惠民凹陷沙三段三角洲前缘滑塌浊积砂体发育规律与油气聚集关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以构造地质学、沉积学、高分辨率层序地层学、成臧动力学为理论基础,综合运用地质、测井、地震和各种分析测试为技术手段,对惠民凹陷古近系沙三段基山砂体进行了构造特征及其演化、沉积体系、砂体成因机制以及成藏规律和岩性油气藏预测等多方面研究,在以下几个方面取得了进展:
     1.初步分析了基山砂体形成的构造动力学机制。本区有三次快速沉积时期,即Es3、Ed和Nm+Q时期,而Esl和Ng期沉积速率较小。东营期以前以构造沉降为主,东营期以后逐渐过渡至以负荷沉降为主。盆地演化也经历了孔店-沙四期沉积斜坡、沙三-沙二期断块强烈活动、沙一-东营期断块活动复杂化和新近纪拗陷等4个阶段。断层活动速率研究表明,东营期断裂活动强度大于沙一期,而非前人认为的沙一期断裂活动强度大于东营期。
     2.通过对基山砂体岩石学特征、沉积构造特征、粒度分布特征、地震相特征和测井曲线特征等研究,提出基山砂体发育一套三角洲-滑塌浊积沉积体系,可划分为5种成因类型,每一种滑塌浊积岩又可划分出4种沉积物类型。基山砂体发育6期三角洲前缘滑塌浊积岩,主要分布在田14-商548-商744-商15-线和夏90-夏13-夏4-夏5之间。
     3.研究区沙河街组三段~沙河街组二段下亚段可划分为一个二级层序,进一步可细化为4个三级层序,分别为沙三下亚段下部层序、沙三下亚段上部~沙三中亚段下部层序、沙三中亚段上部~沙三上亚段下部层序和沙三上亚段上部~沙二亚段层序。基山砂体位于沙三下亚段上部~沙三中亚段下部层序下降半旋回和沙三中亚段上部~沙三上亚段下部层序上升半旋回,可细化为6个准层序,三角洲前缘-滑塌浊积岩主要发育于Ps4、Ps4、Ps6准层序。
     4.本次工作详细总结了该区油气成藏条件,提出基山砂体存在侧向运移成藏、垂向运移成藏和复合运移成藏等3种成藏模式,发育构造油气藏、岩性油气藏以及构造-岩性油气藏三种油气藏类型,其中构造、构造-岩性复合油藏多发育在砂体分布区内的二级断裂坡折带,岩性油藏主要分布在三级断裂坡折带。
     5.指出了基山砂体下一步较为有利的勘探目标,包括田家地区充填浊积岩、孟寺低隆起的砂岩透镜体和商64断裂带多种类型砂岩圈闭。
Based on the theory of tectonic geology, sedimentology, high resolution sequence stratigraphy and dynamics of petroleum accumulation formation, many aspects about Jishan Sand Body of Sha 3 Member in Huimin Depression are studied carefully, such as its tectonic character and evolution, sedimentary system, sand body genesis, pool-forming pattern, and etc., combined with many kinds of technical approach. There are main conclusions and views in this thesis as follows.1. The tectonic dynamic mechanism of Jishan Sand Body is analyzed tentatively. It is found there are three quick sediment periods, i.e. the sediment period of Sha 3 Member, Dongying Formation, and Minghuazhen formation and Quaternary. The tectonic depression is dominant before Dongying Movement, and then the load depression becomes gradually the main depression. There are 4 periods in the evolution progress of Huimin Depression, i.e. the sediment period of Kongdian Formation and Sha 4 Member, Sha 3 Member and Sha 2 Member, Sha 1 Member and Dongying Formation, and Late Tertiary. The research result of fault movement rate shows that the intensity of fault movement rate in Dongying Period is more than that in Sha 1 Period.2. It is advanced that a delta-creeping turbidite system exists in Jishan Sand Body according to a research result of characters of rock, sedimentary structure, grain fineness distribution, seismic face and well logging curve. This delta-creeping turbidite system includes 5 genetic types and each of this creeping turbidite consists of 4 type's sedimentary matter. There are 6 delta-creeping turbidite with different forming time in Jishan Sand Body. The main distribution area of delta-creeping turbidite lies in an area from Well Tian 14 to Well Sahng 15 and in an area between Well Xia 90 with Well Xia 5.3. The high resolution sequence framework has been built up in the area of Jishan Sand Body. One of the second grade sequences and four of the third grade sequence has
    been distinguished. There are 6 associate sequences developed in Jishan Sand Body. The delta-creeping turbudite mainly distribute in Ps4, Ps5 and Ps6 associate sequence.4. The formation condition of oil and gas accumulation is concluded in detail. It is put forward that there 3 patterns of accumulation formation in Jishan Sand Body, including lateral migration accumulation, vertical migration accumulation and composite migration accumulation. The types of oil and gas accumulation include 3 kinds, structure, rock and structure-rock, and the type of rock exist in third grade slpoe-break, and the other two develop in second grade slpoe-break.5. The next favorable exploration targets are pointed out in Jishan Sand Body, including terbidite in Tianjia, sand lens in Mengsi Low Uplift and many kings of sand traps in Shang 64 Fault Zone.
引文
[1] 陈生.形成期沉积盆地运动学定量分析的方法探讨[J].中国地质科学院院报,1990,(20):173—176.
    [2] 蔡希源,李思田等.陆相盆地高精度层序地层学——隐蔽油气藏勘探基础、方法与实践[M].北京:地质出版社,2003.
    [3] 陈广军,宋国奇,毛太诗等.斜坡带低位扇砂岩岩性油气藏勘探方法[J].石油学报,2002,23(3):34—38.
    [4] 陈世悦,袁文芳,鄢继华.济阳坳陷早第三纪震积岩的发现及其意义[J].地质科学,2003,38(3):413—424.
    [5] 杜贤樾,孙焕泉,郑和荣.胜利油区勘探开发论文集[M].北京:地质出版社,1997.
    [6] 杜远生,韩欣.论震积作用和震积岩[J].地球科学进展,2000,15(4):389—393.
    [7] 樊太亮,吕延仓,丁明华.层序地层体制中的陆相储层发育规律[J].地学前缘,2000,7(4):315—321.
    [8] 范存堂,李趁义,张宇.惠民凹陷基山砂体成因及成藏机制探讨[J].复式油气田,2000,6(1):10—12.
    [9] 范德江,孙效功,杨作升,郭志刚.沉积物物源定量识别的非线性规划模型—以东海陆架北部表层沉积物物源识别为例[J].沉积学报,2002,20(1):30—33.
    [11] 方爱民,李继亮,侯泉林,浊流及相关重力流沉积研究综述[J].地质论评,1998,44(3):270—280.
    [12] 冯有良,李思田,解习农.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,2000,7(3):119—132.
    [13] 顾家裕.陆相盆地层序地层格架概念及模式[J].石油勘探与开发,1995,22(4):6—10.
    [14] 何起祥,刘招君,王东坡等.湖泊浊积岩的主要特征及其地质意义[J].沉积学报,1984,2(4):33—46.
    [15] 胡受权,颜其彬,张永贵.断陷湖盆陡坡带陆相层序体系域与油气藏成藏类型[J].石油勘探与开发,1999,26(1):13—17.
    [16] 纪友亮,张世奇等.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996.
    [17] 姜涛,解习农.细粒浊积体的油气地质意义[J].地质科技情报,2003,22(2):51—53.
    [18] 姜在兴,操应长,邱隆伟等.砂体层序地层及沉积学研究—以山东惠民凹陷为例[M].北京:地质出版社,2000.
    [19] 姜在兴,李华启.层序地层学原理及应用[M].北京:石油工业出版社,1996.
    [20] 李继亮,陈昌明,高文学等.我国几个地区浊积岩系的特征[J].地质科学,1978,(1):26-44.
    [21] 李丕龙等.陆相断陷盆地油气成藏组合[M].北京:石油工业出版社,2003.
    [22] 李丕龙,庞雄奇等.陆相断陷盆地隐蔽油气藏形成[M].北京:石油工业出版社,2003,34— 35.
    [23] 李丕龙,翟庆龙,荣启宏.东营凹陷中央背斜带油气运聚特征[J].石油勘探与开发,2000,27(4):64—68.
    [24] 李思田,潘元林,陆永潮等.断陷湖盆隐蔽油气藏预测及勘探的关键技术—高精度地震探测基础上的层序地层学研究[J].地球科学—中国地质大学学报,2002,27(5):593—598.
    [25] 林畅松,刘景彦,张燕梅.沉积盆地动力学与模拟研究[J].地学前缘,1998,5(1):119-125.
    [26] 林畅松,郑和荣,任建业等.渤海湾盆地东营、沾化凹陷早第三纪同沉积断裂作用对沉积充填的控制[J].中国科学(D辑),2003,33(11):1025—1036.
    [27] 刘传虎.陆相湖盆洼陷带浊积砂体岩性油藏地震描述技术[J].石油物探,2000,39(4):65—74.
    [28] 刘豪,王英民,王媛.坳陷湖盆坡折带特征及其对非构造圈闭的控制[J].石油学报,2004,25(2):30—35.
    [29] 刘丽军.深水牵引流沉积特征及研究现状关[J].石油与天然气地,1999,20(4):369—374.
    [30] 刘宪斌,万晓樵,林金逞等.陆相浊流沉积体系与油气[J].地球学报,2003,24(1):61—66.
    [31] 刘忠保,赖志云,汪崎生.湖泊三角洲砂体形成及演变的水槽实验初步研究[J].石油实验地质,1995,17(1):35—41.
    [32] 漆家福,肖焕钦,张卫刚.东营凹陷主干边界断层(带)构造几何学、运动学特征及成因解释[J].石油勘探与开发,2003,30(3):8—12.
    [33] 孙连浦,刘招君,李本才等.水下扇岩相特征及形成机制[J].世界地质,2001,20(3):249-256.
    [34] 孙枢,陈海泓.浊流沉积与等深流沉积.见:张炳熹主编.当代地质科学动向.北京:地质出版社,1987:73—77.
    [35] 王纪祥,陈发景等.山东惠民凹陷伸展构造及调节带特征[J].现代地质,2003,17(2):203—209.
    [36] 王金铎,韩文功,于建国,郑建斌.东营凹陷沙三段浊积岩体系及其油气勘探意义[J].石油学报,2003,24(6):24—29.
    [37] 王居峰,邓宏文.基山砂体层序地层特征及成因类型分析[J].油气地质与采收率,2004,11(3):7—9.
    [38] 魏瑞香,马玉歌,曲卫和,韩华.基山砂体沉积成因探讨[J].华北地震科学,2004,22(4):39—42.
    [39] 武法东,谢风猛,李湘军等.利津断裂带复杂砂砾岩扇体的迁移研究[J].石油勘探与开发,2002,29(6):22—24.
    [40] 徐强,姜烨,董伟良等.中国层序地层研究现状和发展方向[J].沉积学报,2003,21(1):155—167
    [41] 薛良清.层序地层学研究现状、方法与前景[J].石油勘探与开发,1995,22(5):8—13.
    [42] 鄢继华,陈世悦,宋国奇等.三角洲前缘滑塌浊积岩形成过程初探[J].沉积学报,2004,22(4):573—578.
    [43] 严进荣,陈东,郭勤涛,丘东洲.洼陷中浊积岩沉积特征及油气富集规律研究[J].沉积与特提斯地质,2002,22(3):19—24.
    [44] 杨剑萍,操应长.惠民凹陷下第三系沙河街组基山砂体成因及石油地质意义[J].石油大学学报(自然科学版),1999,23(4):10—12.
    [45] 杨剑萍等.惠民凹陷下第三系湖相沉积密集段特征[J].石油大学学报(自然科学版),1998,22(4):21—24.
    [46] 杨剑萍,王辉,陈世悦等.济阳坳陷古近系震积岩特征[J].沉积学报,2004,22(2):281—287.
    [47] 杨万芹,蒋有录.惠民凹陷西部油气成藏期分析[J].油气地质与采收率,2004,11(1):20—22.
    [48] 袁静.山东惠民凹陷古近纪震积岩特征及其地质意义[J],沉积学报,2003,22(1):41—46.
    [49] 张春生,刘忠保,施冬等.涌流型浊流形成及发展的实验模拟[J].沉积学报,2002.20(1):25—29.
    [50] 张勇.惠民凹陷西部早第三纪沙河街组浊积扇及砂岩体沉积特征研究[J].地球学报,2001,22(1):44—48.
    [51] 张宇,邱桂强,李趁义,范存堂.惠民凹陷沙河街组三段岩性油藏勘探方向[J].石油与天然气地质,2003,23(2):163—165.
    [52] 赵密福,刘泽容,信荃麟等.惠民凹陷临南地区断层活动特征及控油作用[J].石油勘探与开发,2000,27(6):9—11.
    [53] 赵密福,信荃麟,刘泽容.惠民凹陷临南洼陷滑塌浊积岩的分布规律及其控制因素[J].石油实验地质,2001,23(3):267—271.
    [54] 郑德顺,吴智平,李凌等.惠民凹陷中生代和新生代断层发育特征及其对沉积的控制作用[J].石油大学学报(自然科学版),2004,28(5):6—11.
    [55] Anderson J. E., J. Cartwright B. J, Drysdalla S. J., Viviana N. Controls on turbidite sand deposition during gravity-driven extension of a passive margin: examples from iocene sediments in Block 4, Angola. Marine and Petroleum Geology, 2000,17:1165-1203.
    [56] Bouma, A.H., Wickens, HdeV., & Coleman. J. M.Architectural characteristics of ne-grained submarine fans: a model applicable to the Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 1995,45:71-75.
    [57] Bouma A. H.. Coarse-grained and (?)ne-grained turbidite systems as end member models: a pplicability and dangers .Marine and Petroleum Geology, 2000,17:137-143.
    [58] Bouma A H. Fine-grained, mud-rich turbid ite systems: Model and comparison with coarse-grained, sand-rich systems[A]. In: Bourn a A H, Stone C G. Fine-Grained Turbidite Systems[C]. AAPG Memoir 72/SEPM Special Publication 68. Unite King: Geological Society Publishing House,2000.9-20.
    [59]Chakraborty. P. P, Mukhopadhyay. B, Pal. T, Gupta. T.D Statistical appraisal of bed thickness patterns in turbidite successions, Andaman Flysch Group, Andaman Islands, India. Journal of Asian Earth Sciences,2002,21:189-196
    [60] Dorrik A V Stow, Mike Mayall. Deep-water sedimentary systems: New models for the 21~(st) century [J].Marine and Petroleum Geology,2000,17(2):125-135.
    [61] Galloway W E. Silicicalstic slope and base-of-slope depositional systems: component facies, stratigraphic architecture, and classification[J].AAPG Bulletin, 1998,82(4): 569-595.
    [62] Hansen. S. M, Fett. T. Identification and evaluation of turbidite using and other deepwater sands using open hole logs and borehole images[A], In: Boum a A H, Stone C G. Fine-Grained Turbid ite Systems[C].AAPG Memoir 72/SEPM Special Publication 68.Unite King: Geological Society Publishing House,2000.317-338.
    [63] Haughton D W, Morton A C, Todd S P. Developments in Sedimentary Provenance Studies[M]. London: Oxford University Press, 1991.
    [64] Howell D G, Normark W R. Sedimentology of Submarine Fans[J].Sandstone deposional Environments, 1981,365-380.
    [65] Jacka A D,Beck R H,st. Germain L C and Harrisonf S C. Perrmian deep sea fans of the delaware Mountain Group(Guadalupian).Delaware Basin, in Guadalupian facies, Apache Mountain area, West Texas. Soc. Econ. Paleontologists and Mineralogists. Permian Basin Section,Pub,68-l 1,1968,126.
    [66] Kolla V, Macurda D B Jr. Sea level changes and timing of turbidity-curreut events in deep-sea fan systems.In: Sea-leavel changes: An Integrated Approach. SEPM, Special Publication, 1988,42: 381-392.
    [67] Kuenen Ph H. Experiments in connection with Daly's hypothesis on the formation of the submarine canyons. Ledsche Geol.Meded,.1937,8:327-335.
    [68] Kuenen Ph H. Migliorini C I. Turbidity currents as a cause of graded bedding. Jour. Geology, 1950,58:41-127.
    [69] Leverenz. A. Trench-sedimentation versus accreted submarine fan an approach to regional-s cale facies analysis in a Mesozoic accretionary complex: "Torlesse" terrane, northeastern N orth Island, New Zealand. Sedimentary Geology,2000,132, 125-160
    [70] Beattie P.D, Dad W.B et.al, Scaling in Turbidite Depceition Consistent with Forcing By Earthquakes? Journal of Sedmentary, 1996,66(5):909-915.
    [71] Lowe D R. Sediment gravity flows, M. Depositional models with special reference to the deposits of high-density terbidity currents[J].Sedim.Petrol,198252:279-297.
    [72] Masse. L., Faugeres. J. C, Hrovatin. V. The interplay between turbidity and contour
    [73] McCaffrey B, Kneller B. Mechanics of submarine debris flow initiation[M]. Geoscience 98 Abstracts Volume,1998.
    [74] Middleton G V, Hampton M A. Sediment gravity flows, mechanics of flows, and deposition[A].In Pacific Sec, Soc. Econ. Paleont. Mineral[C].Short Course Notes,1973: 1-28.
    [75] Middleton G V. Sedimentary deposition from turbidity currents[J]. Annual Review of Earth and planetary Science. 1993,21:89-114.
    [76] Murray C J, Lowe D R, Graham S A, Martinez P A. et. al. Statistical analysis of bed-thickness patterns in a turbidite section from the Great Valley Sequence, Cache Creek, Northern California. Jour. of Sedimentary Res. 1996,66(5):900-908.
    [77] Mutti E, Riocci Lucchi F Tubidite facies and facies associations. In: E. Mutti et al. eds. Examples of Turbidite Facies and Association from Selected Formations of the Northern Apennines.Field Trip Guidebook A-11,9th Internationnal Association of sedimentologists Congr.,Nice, 1975,21-36.
    [78] Mutt. E. Distinctive thin bedded turbidite facies and related depositional environrment in the Eocene Rlecho Group(south central Pyrenees, Spain)[J]. Sedimentology, 1977,24: 07-131.
    [79] MuttiE, Normark W R. An introduction to the study of turbidite system. In: Weimer P and Link M H.eds. Sesimic facies and sedimentary process of submarine fans and turbidite system[J].Spring-Verlag.l991:75-106.
    [80] Nardin T R, Hein F J. Gorsline D S, Edwards BD.A review of mass movement processes, sediment and acoustic characteristics and contrasts in slope and base-slope systems versus canyon-fan-basin floor systems. In: doley L J and Pilkey O H. eds. Geology of contimental slopes, Soc. Econ. paleontol. Min Sepc.Pub, 1979,27: 61-73.
    [81] Natland M L, Kuenen Ph H. Sedimentary history of the Venutura, California, and the action of turbidity currents. In: Housh J L. ed., Turbidity currents and the transportation of coarse sediments to deep water;Tulsa, Okla., Soc. Econ. Paleontologists and Minneralogists, Spec.Pub.1951,(2):76-107.
    [82] Normark W R & Piper D J W. Initintion process and flow evalution of tubidity currents, implications for the depositional recod[J].SEPM special Publication, 1991,46,207-230.
    [83] Normark. W. R., Piper. D. J. W. and Hiscott. R. N. Sea level controls on the textural characteristic and depositional architecture of the Hueneme and associated submarine fan systems, Santa Monica Basin, California. Sedimentology, 1998,45(7):53-70.
    [84] Paul D C,W Olfgang S. Carbonate debris sheets and turbidites, exum a sound, baham as[J]. J. Sedim Petrol,1980,50(4): 1121-1148.
    [85] Pickering K T, Hiscott R N,Kenyou N H, et al. Atlas of Deep-Water Environments: Architectural Style in Turbidite Systems[M].London: Chapman and Hall, 1995.
    [86] Pickering K T, Stow D A V, Watson M P, Hiscott R N. Deep water facies process and models: areview and classification scheme for modern and ancient sedimentsfJ] .Earth Science Review,1986,23:75-174.
    [87] Piper D J W.T uzbidite muds and silts on deep sea fans and abyssal plains. In:Stanley D J aad Kdling G. eds. Sedimentation in Submarine Canyons, Fans, and Trenches. Dowden, Hutchinson and Ross,Stroudsburg,Penn,1978,163-176.
    [88] Postma G. Classification of sediment gtavity-flow deposits based on flow conditions during the sentimentation[J] .Geology, 1986, 14:291-294.
    [89] Reading H G, Richards M Turbidite systems in deep-water basin margins classified by grain size and feeder system[J].AAPG,1994,78(5):792-822.
    [90] Ricci Lucchi F. Depositional cycles in two turbidite formation of the Northern Apennines(Italy) [J].Sediment.Petrol., 1975,45:3^3.
    [91] Shanely K W, McCabe P J. Perspective on the sequence stratigraphy of continental strata[J]. AAPG Bulletin ,1994,78(4):544-568.
    [92] Shanmugam G High density turbidity currents:are they sandy debris flows[J].Jounal of sedimentaray Reaserch, 1996,66( 1 ):2-10.
    [93] Shanmugam G The Bouma Sequence and the turbidite mind set.Earth-Science Reviews[J], 1997,42:201-229.
    [94] Stow. D. A. V, Mayall M. Deep-water sedimentary systems: Now models for the 21~(st) century[J]. Marine and Petroleum Geology,2000,17(2):125-135.
    [95] Winsemann. J, Asprion. U, Meyer. H, Sequence analysis of early Saalian glacial lake deposits(NW Germany): evidence of local ice margin retreatand associated calving processes. Sedimentary Geology ,2004,165: 223-251
    [96] Young M J, Gawthorpe R L, Sharp I R. Sedimentology and sequence stratigraphy of a transfer zone coarse-grained delta, Mocene Suez Rift, Egypt[J]. Sedimentology, 2000,47:1081-1104.
    [97] Zabel. M., Schulz. H. D. Importance of submarine landslides for non-steady conditions in pore water systems-lower Zaire(Congo)deep-sea fan. Marine Geology,2001,176:87-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700