不同电针对SAMP8小鼠海马神经元保护机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1背景
     阿尔茨海默氏病(Alzheimer's Disease, AD),又称“老年性痴呆”,是一种以近事记忆力下降,空间、语言和行为障碍,或可伴有抑郁及其它人格改变的中枢神经退行性病交,属于中医“呆病”的范围。到目前为止,AD的发病机制尚不清楚,但其主要的病理特征可包括:神经纤维缠结(neuron fibrillary tangles, NFTs),由tau蛋白在细胞内异常聚集而成;老年斑(senile plaques, SP),由β淀粉样蛋白(β-amyloid protein, Aβ)在细胞外大量沉淀所形成;神经元的丢失。
     2目的
     本研究拟以国际上公认的SAMP8快速老龄化痴呆小鼠模型,从中医整体观基础理论出发,选取与AD神经元生存与凋亡密切相关的PI3K/AKT信号转导通路,探讨不同电针神经元保护的疗效差异,寻找针刺抗痴呆的新靶点,进一步揭示音乐电针治疗老年性痴呆的可能作用机制,为临床治疗AD提供一定的理论依据。
     3研究方法
     选用8月龄,雄性,SAMR1正常老化小鼠10只;SAMP8快速老龄化小鼠60只,随机分为模型组、非穴位组、音乐组、盐酸多奈哌齐组、脉冲电针组和音乐电针组(n=10)。脉冲电针组,针柄连接HANS-LH202型电针仪,选取“百会”、“印堂”,“人中”点刺放血,20min/日,共15天;非穴位组,在小鼠尾部距尾根1/3处给予同样的刺激。音乐电针组,选取与脉冲电针组小鼠相同的穴位,采用抗痴呆的音乐处方,针柄连接ZJ-12H音乐电针仪。音乐组,在音乐电针组干预时抓取一次,同时和音乐电针组聆听音乐,以保证处理条件相同。多奈哌齐组,采用灌胃给药15天。正常组和模型组均不给予治疗,只是在其他治疗组干预的同时抓取1次。15天后,采用mirrors水迷宫对各组小鼠进行行为学评价。采用尼氏染色和苏木精-伊红染色观察每组小鼠海马CA1区神经元的数目和组织形态的病理改变;采用酶联免疫吸附(ELISA)法检测每组小鼠血清中Aβ40和Aβ42蛋白水平表达情况;采用免疫组化、western bolt和Real-time PCR检测各组小鼠海马Tau、P-Tau(serl99/202)、AKT、P-AKT(ser473)、GSK-3p、P-GSK-3p(ser9)和GFAP蛋白和基因表达水平。
     4研究结果
     (1)Morris水迷宫试验结果显示:与SAMR1正常老化小鼠相比,SAMP8模型小鼠学习记忆能力明显降低,表现为逃避潜伏期延长、游泳距离增加、跨平台次数减少和目标象限停留时间缩短(P<0.01);与SAMP8模型组小鼠相比,非穴位组学习记忆能力与之相当,无统计学差异(P>0.05);音乐组小鼠的逃避潜伏期时间和游泳距离有下降趋势,穿越平台次数有增多趋势,目标象限停留时间有延长趋势,但无统计学差异(P>0.05);盐酸多奈哌齐组、脉冲电针组和音乐电针组小鼠学习记忆能力显著改善,这反映在逃避潜伏期和游泳距离减少(P<0.05)、跨平台次数和目标象限停留时间频率增加(P<0.05,P<0.05,P<0.01)。
     (2)光镜下,各组小鼠HE染色的结果显示:SAMP8模型组中,海马CA1区的细胞排列紊乱,细胞层数显著减少,细胞核仁不清楚,可有核固缩的现象;非穴位组和音乐组小鼠海马CA1区细胞排列错乱,神经元明显丢失,细胞层数减少;盐酸多奈哌齐组、脉冲电针组和音乐电针组小鼠海马CAI区细胞排列较为规则整齐,核仁清晰呈圆形或椭圆形,细胞层数较模型组明显增加。
     (3)各组小鼠尼氏染色结果表明:与SAMRl正常老化小鼠对比,SAMP8模型组小鼠海马CA1区尼氏体浅染,神经元胞体形态排列不规则,尼氏体数量明显减少(P<0.01)。与SAMP8模型组相比,非穴位组和音乐组小鼠海马CA1区神经元数量和病理形态改变相似;盐酸多奈哌齐组、脉冲电针组和音乐电针组小鼠均能改善SAMP8小鼠海马CA1区神经元减少和丢失现象,起到保护神经元的作用。
     (4)酶联免疫吸附(ELISA)结果表明:与SAMR1正常老化小鼠相比,模型组小鼠血清A β40和A β42蛋白表达均显著增高(P<0.01)。与SAMP8模型组相比,非穴位组血清Aβ蛋白表达相似,无显著差异(P>0.05),音乐组血清Aβ蛋白表达呈减少趋势,但仍无显著差异(P>0.05);盐酸多奈哌齐组、脉冲电针组和音乐电针组小鼠血清A β40降低,有统计学差异(P<0.05);三组在降低A β42蛋白水平上有显著性差异(P<0.05,P<0.05,P<0.01)。与脉冲电针组相比,音乐电针组小鼠血清中A β42蛋白水平显著下降,有统计学差异(P<0.05)。
     (5)不同电针干预SAMP8小鼠海马P13K/AKT信号转导通路的影响:1)免疫组织化学法(HIC):总AKT和总GSK-3p蛋白含量在各组小鼠海马内变化不大,无显著差异(P>0.05)。与正常SAMR1小鼠相比,SAMP8模型小鼠P-AKT(ser473). P-GSK-3β(ser9)蛋白表达均减少(P<0.01);与SAMP8模型小鼠比较,非穴位组和音乐组P-AKT(ser473). P-GSK-3β(ser9)蛋白表达无显著性差异(P>0.05);盐酸多奈哌齐组、脉冲电针组和音乐电针组小鼠海马P-AKT(ser473)、P-GSK-3β(ser9)蛋白增高(P<0.05,P<0.05,P<0.01)。2)Western bolt结果显示:与免疫组化结果一致。3)Real-time PCR结果显示:与正常组比较,模型组小鼠海马AKT mRNA和GSK-3β mRNA表达显著性降低(P<0.01);非穴位组AKT mRNA和GSK-3β mRNA表达较SAMP8模型组无显著性差异(P>0.05);音乐组该基因表达有上升趋势,但无统计学差异(P>0.05);盐酸多奈哌齐组、脉冲电针组和音乐电针组均能一定程度上改善小鼠海马AKT mRNA和GSK-3β mRNA的基因表达,有统计学差异(P<0.05,P<0.05,P<0.01)。
     (6)对比不同电针干预SAMP8小鼠海马tau蛋白表达水平的影响:1)免疫组织化学法(HIC):总Tau蛋白在各组小鼠海马内无统计学差异(P>0.05)。与正常组相比,模型组小鼠海马P-Tau(ser199/202)蛋白表达显著增多,有统计学差异(P<0.01)。与模型组相比,非穴位组和音乐组小鼠海马P-Tau(serl99/202)蛋白表达无显著变化(P>0.05);盐酸多奈哌齐组、脉冲电针组和音乐电针组均能降低SAMP8小鼠海马P-Tau(ser199/202)蛋白含量(P<0.05,P<0.05,P<0.01)。2)Western bolt和Real-time PCR结果显示:各指标表达趋势同免疫组化。
     (7)对比不同电针干预SAMP8小鼠海马星形胶质细胞GFAP的影响:1)免疫组织化学法(HIC):与SAMR1正常小鼠比较,GFAP蛋白在SAMP8模型组小鼠海马区表达显著增加(P<0.01)。与模型组小鼠相比,非穴位组和音乐组GFAP表达无统计学差异(P>0.05);盐酸多奈哌齐组、脉冲电针组和音乐电针组均能明显降低SAMP8小鼠海马GFAP蛋白含量,有统计学差异(P<0.05,P<0.05,P<0.01)。2)Western bolt和Real-time PCR结果显示:各指标表达趋势同免疫组化。
     5结论
     (1)SAMP8快速老化痴呆小鼠存在着明显的学习记忆认知障碍,并且也出现了tau蛋白和Ap蛋白明显增加的病理表现,同时还伴随着神经元的损伤和减少,是AD的理想模型之一。
     (2)电针能较好的保护小鼠海马神经元,脉冲电针和音乐电针可改善痴呆小鼠神经元的丢失;在提高海马CA1区神经元的数量以及改善SAMP8小鼠神经元损伤方面,音乐电针优于脉冲电针。
     (3)电针可明显改善SAMP8快速老化小鼠学习记忆认知障碍,其中在改善认知障碍方面,音乐电针组仅有优于脉冲电针组的趋势,无统计学差异;但其在学习记忆力保持方面优于脉冲电针。
     (4)电针抗痴呆的作用机制之一可能是通过PI3K/AKT信号转导通路的上调,增加AKT的活性,促进GSK-3p (ser9)磷酸化,从而抑制GSK-3β活性,进而降低Aβ蛋白的沉积和tau蛋白过度磷酸化,最终达到减少神经毒性,保护神经元的目的。其中,音乐电针在调节PI3K/AKT信号转导通路的关键蛋白方面优于脉冲电针。
     (5)在改善SAMP8小鼠海马内星形胶质细胞GFAP表达方面,音乐电针能明显减少其表达,抑制炎症因子的释放,减轻神经元的损伤,且明显优于脉冲电针组,这可能是音乐电针抗老年痴呆症的机制之一。
1. Background
     Alzheimer Disease (AD) is one of central nervous system degenerative diseases, which has a main performance gradual cognitive dysfunction, bad memory and learning ability, sometimes it may also be accompanied by anxiety, depression, language barriers and other many personality changes. So far, the pathogenesis of AD is not yet clear. But the main pathological characteristics can include:neurofibrillary tangles (NFTs), gathered by the abnormal tau protein in the cell; Age spots (senile plaques, SP), by beta amyloid protein (Aβ) outside the cell formed by the large amounts of precipitation and the loss of neurons.
     2. Purpose
     The study is based on the theory of Traditional Chinese Medicine, we choose the internationally recognized SAMP8rapidly aging dementia model mice. The selection is closely related to the AD neuron loss of PI3K/AKT signal transduction pathway, exploring the different electro-acupuncture intervention difference in the protection of neurons. Seeking new targets to reveal the mechanism of action of acupuncture treatment of senile dementia may, provide a certain theoretical basis for clinical treatment of AD.
     3. Method
     There were70adult male mice at8month, including10SAMR1mice and60SAMP8mice. The60SAMP8mice were randomly divided into six groups:Model group, Non-acupuncture group, Music group, Donepezil Hcl group, Pulse electric acupuncture(EA) group and Music electric acupuncture group (N=10). The EA group, the needles handle connected the HANS-LH202electric acupuncture apparatus, selecting "Bai Hui","Yin Tang" and "Ren Zhong" acupoints,20min/day,15days. The non-acupuncture group was given the same stimulus in the tail root1/3of mice. The music electric acupuncture group, selecting the same acupoints and choosing dementia music prescription, the needles handle connected the ZJ-12H musical electro-acupuncture apparatus. The Music group, in order to ensure under the same conditions, mice were catched once a time while listening to music. The Donepezil HCL group, mice were used intragastric administration for15days. The normal group and model group mice only were be catched at a time as same as other groups. After15days, using mirrors water maze(MWM) to judge the behavior of groups of mice. Choosing Nissl's staining and HE staining to observe number of neurons and pathological changes of morphology in mice's hippocampus CA1area. Using enzyme-linked immunosorbent (ELISA) method to detect each group mice serum A beta40 and A beta42protein expression levels. Using immunohistochemistry, western bolt and Real-time PCR test groups of mice hippocampus Tau, P-Tau (ser199/202), AKT, P-AKT (ser473), GSK-3beta, P-GSK-3beta (ser9) and GFAP protein and gene expression level.
     4. Results
     (1) MWM Results:Compared with normal group, the SAMP8mice were significantly poor in the ability of learning and memory, reflecting the escape latency period extended, swimming distance increased, the reduced the number of cross-platform and target quadrant stay a shorter time (P<0.01). Compared with the SAMP8model group mice, the learning and memory ability in non-acupuncture group is similarity to the model group (P>0.05). In music group, the escape latency time and swimming distance have a downward trend, through the platform number and the target quadrant residence time has increasing trend, but no statistical difference (P>0.05). The Donepezil HCL group, the pulse electric acupuncture group and music electric acupuncture group had a significantly improve the ability of learning and memory, this is reflected in escape latent period and reduce the swimming distance (P<0.05), the cross-platform and target quadrant time frequency increases (P<0.05, P<0.05, P<0.01).
     (2) HE Staining results:In model group, the disordered arrangement of cells, layer number of cells significantly reduced, cell nucleolus is not clear and the phenomenon of nuclear pyknosis in hippocampus CA1area. In non-acupuncture group and music group, cells arranged disorder, loss of neurons, the cell layers reduced in hippocampal CA1region. The Donepezil HCL group, the pulse electric acupuncture group and the music electric acupuncture group, arrangement of cells rules and clear nucleoli assumes the circular or elliptic, layer number of cells increased significantly.
     (3) Nissl's staining results:Compared with normal group, the model group, austenite shallow dye, the neuron cell body form is irregular, number of neuron were decreased significantly in hippocampal CA1area. Compared with SAMP8model group, number of hippocampus CA1area neurons and the pathological morphological changes are similarity in the non-acupuncture and music group. In Donepezil HCL group, the pulse electric acupuncture group and music electric acupuncture group, it could improve neurons decrease and loss phenomenon to protect the neurons in hippocampus CAl area
     (4) ELISA Results:Compared with normal group, A beta40and42A beta protein in serum expression were significantly increased in model group (P<0.01). Compared with model group, the serum in non-acupuncture group is similar to model group, there was no significant difference (P>0.05). A beta protein expression in serum showed A trend of decrease in music group, but there was still no significant difference (P>0.05). Donepezil HCL, pulse electric acupuncture and music electric acupuncture group, the A beta40is reduced in serum, which has a statistically significant (P<0.05), and the decreasing A beta42protein level had significant difference (P<0.05, P<0.05, P<0.01). Compared with the pulse electric acupuncture group, the A beta42protein levels in serum dropped significantly in music electric acupuncture group, which has statistically significant (P<0.05).
     (5) Different electric acupuncture intervention SAMP8mice hippocampus'PI3K/AKT signal transduction pathway:1) The immune histochemical method (HTC):the content of total AKT and GSK-3beta protein changed little within these seven groups, there were no significant difference (P>0.05). Compared with the normal mice, the express of P-AKT (ser473), P-GSK-3beta (ser9) protein were reduced rapidly in SAMP8(P<0.01). Compared with model of SAMP8mice, the express of P-AKT (ser473), P-GSK-3beta (ser9) protein expression there was no significant difference in the non-acupuncture and music group (P>0.05). In Donepezil HCL, pulse electric acupuncture and music electric acupuncture group, the express of P-AKT (ser473), P-GSK-3beta (ser9) protein increased (P<0.05);2) The Western Bolt results were in accordance with the immunohistochemical's;3) Real-time PCR results:Compared with normal group, the expression AKT mRNAand GSK-3beta mRNA was significantly lower in model group (P<0.01); The non-acupuncture had no significant difference with model group (P>0.05); The expression of these genes has a rising trend in music group, but also has no statistical difference (P>0.05); In Donepezil HCL, the pulse electric acupuncture and music electric acupuncture group, there had a certain degree of improvement expression in mice hippocampal's AKT mRNA and GSK-3beta mRNA, which had a statistically significant (P<0.05, P<0.05, P<0.01).
     (6) The different electric acupuncture influence of tau protein in hippocampus region:1) The immune histochemical method (HTC):the content of total tau protein changed little within these seven groups, there were no significant difference (P>0.05). Compared with the normal mice, the express of P-tau (ser199/202) protein were increased rapidly in SAMP8(P<0.01). Compared with model group, the express of P-tau (serl99/202) protein expression there was no significant difference in the non-acupuncture and music group (P>0.05). In Donepezil HCL, pulse electric acupuncture and music electric acupuncture group, the express of P-tau (ser199/202) protein decreased (P<0.05);2) The Western Bolt and Real-time PCR results were in accordance with the immuno histochemical's.
     (7) The different electric acupuncture influence of GFAP protein in hippocampus region:1) Compared with the normal mice, the express of GFAP protein were increased rapidly in SAMP8(P<0.01). Compared with model group, the express of GFAP protein expression there was no significant difference in the non-acupuncture and music group (P>0.05). In Donepezil HCL, pulse electric acupuncture and music electric acupuncture group, the express of GFAP protein decreased rapidly (P<0.05, P<0.05, P<0.01).2) The Western Bolt and Real-time PCR results were in accordance with the immunohistochemical's.
     5. Conclusion
     (1) The SAMP8mice had a obvious cognitive impairment of learning and memory, the pathological form of tau protein and A beta protein increased significantly, accompanied by neurons damaged and reduced, which is one of the ideal model of AD.
     (2) Electric acupuncture Have a good adjustment function for neuron protection, including pulse electric acupuncture and music electric acupuncture can increase the number of neurons in hippocampal CA1area, improving SAMP8mice on neuronal damage, and the music electric acupuncture is superior to the pulse.
     (3) Electric acupuncture could obviously improve cognitive impairment of learning and memory in the SAMP8rapid aging mice. In terms of improving cognitive impairment, the music electric acupuncture group is superior to the pulse; But the music electric acupuncture on learning memory keep better than the pulse.
     (4) One of the curative mechanism of action of dementia may be through the PI3K/AKT signal transduction pathway, increasing the activity of AKT, promoting the phosphorylation of GSK-3beta (ser9), thus to restrain the activity of GSK-3beta.-and thus A beta protein in deposition and abnormal tau protein phosphorylation, neurotoxicity, reduced finally protect the neurons. The music electric acupuncture in regulating the PI3K/AKT signal transduction pathways is superior to the pulse.
     (5) Improving the aspect of hippocampal astrocytes GFAP in SAMP8mice, the music electric acupuncture can significantly reduce its expression, inhibiting the release of inflammatory cytokines, relieving neuron damage, which is obviously better than plus. This may be one of the mechanisms of music electric acupuncture treating Alzheimer's disease.
引文
[1]Satyabrata Kar, Stephen P.M, Slowikowski, et al. Interactions between (3-amyloid and central cholinergic neurons:implications for Alzheimer's disease [J]. Psychiatry Neurosci,2004,29(6):427-441.
    [2]Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's disease [J]. Alzheimer's Dement,2007,3(3):186-191.
    [3]Christian Haass Dennis J. Selkoe. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid (3-peptide[J] Nature Reviews Molecular Cell Biology.2007,8(2):101-112.
    [4]Ramesh JL, Prabhakar S, Binukumar BK, et al. Cerebrospinal fluid profile of amyloid (342 (AP42), hTau and ubiquitin in North Indian Alzheimer's disease patients[J]. Neuroscience Letters,2011,487(2):134-138.
    [5]Chin J. Selecting a Mouse Model of Alzheimer's Disease[J]. Methods in Molecular Biology,2011,670:169-189.
    [6]马晓飞.p-淀粉样蛋白与老年痴呆症[J].中国医药导报,2011,8(15):13-15.
    [7]马波,张建军.与阿尔茨海默病密切相关的α-、β-和γ-分泌酶的研究进展[J].国外医学:药学分册,2005,32(1):22-24.
    [8]Li Y, Liu L, Barger SW, et al Interleukin-1 mediates pathological effects of microglia on Tau Phosphorylation and on Synaptophysin Synthesis in Cortical Neurons through a p38-MAPK pathway[J]. Neuroscience,2003,23(5): 1605-1611.
    [9]Jang MH, Jung SB, Lee MH, et al. Melatonin attenuates amyloid beta25-35-induced apoptosis in mouse microglial BV2 cells[J]. Neuroscience Letters,2005,380(1-2):26-31.
    [10]Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells[J]. Antioxid & Redox Signaling,2006,8(5-6):929-947.
    [11]Cappai R, Kevin J. Barnham. Delineating the Mechanism of Alzheimer's Disease Aβ Peptide Neurotoxicity[J]. Neurochemical Research,2008, 33(3):526-532.
    [12]吴琪,钱采韵Alzheimer病神经原纤维缠结与tau蛋白研究[J].中国神经精神疾病杂志,2000,26(1):63-64.
    [13]Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease[J]. Indian J Psychiatry,2009,51(1):55-61.
    [14]Gil-Bea FJ, Garcia-A lloza M, Dom inguez J, et al. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit[J]. Neuroscience Letters,2005:375(1):37-41.
    [15]Reif B, Narayanan S, Kamps B, et al. alpha B-crystallin competes with Alzheimer's disease β-amyloid peptide for peptide-peptide interactions and induces oxidation of Abeta-Met35[J]. FEBS Letters,2006:580(25):5941-5946.
    [16]洪震,周汾,黄茂盛,等.阿尔茨海默病的保护因素-运动和户外活动[J].中国临床康复,2003,7(1):24-26.
    [17]Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor-still lethal after eight years[J]. Trends Neuroscience,1995,18(2):57-58.
    [18]Wilcock DM, DiCarlo G, Henderson D, et al. Intracranially Administered Anti-Aβ Antibodies Reduce β-amyloid Deposition by Mechanisms Both Independent of and Associated with Microglial Activation[J]. Neuroscience, 2003:23(9):3745-3751.
    [19]Szekely CA, Town T, Zandi PP. NSAIDs for the Chemoprevention of Alzheimer's Disease[J] Subcellual Biochemistry,2007,42:229-248.
    [20]Miyamoto M. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP8 and SAMP10[J]. Experimental Gerontology,2007(1-2):139-148.
    [21]Kuo H, Ingram DK, Walker LC, et al. Simlilarities in the aged-related hippocampal deposition of periodic acid-Schiff-positive granules in the senescence-accelerated mouse (SAMP8) and C57BL/6 mouse strains[J]. Neuroscience.1996,74(3):733-740.
    [22]Braidy N, Munoz P, Palacios AG, et al. Recent rodent models for Alzheimer's disease:clinical implications and basic research[J]. Neural Transmission, 12.119(2):173-195.
    [23]Daumas S, Sandin J, Chen KS, et al. Faster forgetting contributes to impaired spatial memory in the PDAPP mouse:deficit in memory retrieval associated with increased sensitivity to interference?[J]. Learn Memory.2008, 15(9):625-632.
    [24]Das HK. Transcriptional regulation of the presenilin-1 gene:implication in Alzheimer's disease[J]. Frontiers in Bioscience,2008,13:822-832.
    [25]Tanemura K, Chui DH, Fukuda T, et al. Formation of tau inclusions in knock-in mice with familial Alzheimer disease (FAD) mutation of Presenilinl(PS1)[J]. Biological Chemistry,2006,281(8):5037-5041.
    [26]Das HK, MCPherson J, Bruns GA, et al. Isolation characterization, and mapping to chromosome 19 of the human apolipoprotein E gene[J]. Biolpgical Chemistry,1985,260(5):6240-6247.
    [27]Acharya P, Segall ML, Zaiou M, et al. Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism[J]. Biochim et Biophys. Acta,2002,1584(1): 9-19.
    [28]Horsburgh K, McCulloch J, Nilsen M, et al. Intraventricular Infusion of Apolipoprotein E Ameliorates Acute Neuronal Damage after Global Cerebral Ischemia in Mice[J]. Cerebral Blood Flow & Metabolism,2000,20(1):458-462.
    [29]Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology [J]. Neurobiology of Aging,2004,25(5): 641-650.
    [30]Lewis J, McGowan E. Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein[J]. Nature Genetics,2000,25(4):402-405.
    [31]Abe E, Casamenti F, Giovarmelli L, et al. Administration of amyloid β-peptides into the medical septum of rats decreases acetylcholine release from hippocampus in vivo[J]. Brain Research,1994,633(1):162-164.
    [32]Matton MP, Cheng B, Davis D, et al. Beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity[J].Neuroscience,1992,12(2):376-389.
    [33]Han MX, Yang WM, Li ZG. Study on establishment of Alzheimer's disease animal model and intervening effect of zhinao capsule on it[J]. Zhongguo Zhong xi yi jie he za zhi,2003,23(9):688-691.
    [34]Miwa C, Ueki A, Shinjo H, et al. Long-term synaptic alteration in the rat hippocampal CA3 field following an entorhinal cortex lesion[J]. Psychiatry and Chinical Neuroscience,2001,55(6):573-578.
    [35]田金洲,时晶,王永炎等.2011年美国阿尔茨海默病最新诊断标准解读[J].中国医学前沿杂志(电子版),2011,3(4):91-99.
    [36]Yang DY, Wang XZ. Gu Sui Bu (Rhizoma Drynariae)-A Good Drug for Senile Dementia[J]. Traditional Chinese Medicine,2005,25(4):52-53.
    [37]Jicha GA, Abner EL, Schmitt FA, et al. Preclinical AD Workgroup staging: pathological correlates and potential challenges[J]. Neurobiology of Aging, 2012,33(3):622.e1-622.e16.
    [38]Petersen RC. Mild cognitive impairment as a diagnostic entity[J]. Internal Medicine,2004,256(3):183-194.
    [39]Jack CR, Barkhof F, Bernstein MA, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease[J]. Alzheimer's & Dement,2011, 7(4):474-485.e4.
    [40]Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease:Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimer's & Dement,2011,7(3):270-279.
    [41]Riverol M, Lopez OL. Biomarkers in Alzheimer's Disease[J]. Frontiers in Neurology,2011,14(7):46-58. [42] Thies W, Bleiler L.2011 Alzheimer's disease facts and figures[J]. Alzheimer's & Dement,2011,7(2):208-244.
    [43]Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimer's & Dement,2011,7(3):257-262.
    [44]Demarin V, Zavoreo I, Kes VB, et al. Biomarkers in Alzheimer's disease[J]. Clinical Chemistry and Laboratory Medicine,2011,49(5):773-778.
    [45]Sberna G, Saez-Valero J, Li QX,et al. Acetylcholinesterase is increased in the brains of transgenic mice expressing the C-Terminal fragment (CT100) of the β-Amyloid protein precursor of Alzheimer's disease[J]. Neurochemistry,1998: 71(2):723-731.
    [46]Gonzalez-Naranjo P, Campillo NE, Perez C, et al. Multitarget cannabinoids as novel strategy for Alzheimer disease[J]. Current Alzheimer Research,2013, 10(3):229-239.
    [47]Wang H, Carlier PR, Ho WL, et al. Effects of bis(7)-tacrine, a novel anti-Alzheimer's agent, on rat brain AChE[J]. Neuroreport,1999,10(4):789-793.
    [48]Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in the treatment of Alzheimer's disease:an interim analysis of the results of a US multicentre open label extension study [J]. European Neuropsychopharmacology, 1998,8(1):67-75.
    [49]Pacheco-Quinto J, Eckman EA. Endothelin-converting enzymes degrade intracellular β-amyloid produced within the endosomal/lysosomal pathway and autophagosomes[J]. Biological Chemistry,2013,288(8):5606-5615.
    [50]Griffiths HH, Morten IJ, Hooper NM. Emerging and potential therapies for Alzheimer's disease[J].Expert Opinion on Therapeutic Targets,2008,12(6): 693-704.
    [51]Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease[J]. Neurobiology of Aging,2000,21(3):383-421.
    [52]Wolfson C, Perrault A, Moride Y, et al. A case-control analysis of nonsteroidal anti-inflammatory drugs and Alzheimer's disease:are the protective?[J]. Neuroepidemiology,2002,21(2):81-86.
    [53]Szekely CA, Town T, Zandi PP. NSAIDs for the chemoprevention of Alzheimer's disease[J]. Subcellular Biochemistry,2007,42:229-481.
    [54]Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidal Anti-inflammatory drugs and the risk of Alzheimer's disease[J]. New England Journal of Medicine, 2001,345(11):1515-1521.
    [55]Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease[J]. Neuropathology Experimental Neurology,2001,60(8): 759-767.
    [56]林玉坤,曾园山等.氧化应激与阿尔茨海默病[J].解剖学研究,2009,31(1):67-70.
    [57]Religa D, Styczynska M, Peplonska B, et al. Homocysteine, apolipoproteine E and methylenetetrahydrofolate reductase in Alzheimer's disease and mild cognitive impairment[J]. Dementia and Geriatric Cognitive Disorders,2003, 16(2):64-70.
    [58]Xing Y, Jia JP, Ji XJ, et al. Estrogen associated gene polymorphisms and their interactions in the progress of Alzheimer's disease[J]. Progress in Neurobiology,2013,111(12):53-74.
    [59]Yaffe K, Haan M, Buers A, et al. Estrogen use, APOE, and cognitive decline: evidence of gene-environment interaction[J]. Neurology,2000,54(10): 1949-1954.
    [60]张延霞,骆刚,郭宗君等.雌激素对阿尔茨海默病的干预作用[J].中风与神经疾病杂志,2006,23(2):183-186.
    [61]World Alzheimer Report 2009[M]. London:Alzheimer's Disease International,2009:38.
    [62]苏颖.黄帝内经.灵枢泽注[M].黑龙江:黑龙江人民出版社,2003.
    [63]邱幸凡,袁德培,王平,等.肾虚髓衰、脑络痹阻是老年性痴呆的基本病机 [J].中华中医药学报,2008,23(8):732-734.
    [64]王品山.中医对生命认识的经络基础理论[J1.中医药学刊,2001,19(2):100-101.
    [65]孔德荣.龟鹿二仙胶治疗老年性痴呆60例[J].中医研究,2007,20(10):33-34.
    [66]陈凤玲.补肾活血化瘀法治疗老年性痴呆症50例[J].吉林中医药,2006,26(11):26.
    [67]金曦.地黄饮子化裁治疗老年性痴呆43例临床观察[J].中国中医药科技,2010,17(4):358-359.
    [68]吴之煌,张晓霞,寇焰.补肾填髓汤治疗老年性脑痴呆30例临床观察[J].北京中医药,2008,27(9):715-717.
    [69]乔之龙,郭蕾,李菲.补肾益智汤对老年痴呆模型大鼠中枢神经递质的影响[J].中华中医药学刊,2009,27(12):2565-2567.
    [70]朴钟源,江新梅,罗守滨,等.左归丸对老年性痴呆模型鼠脑神经元HSP70及超微结构的影响[J].中国老年学杂志,2009,29(1):161-163.
    [71]周妍妍,姚新敏,何秀丽,等.地黄饮子对老年性痴呆神经保护作用的实验研究[J].中医药学报,2010,39(2):58-61.
    [72]富宏,王学美,刘庚信,等.加味五子衍宗颗粒对轻度认知障碍患者记忆功能及血清p淀粉样蛋白的影响[J].中华老年学杂志,2007,27(4):715-717.
    [73]王清峰,张丹,李柱.健脾化痰法治疗老年性痴呆痰浊阻窍证的疗效及机制研究[J].中医研究,2013,5(2):12-13.
    [74]陈炜,蒋凌飞,刘泰,等.温脾通络开窍汤治疗老年性痴呆痰浊阻窍证患者40例临床观察[J].中医杂志,2013,54(20):1759-1761.
    [75]王少贤,杨晓锋.补肾活血祛痰方对血管性痴呆患者血脂和血液流变学的影响[J].中华实用中西医杂志,2006,19(5):563.
    [76]游秋云,王平,陈刚,等.固本化痰健脑方对拟痴呆大鼠胆碱系统的影响[J].中国实验方剂学杂志,2006,12(1):28-31.
    [77]沈世豪.益气活血醒脑方治疗中度血管性痴呆79例[J].中医杂志,2010,51(10):206-207.
    [78]程为平,张洋.中药益气活血养脑法治疗老年性痴呆的基础研究[J].中医药学报,2008,36(3):19-21.
    [79]李子清,喻凯,赵焕英,等.四物汤对血管性痴呆大鼠脑组织中BDNF和EGF的影响[J].中药药理与临床,2008,24(6):10-12.
    [80]周忠光,韩玉生,姜国华.补气活血方对多因素损伤AD大鼠血清p淀粉样蛋白细胞因子的影响[J].中医药学报,2007,35(2):16-18.
    [81]李黎,郑佳新.补阳还五汤对AD大鼠海马中IL-6、TNF-α的调节作用以及对Aβ1-40、β-APP蛋白表达的影响[J].中华中医药杂志,2008,23(11):1038-1039.
    [82]刘宝峰.阿尔茨海默病的中药治疗研究进展[J].天津药学,2011,23(1):65-67.
    [83]何迎春,董涛,张如富,等.健脾填精方颗粒剂干预轻度认知障碍向痴呆转化的临床随机研究[J].中华中医药学刊,2008,26(12):2610-2611.
    [84]马允,张树球,梁月秀,等.乌圆补血口服液对拟老年痴呆症小鼠脑乙酰胆碱酯酶的影响[J].中国临床康复,2005,9(44):94-96.
    [85]卢贞,万莉红.复方丹参片对Aβ25-35所致老年痴呆小鼠的行为学改善作用及对RACK1的影响[J].中国临床康复,2012,28(6):105-108.
    [86]郭建生,刘冰,潘朝旺.复方银杏颗粒对拟血管性痴呆大鼠脑组织SOD活力和形态学影响[J].中华中医药学刊,2007,25(7):1337-1339.
    [87]吴红彦,王虎平.逍遥散及其拆方对老年性痴呆模型小鼠学习记忆能力及抗氧化能力的影响[J].中国实验方剂学杂志,2009,15(1 0):102-104.
    [88]李强,胡长林,王景周.地黄益知浸膏对老年性痴呆大鼠行为学及中枢胆碱能系统的影响[J].中成药,2003,30(1):38-42.
    [89]魏昌秀,李庆明,傅玉如.中药复方脑还丹对Aβ诱导的大脑皮质和海马神经元损害的保护作用研究[J].中国实验方剂学杂志,2004,10(3):18-20.
    [90]李种,吕艳,李谈.电针足三里干预快速老化痴呆鼠大脑APP及Aβ蛋白表达的实验研究[J].中华中医药学刊,2010,28(20):2221-2223.
    [91]唐银杉,李志刚,许安萍,等.音乐电针和脉冲电针对快速老龄化SAMP8小鼠行为学和血清Aβ蛋白的影响[J].中医药学报,2013,42(1):87-90.
    [92]薛卫国,张忠,许红,等.电针对淀粉样前体蛋白转基因小鼠海马微血管淀粉样沉积的影响及其与低密度脂蛋白相关受体1的关系[J].针刺研究,2011,36(2):95-100.
    [93]蒋希成,姜国华,于洋.针刺对老年性痴呆大鼠脑组织中tau蛋白表达的影响[J].针灸临床杂志,2008,24(11):38-39.
    [94]朱晓冬,蒋希成,毛翔.针刺对D-半乳糖复制阿尔茨海默病模型大鼠脑组织中β-AP、Tau蛋白表达的影响[J].中医学报,2011,26(159):954-955.
    [95]刘智斌,牛文民,杨晓航,等.嗅三针对老年痴呆大鼠学习记忆功能及海马胆碱乙酰化酶,乙酰胆碱酯酶活性的影响[J].针刺研究,200934(1):48-51.
    [96]赵立刚,马莉,程为平,等.针刺百会,大椎对老年性痴呆大鼠认知行为及脑内乙酰胆碱酯酶的影响[J].中国老年学杂志,2008,28(3):549-550.
    [97]望庐山,周丽莎.电针治疗对阿尔茨海默病大鼠Ach.ChAT.AchE的影响 [J].针灸临床杂志,2008,25(6):40-42.
    [98]方剑乔,朱书秀,张英,等.电针对阿尔茨海默病模型大鼠额叶与海马区磷酸化P38丝裂原活化蛋白激酶和白介素-1β mRNA的影响.[J]针刺研究,2013,38(1):35-39.
    [99]王华,毛慧芳,刘建民,等.“双固一通”电针治疗对老年阳虚大鼠淋巴细胞凋亡相关基因表达的影响[J].针刺研究,2012,37(4):266-270.
    [100]张晓琳,刘智艳,刘娟,等.电针对老年性痴呆大鼠记忆功能减退的影响[J].中华中医药杂志,2012,27(3):706-709.
    [101]曹金梅,刘文刚,吴淮.醒脑化痰针法对血管性痴呆大鼠学习记忆及脑组织SOD和MDA的影响[J].中医研究,2009,22(7):10-12.
    [102]周华,孔立红,沈峰等.针灸预处理对Alzheimer大鼠Wnntl表达的影响[J].中国老年学杂志,2010,30(14):2019-2021.
    [103]孙国杰,周华,杜艳军,等.针灸预处理对AD大鼠海马组织GSK-3β和PP2A影响的实验研究[J].时珍国医国药,2011,22(3):732-733.
    [104]沈峰.电针对老年性痴呆大鼠学习记忆相关信号通路影响的研究[D].武汉:湖北中医院,2009.
    [105]陈艳霞,戴东,于涛,等.“益气调血,扶本培元”针刺法对血管性痴呆患者脑葡萄糖代谢的影响[J].中医杂志,2011,52(13):1124-1127.
    [106]田涛涛,李强,张玉莲,等.“醒脑益智”针法治疗老年性痴呆临床观察[J].吉林中医药,2012,32(4):404-405.
    [107]刘存志,石广霞,黄玉兰,等.针刺对血管性痴呆患者尿中氧化应激标志物的影响[J].中国中医药信息杂志,2011,11(7):18-20.
    [108]刘智斌,牛文民,杨晓航,等.嗅三针治疗老年性痴呆患者嗜睡状态的临床研究[J].陕西中医,2008,29(2):207-208.
    [109]刘洁,刘智艳.电针治疗肾精亏虚型轻度认知功能障碍临床观察[J].上海针灸杂志,2009,28(6):319-321.
    [110]王频,,杨骏,柳刚,等.艾灸头部穴位为主对血管性痴呆患者脑脊液中生长抑素和精氨酸血管加压素水平影响的随机对照试验[J].中西医结合学报,2010,8(7):636-639.
    [111]东红升,裴浩,东贵荣.音乐电针和脉冲电针镇痛作用的对比性研究[J].针刺研究,2005,30(2):83-87.
    [112]纪倩,李志刚,唐银杉,等.不同电针刺激对慢性应激抑郁模型大鼠行为学及海马谷氨酸转运体的影响[J].针刺研究,2013,38(3):202-219.
    [113]纪倩,梅旭晖,唐银杉,等.音乐电针和脉冲电针对慢性应激抑郁大鼠行为学和海马星形胶质细胞的影响[J].中华中医药杂志,2013,28(3):648-651.
    [114]唐银杉,余仁峰,纪倩,等.音乐电针对慢性应激抑郁模型大鼠海马单胺类神经递质表达的调节作用[J].北京中医药大学学报,2013,36(4):263-267.
    [115]张淑丽,王素兰,严晓燕,等.音乐电针对脑出血大鼠脑组织超微结构的保护作用.[J]光明中医,2010,26(10):2003-2005.
    [116]张洪,曾征,邓鸿,等.音乐电针治疗焦虑症157例[J].上海针灸杂志,2002,21(1):22-23.
    [1]Li X, Li TQ, Andreasen N, et al. Ratio of Aβ42/P-tau181p in CSF is associated with aberrant default mode network in AD[J]. Scientific reports,2013,26(2): 1339-1343.
    [2]马芹颖,强静,王铭维.快速老化小鼠SAMP8脑内神经病理学变化的研究进展[J].中国老年学杂志,19(10):3858-3860.
    [3]Steele RJ, Morris RGM. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5[J]. Hippocampus,1999,9(2):118-136.
    [4]Vorhees C, Williams M. Morris water maze:procedures for assessing spatial and related forms of learning and memory[J]. Nature protocols,2006,27(1): 848-858.
    [5]Kallai J, Makany T, Karadi K, et al. Spatial orientation strategies in Morris-type virtual water task for humans[J]. Behavioural Brain Research,2005, 159(2):187-196.
    [6]Burda J, Matiasova M, Gottlieb M, et al.Evidence for a role of second pathophysiological stress in prevention of delayed neuronal death in the hippocampal CA1 region[J]. Neurochemical Research,2005,30(11):1397-4051.
    [7]Stepanichev MY, Zdobnova M, Zarubenko II, et al. Amyloid-β (25-35)-induced memory impairments correlate with cell loss in rat hippocampus[J]. Physiology and Behavior,2004,80 (5):647-655.
    [8]张月峰,于建春,李谈,等.“益气调血,扶本培元”针法对快速老化小鼠SAMP8海马和颞叶皮质神经元数量及形态的影响[J].上海针灸杂志,2005,24(9):40-43.
    [9]Thomas P, Fenech M. A review of genome mutation and Alzheimer's disease[J]. Mutagenesis,2006,22(1):15-33.
    [10]Funke SA, Liu H, Sehl T, et al. Identification and characterization of an abeta oligomer precipitating peptide that may be useful to explore gene therapeutic approaches to Alzheimer disease[J]. Rejuvenation Research,2012, 15(2):144-7.
    [11]Kim D, Chung J. AKT:Versatile mediator of cell survival and beyond [J]. Bioehem Mol Biol,2001,35(1):106-115.
    [12]Ma R, Xiong N, et al. Erythropoietin protects PC12 cells from β-amyloid25-35-induced apoptosis via PI3K/AKT signaling pathway[J]. Neuropharmacology,2009,56(6-7):1027-1034.
    [13]Lee HK, Kumar P, Fu Q, et al. The insulin/AKT signaling Pathway is targeted by intracellular β-Amyloid[J]. Molecular Biology of the Cell,2009, 20(5):1533-1544.
    [14]Bruel-Jungerman E, Vevrac A, Dufour F, et al. Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult Neurogenesis and synaptic plasticity in the dentate gyrus[J]. PLos One,2009,4(11):e7901.
    [15]He F, Sun YE. Glial cells more than support cell?[J]. International Journal of Biochemistry & Cell Biology,2007,39(4):661-665.
    [16]Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer's disease:assessing sex and gender differences[J]. Clinical Epidemiology,2014, 6(1):37-48.
    [17]Reitz C, Mayeux R. Alzheimer disease:Epidemiology, diagnostic criteria, risk factors and biomarkers[J]. Biochemical Pharmacology,2014,88(4): 640-651.
    [18]Chan KY, Wang W, Wu JJ, et al. Epidemiology of Alzheimer's disease and other forms of dementia in China,1990-2010:a systematic review and analysis[J]. The Lancet,2013,381(9882):2016-2023.
    [19]Grant WB. Trends in Diet and Alzheimer's Disease During the Nutrition Transition in Japan and Developing Countries [J]. Alzheimer's Disease,2014, 38(3):611-620.
    [20]Dermaut B, Kumar-Singh S, Rademakers R, et al. Tau is central in the genetic Alzheimer-frontotemporal dementia spectrum[J]. Trends in Genetics, 2005,21(12):664-672.
    [21]Butterfield DA, Poon HF. The senescence-accelerated prone mouse (SAMP8):A model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease[J]. Experimental Gerontology,2005,40(10):774-783.
    [22]Zhao Q, Yokozawa T, Tsuneyama K, et al. Kangen-karyu improves memory deficit caused by aging through normalization of neuroplasticity-related signaling system and VEGF system in the brain[J]. Ethnopharmacology,2010, 131(2):377-385.
    [23]褚芹,于建春,潘建明,等.快速老化模型小鼠SAMP 8行为学的增龄性变化[J].现代生物医学进展,2008,8(10):1801-1804.
    [24]Li GM, Cheng HY, Zhang XZ, et al. Hippocampal neuron loss is correlated with cognitive deficits in SAMP8 mice[J]. Neurological Sciences,2013,34(6): 963-969.
    [25]Cheng HY, Yu JC, Jiang ZG, et al. Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice[J] Neuroscience,2008, 432(2):111-116.
    [26]曾芳,何宇恒,彭静,等.电针对SAMP8小鼠海马神经元线粒体超微结构的影响[J].上海针灸杂志,2008,27(5):41-43.
    [27]Zhao Q, Yokozawa T, Tsuneyama K, et al. Chotosan (Diaoteng San)-induced improvement of cognitive deficits in senescence-accelerated mouse (SAMP8) involves the amelioration of angiogenic/neurotrophic factors and neuroplasticity systems in the brain[J]. Chinese Medicine,2011,6(1):33-51.
    [28]Summers WK. Current and future treatments of memory complaints and Alzheimer's disease[J]. Future Medicine,2011,8(5):491-504.
    [29]Min DY, Mao XY, Wu K, et al. Donepezil attenuates hippocampal neuronal damage and cognitive deficits after global cerebral ischemia in gerbils[J]. Neuroscience, Letters,2012,510(1):29-33.
    [30]徐敏,方琪,董万利.盐酸多奈哌齐治疗轻中度阿尔茨海默病的临床评估[J].中国老年保健医学,2008,6(4):38-40.
    [31]孙鹏,董涛,石秋艳.盐酸多奈哌齐对血管性痴呆大鼠海马CA1区神经细胞凋亡及突触素表达的影响[J].中风与神经疾病杂志,2013,30(10):910-912.
    [32]Braak H, Tredici KD. Alzheimer's disease:Pathogenesis and prevention[J]. Alzheimer's & Dementia,2012,8(3):227-233.
    [33]Pineda D, Ampurdanes C, Medina MG, et al. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors[J]. Glia,2012,60(4): 526-540.
    [34]Li F, Chong ZZ, Maiese K. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3β, β-catenin, and nuclear factor-κB[J]. Curr. Neurovasc. Res,2006,3(3): 187-201.
    [35]Wang S, Chong ZZ, Shang YC, et al. Wntl inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Aktl and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL[J]. Curr. Neurovasc Res,2012,9(1):20-31.
    [36]Bruel-Jungerman E, Veyrac A, Dufour F, et al. Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus[J]. PLOS One,2009,4(11):e7901.
    [37]M L Steele, S R Robinson. Reactive astrocytes give neurons less support: implications for Alzheimer's disease[J] Neurobiology of Aging,2012,33(2): 423.e1-423.e13.
    [38]Laczo J, Andel R, Vyhnalek M, et al. From Morris Water Maze to computer tests in the prediction of Alzheimer's disease[J]. Neurodegenerative diseases, 2012,10(1-4):153-157.
    [39]Hong H, Liu S, Di LJ, et al. The Application of the Morris Water Maze System to the Effect of Ginsenoside Re on the Learning and Memory Disorders and Alzheimer's Disease[J]. Frontier and Future Development of Information Technology in Medicine and Education Lecture Notes in Electrical Engineering, 2014,269(1876):3181-3189.
    [40]Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer's disease[J]. Molecular Neurodegeneration,2011,6:85.
    [41]Squire LR:Memory and the hippocampus:a synthesis from findings with rats, monkeys, and humans[J]. Psychological Review,1992,99(2):195-231.
    [42]Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H:Structural basis of long-term potentiation in single dendritic spines[J]. Nature,2004,429(6): 761-766.
    [43]Giannakopoulos P, Herrmann FR, Bussiere T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease[J]. Neurology,2003,60 (9):1495-1500.
    [44]张月峰,于建春,李谈,等.“益气调血,扶本培元”针法对快速老化小鼠SAMP8海马和颞叶皮质神经元数量及形态的影响[J].上海针灸杂志,2005,24(9):40-43.
    [45]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science,2002,297(5580): 353-356.
    [46]李拓,赵忠新.p-淀粉样肽与阿尔茨海默病[J].第二军医大学学报,2010,31(10):1133-1136.
    [47]Vetrivel KS, Cheng H, Lin W, et al. Association of y-secretase with lipid rafts in post-Golgi and Endosome Membranes[J]. Biological Chemistry,2004, 279(43):44945-44954.
    [48]Johnson-Farley NN, Patel K, Kim D, et al. Interaction of FGF-2 with IGF-1 and BDNF in stimulating Akt, ERK, and neuronal survival in hippocampal cultures[J].Brain Research,2007,1154(1):40-49.
    [49]Gora-Kupilas K, Josko J. The neuroprotective function of vascular endothelial growth factor (VEGF)[J]. Folia Neuropathologica,2005,43(1): 31-39.
    [50]Franke TF, Hornik CP, Segev L, et al. PI3K/Akt and apoptosis: sizematters[J]. Oncogene,2003,22(56):8983-8998.
    [51]Pasinetti GM, Eberstein JA. Metabolic syndrome and the role of dietary lifestyles in Alzheimer's disease[J]. Neurochemistry,2008,106(4):1503-1514.
    [52]Jellinger KA. Basic mechanisms of neurodegeneration:a critical update[J]. Cell Molecular Medicine.2010,14(3):457-487.
    [53]Tatebayashi Y, Iqbal K, Grundke-Iqbal I. Dynamic Regulation of Expression and Phosphorylation of Tau by Fibroblast Growth Factor-2 In Neural Progenitor Cells from Adult Rat Hippocampus[J]. Neuroscience.1999,19(7): 5245-5254.
    [54]Liu HC, Leu SJ, Chuang DM. Roles of Glycogen Synthase Kinase-3 in Alzheimer's Disease:From Pathology to Treatment Target[J]. Experimental & Clinical Medicine,2012,4(3):135-139.
    [55]Hanger DP, Betts JC, Loviny TL, et al. New Phosphorylation Sites Identified in Hyperphosphorylated Tau (Paired Helical Filament-Tau) from Alzheimer's Disease Brain Using Nanoelectrospray Mass Spectrometry[J]. Neurochemistry,1998,71(6):2465-2476.
    [56]Rockenstein E, Torrance M, Adame A, et al. Neuroprotective effects of regulators of the glycogen synthase kinase-3 beta signaling path-way in a transgenicmodel of AD are associated with reduced amyloid precursor protein phosphorylation[J]. Neuroscience,2007,27(8):1981-1991.
    [57]Phiel CJ, Wilson CA, Lee VM, et al. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides[J]. Nature,2003,423(6938): 435-439.
    [58]Guillozet AL, Weintraub, Mash DC, et al. Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment[J]. Archives of Neurology, 2003,60(5):729-736.
    [59]Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease[J]. Indian Journal of Psychiatry,2009,51(1):55-61.
    [60]Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system[J]. Nature Reviews Neuroscience,2010,11(2):77-86.
    [61]Bennecib M, Gong CX, Grundke-Iqbal I, et al Role of protein phosphatase-2 A and -1 in the regulation of GSK-3, cdk5, and cdc2 and the phosphorylation of tau in rat forebrain[J]. FEBS Letters,2000,485(1):87-93.
    [62]Jope RS, Johnson VW. The glamour and gloom of glycogen synthase kinase-3[J]. Trends in Biochemical Science,2004,29(2):95-102.
    [63]Zhu LQ, Wang SH, Liu D, et al. Activation of Glycogen Synthase Kinase-3 Inhibits Long-Term Potentiation with Synapse-Associated Impairments[J]. Neuroscience,2007,27(45):12211-12220.
    [64]Mayeux R. Epidemiology of neurodegeneration[J]. Neuroscience,2003, 26(1):81-104.
    [65]Braak H, Braak E. Staging of Alzheimer-related cortical destruction[J]. International Psychogeriatrics,1997,9(1):257-261.
    [66]Busatto GF, Garrido GE, Almeida OP, et al. A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease[J]. Neurobiology of Aging,2003,24(2):221-231.
    [67]Swaab DF, Dubelaar EJ, Hofman MA, et al. Brain aging and Alzheimer's disease; use it or lose it[J]. Prog Brain Res,2002,138:343-373.
    [68]Li GM, Cheng HY, Zhang XZ, et al. Hippocampal neuron loss is correlated with cogonitive deficits in SAMP8 mice[J]. Neurological Sciences,2013,34(6): 963-969.
    [69]Hu R, Cai WQ, Wu XG, et al. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons[J]. Neuroscience,2007,144(4):1229-1240.
    [70]TakanoT, Oberheim N, Cotrina ML, et al. Astrocytes and ischemic injury[J]. Stroke,2009,40(12):8-12.
    [71]Voloboueva LA, Suh SW, Swanson RA, et al. Inhibition of mitochondrial function in astrocytes:implications for neuroprotection[J]. N euro chemistry, 2007,102(4):1383-1394.
    [72]Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores[J]. Proceedings of the National Academy of Sciences of the USA,2001,98(7):4148-4153.
    [73]He F, Sun YE. Glial cells more than support cell[J]. Biochemistry & Cell Biology,2007,39(4):661-665.
    [74]Ricci G, Volpi L, Pasquali L, et al. Astrocyte-neuron interactions in neurological disorders[J]. Biological Physics,2009,35(4):317-336.
    [75]Brambilla L, Martorana F, Rossi D. Astrocyte signaling and neurodegeneration:new insights into CNS disorders[J]. Prion,2013,7(1):28-36.
    [76]Huass-Wegrzyniak B, Dobzrnaski P, Stoehr JD, et al. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer disease[J].Brain Research,1998,780(2):294-303.
    [77]Weitz TM, Town T. Microglia in Alzheimer's Disease:It's All About Context[J]. Alzheimer's Disease,2012,2012 (10):314185-314196.
    [78]Solito E, Sastre M. Microglia function in Alzheimer's disease. Frontiers in pharmacology 2012; 3:14.
    [79]Dugar A, Patanow C, Ocallaghan JP, et al. Immunohistochemical localization and quantification of glial fibrillary acidic protein and synaptosomal-associated protein(mol. wt 25000) in the aging hippocampus following administration of 5,7-dihyroxytryptamine[J]. Neuroscience,1998, 85(1):123-133.
    [80]Rogers SL, Friedhoff LT. Long-term efficacy and safety of donepezil in the treatment of Alzheimer's disease:an interim analysis of the results of a US multicenter open label extension study[J]. European Neuropsychopharmacology, 1998,8(1):67-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700