212~1217
    [86]. Xing B., Ran Y., Rao P.S.C., et al. Importance of adsorption (hole-filling) mechanism for hydrophobic organic contaminants on an aquifer kerogen isolate. Envrion. Sci. Technol.2004, 38:4340-4348
    [87]. Cowan C.T., White D. The mechanism of exchange reactions occurring between sodium montmorillonite and various n-primary aliphatic amine salts. Trans. Faraday Soc.1958,54: 691-697.
    [88]. Somasundaran P., Columbia U., Celik M., et al. The role of surfactant precipitation and redissolution in the adsorption of sulfonate on minerals. SPE J.1984,24:233~239
    [89]. Duan, L., Zhang, N., Wang, Y., et al. Release of hexachlorocyclohexanes from historically and freshly contaminated soils in China:Implications for fate and regulation. Environ. Pollut. 2008,156:753~759
    [90]. Yang, W., Duan, L., Zhang, N., et al. Resistant desorption of hydrophobic organic contaminants in typical Chinese soils:implications for long-term fate and soil quality standards. Environ. Toxicol. Chem.2008,27:235~242
    [91]. Huang, W., Weber, W.J. A distributed reactivity model for soroption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ. Sci. Technol.1997,31:2562~2569
    [92]. Lu, Y., Pignatello, J.J. Demonstration of the "conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ. Sci. Technol. 2002,36:4553~4561
    [93]. Weber, W.J., Kim, S.H., Johnson, M.D. Distributed reactivity model for sorption by soils and sediments.15. High-concentration co-contaminant effects on phenanthrene sorption and desorption. Environ. Sci. Technol.2002,36:3625~3634
    [94]. Bhandari, A.;Novak, J.T., Berry, D.F. Binding of 4-monochlorophenol to soil. Environ. Sci. Technol.1996,30:2305-2311
    [95]. Burgos, W.D., Novak, J.T., Berry, D.F. Reversible sorption and irreversible binding of naphthalene and a-naphthol to soil:Elucidation of processes. Environ. Sci. Technol.1996,30: 1205-1211
    [96]. Hatzinger, P.B., Alexander, M. Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol.1995,29:537~545
    [97]. Jafvert, C.T., Vogt, B.K., Fabrega, J.R. Induced desorption of DDT, DDD, and DDE from a contaminated sediment. J. Environ. Eng.1997,123:225~233
    [98]. Sander M., Lu Y., Pignatello J.J. A thermodynamically based method to quantify true sorption hysteresis. J. Environ. Qual.34:1063~1072
    [99]. Adamson A. W. Physical chemistry of surfaces,5th ed; J. Wiley & Sons, Inc.:New York, 1990.
    [100].Kan A.T., Fu G., Hunter M.A., et al. Irreversible adsorption of naphthalene and tetrachlorobiphenyl to Lula and surrogate sediments. Environ. Sci. Technol.1997,31: 2176~2185.
    [101].Carroll K.M., Harkness M.R., Bracco A.A., et al. Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environ. Sci. Technol.1994,28,253~258.
    [102].Pignatello J.J., Xing B. Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol.1996,30:1~10.
    [103].Danis T. G., Albanis T. A. Sorption and removal of chlorophenols from aqueous solutions by soil organic matter. Environ. Toxicol. Chem.,1997,62:65~76
    [104].Northcott G. L., Jones K. C. Experimental approaches and analytical techniques for determining organic compound bound residues in soil and sediment. Environ.pollut.,2000, 108:19-43
    [105].Rutherford D.W., Chiou C.T., Kile D.E. Influence of soil organic matter composition on the partition of organic compounds. Environ. Sci. Technol.1992,26:336~340.
    [106].Pan B., Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol.2008,42:9005~9013.
    [107].Gotovac S., Hattori Y., Noguchi D., et al. Phenanthrene adsorption from solution on single wall carbon nanotubes. J. Phys. Chem. B 2006,110:16219-16224.
    [108].Long R.Q., Yang R.T. Carbon nanotubes as superior sorbent for dioxin removal. J. American Chem. Soc.2001,123:2058-2059.
    [109].Karickhoff S. W., Brown D. S., Scott T. A. Sorption of hydrophobic pollutants on natural sediments. Water Res.,1979,13:241-248
    [110].Fabrega J.R., Jafvert C.T., Li H., et al. Modeling short-term soil-water distribution of aromatic amines. Environ. Sci. Technol.1998,32:2788~2794
    [111].Huang J-H, Matzner E. Adsorption and desorption of organotin compounds in organic and mineral soils. Eur. J. Soil Sci.2004,55,693~698.
    [112].Yang K., Wu W., Jing Q., et al. Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ. Sci. Technol.2008,42:7941~7936
    [113].Cea M., Seaman J.C., Jara A.A., et al. Describing chlorophenol sorption on variable-charge soil using the triple-layer model. J. colloid Interface Sci.2005,292:171~178
    [114].Wang Z.D., Gamble D.S., Langford C.H. Interaction of atrazine with Laurentian soil. Environ. Sci. Technol.1992,26:560-565.
    [115].雷志芳,叶常明.苯胺在水体颗粒物上吸附特征环境科学1998,11:70-72
    [116].陶庆会,汤鸿霄.阿特拉津在天然水体沉积物中的吸附行为环境化学2004,23:145-]51
    [117].Burton E.D., Phillips I.R., Hawker D.W. Sorption and Desorption behavior of tributyltin with natural sediments. Environ. Sci. Technol.2004,38:6694~6700.
    [118].Ko S., Schlautman M.A., Carraway E.R. Effects of solution chemistry on the partitioning of phenanthrene to sorbed surfactants. Environ. Sci. Technol.1998,32:3542~3548.
    [119].Li J.L., Chen B.H. Solubilization of model polycyclic aromatic hydrocarbons by nonionic surfactants. Chem. Eng. Sci.2002,57:2825~2835.
    [120].Park S.2002. Impact of non-ionic surfactant on the remediation of NAPL-associated and soil sorbed pentachlorophenol. Ph.D.Thesis, Department of Civil Environment and Architectural Engineering, University of Colorado.
    [121].David M., Kinson S.L. Laboratory studies to investigate short-term oxidation and sorption behaviour of neptunium in artificial and natural seawater solutions. Mar. Chem.1997,56: 107-121.
    [122].Yongkoo S., Linda S.L. Effect of dissolved organic matters in'treated effluents on sorption of atrazine and prometryn by soils. Soil Sci. Soc.2000,64:1976~1983.
    [123].Celis R., Barriuso E., Houot S. Effect of liquid sewage sludge addition on atrazine sorption and desorption by soil. Chemosphere 1998,37:1091~1107.
    [124].Willams C.F., Agassi M., Letey J. Facilitated transport of napropamide by dissolved organic matter through soil columns. Soil Sci. Soc. Am. J.2000,64:590~594.
    [125].Totsche, K.U., Danzer J., Kogel-Knanber I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments. J. Environ. Qual.1997,26:1090~1100.
    [126].Xing B., Pignatello J.J., Gigioti B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ. Sci. Technol.1996,30:2432~2440.
    [127].Xing B., Pignatello J.J. Copetitive sorption between 1,3-dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soil organic matter. Environ. Sci. Technol. 1998,32:614-619.
    [128].Zhu L.Z., Lou B.F., Yang K., Chen B.L. Effects of ionizable organic compounds in different species on the sorption of p-nitroanline to sediment. Water Res.2005,39:281~288.
    [129].Yu, A., huang, W. Competitive sorption between 17a-ethinyl estradiol and naphthalene by sediments. Environ. Sci. Technol.2005,39,4878~4885.
    [130].Sanchez-Camazano M.A., Sanchez-Martin M.J., Rodriguez-Cruz M.S. Sodium dodecyl sulphate enhanced desorption of atrazine:Effect of surfactant concentration and of organic matter content of soils. Chemosphere.2000,41(8):1301~1305.
    [131].Stapleton M.G., Sparks D.L., Dentel S.K. Sorption of pentachlorophenol to HDTMA-clay as a function of ionic strength and pH. Environ. Sci. Technol.,1994,28:2330~2335.
    [132].Fingler S., Drevenkar V., Frobe Z. Sorption of chlorophenolates in soils and quifer and marine sediments. Arch. Environ. Contain. Toxicol.2004,48:32~39.
    [133].He Y., Xu J., Wang H., et al. Potetial contributions of clay minerals and organic matter to pentachlorophenol retention in soils. Chemosphere 2006,65:497-505.
    [134].Pu A., Cutright T.J. Sorption-desorption behavior of PCP on soil organic matter and clay minerals. Chemosphere 2006,64:972~983.
    [135].李克斌,魏红,陈经涛,等.灭草松和莠去津在土壤中的竞争吸附环境科学学报2006,26:1164-1171.
    [136].Chiou C.T. Mcgroddy S.E. Kile D.E., Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ. Sci. Technol.,1998,32:264~269.
    [137].Gunasekara A.S. Xing B. Sorption and desorption of naphthalene by soil organic matter: Importance of aromatic and aliphatic components. J. Envrion. Qual.222003,32:240~246.
    [138].Weber W.J. Mcginley P.M. Katz L.E. A distributed reactivity model for sorption by soil and sediments.1. conceptual basis and equilibrium assessments. Environ. Sci. Technol.1992,26: 1955-1962.
    [139].Weber W.J. Huang W. Yu H. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments 2. Effect of soil organic matter heterogeneity. J. Contam. Hydrol.1998,31:149-165.
    [140].Watanabe N. Schwartz E. Scow K.M. et al. Relating desorption and biodegradation of phenanthrene to SOM structure characterized by quantitative pyrolysis GC-MS. Environ. Scil Technol.2005,39:6170~6181.
    [141].Hyun S. Lee L.S. Rao P.S. Significance of anion exchange in pentachlorophenol sorption by variable-charge soils. J. Environ. Qual.2003,32:966~976.
    [142].王光火,朱祖祥,pH对土壤吸持磷酸根的影响及其原因,土壤学报,1991,28:8-10.
    [143].Smith T., Slipchenko L.V., Gordon M.S. Modeling π-π interactions with the effective fragment potential method:the benzene dimmer and substituents. J. Phys. Chem. A 2008, 112:5286-5294.
    [144].Sinnokrot M.O., Sherrill C.D. High-accuracy quantum mechanical studies ofπ-π interactions in benzene dimmers. J. Phys. Chem. A 2006,110:10656-10668
    [145].Fabrega J.R., Jafvert C.T. Modeling short-term soil-water distribution of aromatic amines. Environ. Sci. Technol.1998,32:2788-2794.
    [146].Laird D.A., Fleming P.D. Mechanisms for adsorption of organic bases on hydrated smectite surfaces. Environ. Toxi. Chem.1999,18:1668~1672.
    [147].Weidenhaupt, A., Arnold, C., Muller, S.R., et al. Sorption of organotin biocides to mineral surfaces. Environ. Sci. Technol.1997,31,2603~2609.
    [148].Bi, E., Schmidt, T.C., Haderlein, S.B. Sorption of heterocyclic organic compounds studies for process identification. Environ. Sci. Technol.2006,40,5962~5970.
    [149].Zhang, W., Xu, Z., Pan, B., et al. Adsorption enhancement of laterally interacting phenol/aniline mixture onto nonpolar adsorbents. Chemosphere 2007,66,2044~2049.
    [150].Li Z., Burt T., Bowman R. Sorption of ionizable organic solutes by surfactant-modified zeolite. Environ. Sci. Technol.2000,34:3756~3760.
    [151].Sun, S., Jaffe, P.R. Sorption of PHE from water onto alumina coated with dianionic surfactants. Environ. Sci. Technol.1996,30:2906~2913
    [152]. Yang K., Zhu L., Xing B. Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environ. Sci. Technol.2006,40:4274-4280.
    [153].Fytianos, K., Voudrias, E., Papamichali, A. Behavior and fate of linear alkylbenzene sulfonate in different soils. Chemosphere 1998,36:2741~2746.
    [154].Qu, Z., Yediler, A., He, Y. Effects of linear alkylbenzene sulfonate (LAS) on the adsorption behavior of phenanthrene on soils. Chemosphere 1995,30:313~325.
    [155].Chen, B., Zhu, L., Zhu, J., et al. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environ. Sci. Technol.2005, 39:6093-6100.
    [156].Jones-Hughes, T., Turner, A. Sorption of ionic surfactants to estuarine sediment and their influence on the sequestration of phenanthrene. Environ. Sci. Technol.2005,39,1688~ 1697.
    [157].Rao, P., He, M. Adsorption of anionic and nonionic surfactant mixtures from synthetic detergents on soils. Chemosphere 2006,63,1214~1221.
    [158].Westall, J.C., Chen, H., Zhang, W.J. Sorption of linear alkybenzenesulfonates on sediment materials. Environ. Sci. Technol.1999,33:3110~3118.
    [159].Kile, D.K., Chiou, C.T. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration. Environ. Sci. Technol. 1999,23:832~838.
    [160].Tremblay, L., Kohl, S.D., Rice, J.A., et al. Effect of temperature, salinity, and dissolved humic substances on the sorption of polycyclic aromatic hydrocarbons to estuarine particles. Mar. Chem.2005,96 (11):21-34.
    [161].Bowman R.S., Haggerty G.M., Huddleston R.G., et al.1995. Sorption of nonpolar organic compounds, inorganic cations, and inorganic oxyanions by surfactant-modified zeolites. In: Sabatini, D.A., Knox, R.C., Harwell J.H. (Eds.), Surfactant-Enhanced Subsurface Remediation, ACS symposium Series 594. American Chemical Society, Washington, DC, pp. 54-64.
    [162].Haggerty G.M., Bowman R.S. Sorption of Chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol.1994,28:452~458.
    [163].Karapanagioti H.K., Sabatini D.A., Bowman R.S. Partitioning of hydrophobic organic chemicals into anionic and cationic surfactant-modified sorbents. Water Res.2005,39: 699-709.
    [164].Nayyar S. P., Sabatini D. A., Harwell J. H. Surfactant adsolubilization and modified admicellar sorption of nonpolar, polar, and ionizable organic contaminants. Environ. Sci. Technol.1994,28:1874-1881.
    [165].Zhu R., Zhu L., Xu L. Sorption characteristics of CTMA-bentonite complexes as controlled by surfactant packing density. Colloids Surf. A 2007,294:221-227.
    [166].Danzer, J., Grathwohl, P,1998. Coupled transport of phenanthrene and nonionic surfactant in natural aquifer material. Groundwater Qual.250,19~25.
    [167].Deshpande S., Wade S.D., Sabatini D.A. et al. Surfactant selection for enhancing ex situ soil washing. Water Res.1999,33:351~360.
    [168].Huang H., Lee W.G. Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate:effect of critical micelle concentration. Chemosphere 2001,44:963~972.
    [169].Means J.C. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar. Chem.,1995,51:3-16.
    [170].Turner A. Rawing M.C. The influence of salting out on the sorption of neutral organic compounds in estuaries. Water Res.,2001,35:4379~4389.
    [171].Turner A. Salting out of chemicals in estuaries:implications for contaminant partitioning and modeling. Sci. Total Environ.,2003:599~612.
    [172].Eganhouse R. P. and Calder J. A. The solubility of medium molecular weight aromatic hydrocarbons and the effects of hydrocarbon co-solutes and salinity. Geochim. Cosmochim. Acta 1976,40:555~561
    [173].Sharma, R. Surfactant Adsorption and Surface Solubilization. ACS Smposium Series 615, American Chemical society, Washington, DC.1995.
    [174].王丽萍,朱心强.纳米碳管的毒性研究进展.国外医学(卫生学分册).2007,34:201-205
    [175].Ji L., Chen W., Duan L, et al. Mechanisms for strong adsorption of tetracycline to carbon nanotubes:a comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol.2009,43:2322-2327.
    [176].Lin D., Xing B. Adsorption of phenolic compounds by carbon nanotubes:Role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol.2008,42:7254~ 7259.
    [177].Chen W., Duan L., Wang L., et al. Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes. Environ. Sci. Technol.2008,42:6862~6868.
    [178].Peng X., Li Y., Luan Z., et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett.2003,376:154~158.
    [179].Fagan S.B., filho A.G.S., Lima J.O.G., et al. Dresselhaus M.S.1,2-dichlorobenzene interacting with carbon nanotubes. Nano Lett.2004,4:1285~1288.
    [180].Zhao J., Lu J. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl. Phys. Lett.2003,82:3746~3748.
    [181].Chen J., Chen W., Zhu D. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes:Effects of aqueous solution Chemistry. Environ. Sci. Technol.2008,42: 7225-7230.
    [182].Yang K., Zhu L., Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ. Sci. Technol.2006,40:1855~1861.
    [183].Chen W., Duan L., Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol.2007,41:8295~8300.
    [184].Yang K., Xing B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environ. Pollut.2007,145:529~537.
    [185].Hilding J.M., Grulke E.A. Heat of adsorption of butane on multiwalled carbon nanotubes. J. Phys. Chem. B 2004,108,13688-13695.
    [186].Gotovac S., Song L., Kanoh H., et al. Assembly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloid surf. A 2007,300:117~121.
    [187].Yang K., Wang X., Zhu L., et al. Competitive sorption of pyrene, phenanthrene, and naphthalene on multiwalled carbon nanotubes. Environ. Sci. Technol.2006,40:5804~5810.
    [188]. Wang X., Lu J., Xing B. Sorption of organic contaminants by carbon nanotubes:Influence of adsorbed organic matter. Environ. Sci. Technol.2008,42:3207~3212.
    [189].Yang K., Jing Q., Wu W., et al. Adsorption and conformation of cationic surfactant on single-walled carbon nanotubes and their influence on naphthalene sorption. Environ. Sci. Technol.2010,44:681-687.
    [190].Johnson W.P. Amy, G.L. Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments, Environ. Sci. Technol. 1995,29:807-817.
    [191].Conte P., Agretto A., Spaccini R., et al. Soil remediation:humic acids as natural surfactants in the washings of highly contaminated soils. Environ. Pollut.2005,135:515~522.
    [192].Avena M.J., Wilkinson K.J. Disaggregation kinetics of a peat humic acid:mechanism and pH effects, Environ. Sci. Technol.2002,36,5100~5105.
    [193].Dominguez A., Fernandez A., Gonzalez N., et al. Determination of critical concentration of some surfactants by three techniques. J. Chem. Educ.1997,74:1227~1231.
    [194].Perez-Rodriguez M., Perieto G., Rega C., et al. Comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir 1998,14:4422-4426.
    [195].Carpena P., Aguiar J., Bernaola-Galvan P., et al. Problems associated with the treatment of conductivity-concentration data in surfactant solutions, Langmuir 2002,18:6054~6058.
    [196].Terashima M., Fukushima M., Tanaka S. Influence of pH on the surface activity of humic acid:micelle-like aggregate formation and interfacial adsorption, Colloids Surf. A 2004,247: 77-83
    [197].Quagliotto P., Montoneri E., Tambone F., et al. Chemicals from wastes:compost-derived humic acid-like matter as surfactant, Environ. Sci. Technol.2006,40:1686~1692.
    [198].Hayase K., Tsubota H. Sedimentary humic acid and fulvic acid as surface active substances, Geochim. Cosmochim. Acta 1983,47:947~952.
    [199].Quadri G., Chen X., Jawitz J.W., et al. Biobased surfactant-like molecules from organic wastes:the effect of waste composition and composting process on surfactant proterties and on the ability to solubilize tetrachloroethene (PCE), Environ. Sci. Technol.2008,42:2618~ 1623.
    [200].Zana R., Benrraou M., Rueff R. Alkanediyl-a,co-(dimethylalkylammonium bromide) surfactants.1. Effect of the spacer length on the critical micelle concentration and micelle ionization degree, Langmuir 1991,7:1072~1075.
    [201].Zhao C., Winnik M.A. Fluorescence probe thechniques used to study micelle formation in water-soluble block copolymers. Langmuir 1990,6:514~516.
    [202].Zhu L., Feng S. Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic-nonionic surfactants, Chemosphere 2003,53:459~467.
    [203].Torigoe K., Tasaki A., Yoshimura T. et al. Synthesis and aqueous solution properties of PAMAM dendron surfactants bearing a quaternary ammonium focal group and sugar terminal groups, Colloids Surf. A 2008,326:184~190.
    [204].Sutton R., Sposito G. Molecular structure in soil humic substances:the new view, Environ. Sci. Technol.2005,39:9009~9015.
    [205].Menger F.M., Littau C.A. Gemini surfactants:synthesis and properties, J. Am. Chem. Soc.1991,113:1451~1452.
    [206].Landrum P.F., Nihart S.R., Eadie B.J., et al. Reverse-phase separation method for determining pollutant binding to Aldrich humic acid and dissolved organic carbon of natural waters, Environ. Sci. Technol.1984,18:187~192.
    [207].Lassen P., Carlsen L., The effect of humic acids on the water solubility and water-organic carbon partitioning of fluorine and its nso-heteroanalogues:carbazole, dibenzofuran, and dibenzothiophene, Chemosphere 1999,38:2959~2968.
    [208].Pan B., Ghosh S., Xing B. Dissolved organic matter conformation and its interaction with pyrene as affected by water chemistry and concentration, Environ. Sci. Technol.2008,42: 1594-1599.
    [209].Lassen P., Carlsen L., Solubilization of phenanthrene by humic acids, Chemosphere.1997, 34:817-825.
    [210].Akkanen J., Kukkonen J.V.K., Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter, Environ. Toxicol. Chem.2003,22: 518~524.
    [211].Wang P., Keller A.A. Partitioning of hydrophobic organic compounds within soil-water-surfactant systems, Water Res.2008,42:2093~2101.
    [212].Gauthier T.D., Shane E.C., Guerin W.F., et al. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials, Environ. Sci. Technol.1986,20:1162~1166.
    [213].Kabir-ud-Din, Shafi M., Bhat P.A., et al. Solubilization capabilities of mixtures of cationic Gemini surfactant with conventional cationic, nonionic and anionic surfactants towards polycyclic aromatic hydrocarbons. J. Hazard. Mater.2009,10.1016/j.jhazmat.2009.01.022.
    [214].Marschner B., Winkler R., Jodemann D. Factors controlling the partitioning of pyrene to dissolved organic matter extracted from different soils. Eur. J. Soil Sci.2005,56:299~306.
    [215].Sander M., Pignatello J.J. Characterization of charcoal adsorption sites for aromatic compounds:Insights drawn from single-solute and bi-solute competitive experiments. Environ. Sci. Technol.2005,39:1606~1615.
    [216].Wang X., Sato T., Xing B. Competitive sorption of pyrene on wood chars. Environ. Sci. Technol.2006,40:3267~3272.
    [217].Xu, J., Yuan, X., Dai, S. Effect of surfactants on desorption of aldicarb from spiked soil. Chemosphere.2006,62:1630~1635.
    [218].Rouse J.D., Morita T., Furukawa K., et al. Solubilization of mixed polycyclic aromatic hydrocarbon systems using an anionic surfactant. Colloids and Surf. A.2008,325:180~ 185.
    [219].Chun C.L., Lee J.J., Park J.W. Solubilization of PAH mixtures by three different anionic surfactants. Environ. Pollut.2002,118:307~313.
    [220].Coyle G.T., Harmon T.C., Suffet I.H. Aqueous solubility depression for hydrophobic organic chemicals in the presence of partially miscible organic solvents. Environ. Sci. Technol.1997, 31:384~389.
    [221].Rosen M.J. Surfactants and interfacial phenomena. John Wiley & Sons.1989.
    [222].Guha S., Jaffe P., Peters C. Solubilization of PAH mixtures by nonionic surfactant. Environ. Sci. Technol.1998,32:930~935.
    [223].Baalousha M., Mikael M.H., Philippe L. C. Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time. Coll Surf A: Physicochem. Eng. Aspects 2006,272:48~55.
    [224].Boninand J., Simpson M. Variation in phenanthrene sorption coefficients with soil organic matter fractionation:the result of structure or conformation? Environ. Sci. Techol.2007,41: 153-159.
    [225].Drori Y., Aizenshtat Z., Chefetz B. Sorption-desorption behavior of atrazine in soils irrigated with reclaimed wastewater. Soil Sci. Soc. Am. J.2005,69:1703~1710.
    [226].Oren A., Chefetz B. Sorption-desorption behavior of polycyclic aromatic hydrocarbons in upstream and downstream river sediments. Chemosphere,2005,61:19~29.
    [227].Streck T., Poletika N.N., Jury W.A., et al. Description of simazine transport with rate-limited two-stage, linear and nonlinear sorption. Water Resour. Res.1995,31:811~822.
    [228].Altfelder S., Streck, T., Richter, J. Nonsingular sorption of organic compounds in soil:the role of slow kinetics. J. Environ. Qual.2000,29:917~925.
    [229].Huang, W., Weber Jr., W.J. A distributed reactivity model for sorption by soils and sediments.11:Slow concentration-dependent sorption rates. Environ. Sci. Technol.1998,32: 3549-3555.
    [230].Huang W., Yu H., Weber Jr. W.J. Hysteresis in sorption and desorption of hydrophobic organic contaminants by soils and sediments:1. A comparative analysis of experimental protocols. J. Contamin. Hydrol.1998,31:129~148.
    [231].Morillo E., Maqueda C., Reinoso R., et al. Effect of two organic amendments on norflurazon retention and release by soils of different characteristics. Environ. Sci. Technol. 2002,36:4319~4325.
    [232].Huang W., Young T.M., Schlautman M.A., et al. A distributed reactivity model for sorption by soils and sediments.9. General isotherm nonlinearity and applicability of the dual reactive domain model. Environ. Sci. Technol.1997,31:1703~1710.
    [233].Braida W. J., Pignatello J. J., Xing B. et al. Sorption hysteresis of benzene in charcoal particles[J]. Environ. Sci. Techol.,2003,37:409-417.
    [234].Hunter M. A., Kan A. T., Tomson M. B. Development of a surrogate sediment to study the mechanisms responsible for adsorption/desorption hysteresis. Environ. Sci. Techol.,1996,30: 2278-2285.
    [235].Fu G., Kan A.T., Tomson M., Adsorption and desorption hysteresis of PAHs in surface sediment.1994,13:1559~1567.
    [236].Lennartz B., Louchart X. Effect of drying on the desorption of diuron and terbuthylazine from natural soils. Environ. Pollut.2007,146:180~187.
    [237].Chefetz B., Bilkis Y.I., Polubesova T. Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Res.2004,38:4383~4394
    [238].Gamst J., Olesen T., Jonge H.D., et al. Nonsingularity of naphthalene sorption in soil: observation and the two-compartment model. Soil Sci. Am. J.2001,65:1622~1633

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700