零相关区互补序列及小整数集上完备序列设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩频序列的相关特性(包括周期/非周期相关特性和自相关/互相关相关特性)主要决定了码分多址(CDMA)通信系统的抗多址干扰(MAI)、多径干扰(MI)和邻区干扰(ACI)的能力,从而对该系统的性能和容量产生直接影响。扩频序列的研究工作主要集中在扩频序列理论界、扩频序列设计与扩频序列应用等方面。本博士论文则专注于探讨具有零相关区(ZCZ)的互补序列和小整数集上的完备序列,具体研究如下内容:(1)序列长度为奇数的非周期二进制Z-互补对零相关区长度上界,(2)非周期二进制Z-互补对和非周期四相Z-互补对的存在性,(3)非周期四相和四电平Z-互补集及其伴的构造,(4)小整数集上完备序列和具有少量零元素三进制完备序列。
     把零相关区的概念移植到互补序列,研究了非周期二进制Z-互补序列、非周期四相Z-互补序列和非周期四电平Z-互补序列。给出并证明了序列长度为奇数的非周期二进制Z-互补对零相关区长度上界,即对于序列长度N为奇数的非周期二进制Z-互补对,它的零相关区长度上界为(N+1)/2。此外,本文还分别给出了序列长度为奇数和偶数的非周期二进制Z-互补对存在的必要条件。
     提出了一种Z-互补对递归构造法,即从序列长度较短的非周期Z-互补对开始,交错使用满足一定条件的两对序列对,不断构造越来越长的非周期Z-互补对。用此方法证明了零相关区长度Z=2、3、4、5和6的非周期二进制Z-互补对的存在性,也用此方法证明了零相关区长度Z=2、3、4的非周期四相Z-互补对的存在性。
     提出了非周期Z-互补对的初等变换和等价类代表概念。对于固定长度的非周期Z-互补对,可以用此非周期Z-互补对等价类代表的集合表示。经过计算机搜索,分别得到了长度N≤9的非周期四相Z-互补对和非周期四电平Z-互补对的代表、最大零相关区长度与白相关函数和。分析表明:在序列长度相同时,非周期四电平Z-互补对和非周期四相Z-互补对的最大零相关区几乎相同,但都比非周期二进制Z-互补对的最大零相关区大,并且它们的数目均比二进制Z-互补对的数目多得多。
     通过对非周期四相互补集及其伴的构造方法进行改进,提出了非周期四相Z-互补集及其伴的构造,这些构造方法也适用于非周期四电平Z-互补集及其伴的构造。对于非周期四相Z-互补对的伴与零相关区长度的关系,一般来说,零相关区长度越短,非周期四相Z-互补对伴的数目就越多。
     用矩阵方法研究完备序列,揭示了多电平循环Hadamard矩阵和多电平完备序列之间的关系,即一个多电平完备序列的充要条件是:一个多电平序列是完备序列当且仅当这个序列的循环矩阵是多电平循环Hadamard矩阵。得到了整数集上完备序列的必要条件,即奇数长度的整数集上完备序列的能量一定是一个整数平方数。并且讨论了字符集{±1,±2)和{±1,±3}上完备序列的存在性。给出了整数集上完备序列的充分条件,得到了长度为3、4、6和7的两电平完备序列。
     研究了具有少量零元素三进制完备序列,并且论证了它的存在性。提出了三进制完备序列等价类代表的概念。给出了含有k个零元素三进制完备序列的必要条件。证明了长度为奇数的含有一个零元素或两个零元素三进制完备序列是不存在的。证明了任意长度的含有且仅含有两个及其以上相邻零元素三进制完备序列是不存在的。提出了一个三进制完备序列搜索算法,搜索结果表明:长度小于49的含有一个零元素的三进制完备序列是不存在的。除一个长度为6的含有两个零元素三进制完备序列之外,其他长度小于37的含有两个零元素三进制完备序列是不存在的。
The correlation (including periodic/aperiodic correlation, and auto-correlation/cross-correlation correlation) function of the spreading sequences which are employed in code-division multiple-access (CDMA) communication systems play a critical role on the capability of reducing multiple access interference (MAI), the multipath interference (MI), and adjacent cell interference (ACI), therefore directly influence the performance and capacity of the systems. Existing research on spreading sequences mainly focuses on three aspects, i.e. the theoretic sequence bounds, the sequence design and the sequence applications respectively. In this thesis, complementary sequences with zero correlation zone (ZCZ) and perfect sequences over small integers are investigated concretely, that is,(1) upper bound on zero correlation zone width of aperiodic binary Z-complementary pairs of odd length,(2) existence of aperiodic Z-complementary pairs of binary and quadriphase sequences,(3) constructions of aperiodic quadriphase and four-level Z-complementary sets and their mates, and (4) perfect sequences over small integers and ternary perfect sequences with a few zero elements.
     By extending the ZCZ concept to complementary sequences, aperiodic Z-complementary sequences (including binary/quadriphase/four-level) are investigated. It is shown that an upper bound on zero correlation zone width of aperiodic Z-complementary pairs of binary sequences of odd length N is (N+1)/2. Moreover, necessary conditions for aperiodic Z-complementary pairs of binary sequences are given.
     A new recursive construction of aperiodic Z-complementary pairs is proposed. That is, aperiodic Z-complementary pairs of longer length are constructed from aperiodic Z-complementary pairs of shorter one by using two pairs of sequences that satisfied certain conditions. It is proved that there exist aperiodic Z-complementary pairs of binary sequences of any length with ZCZ widths2,3,4,5and6. It is also proved that there exist aperiodic Z-complementary pairs of quadriphase sequences of any length with ZCZ widths2,3and4.
     Elementary operations on aperiodic Z-complementary pairs and the representatives of the equivalence class of them are proposed. The set of Z-complementary pairs of some fixed lengths is determined by the set of inequivalent representatives. Based on computer search, a specific representative for each aperiodic quadriphase (and four-level) Z-complementary pair of length N≤9, its maximum ZCZ width, and Summed ACF are given. Binary Z-complementary pairs are compared with quadriphase and four-level Z-complementary ones. It is shown that the aperiodic quadriphase and four-level Z-complementary pairs are normally better than aperiodic binary ones of the same length, in terms of the number of Z-complementary pairs and the maximum ZCZ width. Besides, the aperiodic quadriphase Z-complementary pairs are nearly the same as aperiodic four-level Z-complementary pairs in terms of the maximum ZCZ width.
     By modifying or improving the original methods of constructing complementary sets and their mates, constructions of aperiodic quadriphase (and four-level) Z-complementary sets and their mates are given. Generally speaking, the shorter ZCZ width, the more mates of an aperiodic quadriphase Z-complementary pair.
     Perfect sequences are studied by using matrix method. The relation between multilevel cyclic Hadamard matrices and multilevel perfect sequences is investigated. A sequence is a multilevel perfect sequence if and only if the cyclic matrix associated with the sequence is a multilevel cyclic Hadamard matrix. Necessary conditions for perfect sequences over integers are proposed. It is shown that, the sum of squares of all elements of perfect sequence of odd length over integers is a square number. The existence of perfect sequences over the alphabets{±1,±2} and {±1,±3} is also investigated. A sufficient condition for perfect sequences over integers is given, and two-level perfect sequences of length3,4,6and7are obtained.
     Ternary perfect sequences with a few zero elements are studied, and their existence is also investigated. Necessary conditions for ternary perfect sequences with k zero elements are given. It is proved that there exist no ternary perfect sequences of odd lengths with one zero element or two zero elements. It is also proved that there exist no ternary perfect sequences of any length with two and above adjacent zero elements. An efficient search algorithm for ternary perfect sequences is given. The result concerning the non-existence of ternary perfect sequences of lengths less than49with one zero element are obtained. The non-existence of ternary perfect sequences of lengths less than37with two zero elements is determined, but excluding the case of length6.
引文
[1]S. Haykin通信系统.宋铁成,徐平平,徐智勇等译.电子工业出版社,2003.
    [2]B. Sklar.数字通信.徐平平,宋铁成,叶芝慧等译.电子工业出版社,2002.
    [3]何世彪,谭晓衡.扩频技术及其实现.电子工业出版社,2007.
    [4]R. L. Peterson, and R. E. Ziemer.扩频通信导论.沈丽丽,侯永宏,马兰等译.电子工业出版社,2006.
    [5]曾兴雯,刘乃安,孙献璞.扩展频谱通信及其多址技术.西安电子科技大学出版社,2004.
    [6]聂景楠.多址通信及其接入控制技术.人民邮电出版社,2006.
    [7]T. S. Rappaport. Wireless communications:Principles and practice. Prentice Hall, 1996.
    [8]R. L. Pickholtz, L. B. Milstein, and D. L. Schilling, Spread spectrum for mobile communications, IEEE Transactions on Vehicular Technology,1991, vol.40, no.2, pp.313-322.
    [9]W. C. Y. Lee, Overview of cellular CDMA, IEEE Transactions on Vehicular Technology,1991, vol.40, no.2, pp.291-302.
    [10]K. S. Gilhousen, I. M. Jacobs, R. Padovani, and L. A. Weaver, Increased capacity using CDMA for mobile satellite communication, IEEE Journal on Selected Areas in Communications,1990, vol.8, no.4, pp.503-514.
    [11]P. Li, L. Liu, K. Y. Wu, and W. K. Leung, Interleave-division multiple-access, IEEE Transactions on Wireless Communications,2006, vol.5, no.4, pp.938-947.
    [12]H. Sari, Y. Levy, and G. Karam, An analysis of orthogonal frequency-division multiple access, IEEE Global Telecommunications Conference,1997, vol.3, pp.1635-1639.
    [13]Y. J. Choi, S. Park, and S. Bahk, Multichannel random access in OFDMA wireless networks, IEEE Journal on Selected Areas in Communications,2006, vol.24, no.3, pp. 603-613.
    [14]D. Molteni, M. Nicoli, and U. Spagnolini, Performance of MIMO-OFDMA systems in correlated fading channels and non-Stationary interference, IEEE Transactions on Wireless Communications,2011, vol.10, no.5, pp.1480-1494.
    [15]R. W. Liu, and R. D. Ying, ADMA-a new multiple access system,4th IEEE International Conference on Circuits and Systems for Communications,2008, pp. 153-157.
    [16]C. Khirallah, P. Coulton, H. Rashvand, and N. Zein, Multi-user MIMO CDMA systems using complete complementary sequences, IEE Proceedings on Communications,2006, vol.153, no.4, pp.533-540.
    [17]M. Jiang, and L. Hanzo, Multiuser MIMO-OFDM for next-generation wireless systems, Proceedings of IEEE,2007, vol.95, no.7, pp.1430-1469.
    [18]梅文华,杨义先.跳频通信编码地址理论.国防工业出版社,1996.
    [19]E. H. Dinan, and B. Jabbari, Spreading codes for direct sequence CDMA and wideband CDMA cellular networks, IEEE Communications Magazine,1998, vol.36, no.9, pp. 48-54.
    [20]郝莉.基于广义正交序列的DS-CDMA系统及其性能分析.西南交通大学博士学位论文.2003.
    [21]冯莉芳.广义正交扩频序列理论及其在多速率QS-CDMA系统中的应用研究.西南交通大学博士学位论文.2008.
    [22]涂宜锋.广义正交互补序列设计、分析与应用.西南交通大学博士学位论文.2010.
    [23]M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--part Ⅰ:system analysis, IEEE Transactions on Communications,1977, vol.25, no.8, pp.795-799.
    [24]M. B. Pursley, and D. V. Sarwate, Performance evaluation for phase-coded spread-spectrum multiple-access communication-part Ⅱ:code sequence analysis, IEEE Transactions on Communications,1977, vol.25, no.8, pp.800-803.
    [25]J. K. Omura and P. T. Yang, Spread spectrum S-CDMA for personal communication services, IEEE Military Communications Conference,1992, vol.1, pp.269-273.
    [26]R. D. Gaudenzi, C. Elia, and R. Viola, Bandlimited quasi-synchronous CDMA:A novel satellite access technique for mobile and personal communication systems, IEEE Journal on Selected Areas in Communications,1992, vol.10, no.2, pp.328-343.
    [27]V. M. DaSilva, and E. S. Sousa, Multicarrier orthogonal CDMA signals for quasi-synchronous communication systems, IEEE Journal on Selected Areas in Communications,1994, vol.12, no.5, pp.842-852.
    [28]P. Z. Fan, N. Suehiro, N. Kuroyanagi, and X. M. Deng, A class of binary sequences with zero correlation zone, Electronics Letters,1999, vol.35, no.10, pp.777-779
    [29]A. Banerjee, R. A. Iltis, and E. A. Varvarigos, Performance evaluation for a quasi-synchronous packet radio network (QSPNET), IEEE/ACM Transactions on Networking,2001, vol.9, no.5, pp.567-577.
    [30]W. J. V. Houtum, Quasi-synchronous code-division multiple access with high-order modulation, IEEE Transactions on Communications,2001, vol.49, no.7, pp. 1240-1249.
    [31]J. K. Kyeong, and R. A. Iltis, Joint detection and channel estimation algorithms for QS-CDMA signals overtime-varying channels, IEEE Transactions on Communications, 2002, vol.50, no.5, pp.845-855.
    [32]C. Kwonhue, and L. Huaping, Quasi-synchronous CDMA using properly scrambled walsh codes as user-spreading sequences, IEEE Transactions on Vehicular Technology, 2010, vol.59, no.7, pp.3609-3617.
    [33]R. L. Pickholtz, D. L. Schilling, and L. B. Misltein, Theory of spread-spectrum communications—a tutorial, IEEE Transactions on Communications,1982, vol.30, no. 5, pp.855-884.
    [34]A. J. Viterbi, Spread spectrum communications:myths and realities, IEEE Communications Magzine 50th Anniversary Commemorative Issue,2002, vol.40, no. 5, pp.34-41.
    [35]D. B. Newman. FCC authorizes spread apectrum, IEEE Communications Magzine, 1986, vol.24, no.7, pp.46-47.
    [36]张平WCDMA移动通信系统.人民邮电出版社,2001.
    [37]杨大成cdma2000 1x移动通信系统.机械工业出版社,2003.
    [38]李小文TD-SCDMA第三代移动通信系统.人民邮电出版社,2003.
    [39]P. Z. Fan, and M. Darnell. Sequence design for communications applications. New York:Wiley and RSP,1996.
    [40]唐小虎.低/零相关区理论与扩频通信系统序列设计.西南交通大学博士学位论文,2001.
    [41]L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Transactions on Information Theory,1974, vol. IT-20, no.3, pp.397-399.
    [42]D. V. Sarwate, Bounds on crosscorrelation and autocorrelation of sequences, IEEE Transactions on Information Theory,1979, vol. IT-25, no.6, pp.720-724.
    [43]V. I. Levenshtein, New lower bounds on aperiodic crosscorrelation of binary codes, IEEE Transactions on Information Theory,1999, vol.45, no.3, pp.284-288.
    [44]彭代渊.新型扩频序列及其理论界研究.西南交通大学博士学位论文,2005.
    [45]P. V. Kumar, and C. M. Liu, On lower bounds to the maximum correlation of complex roots-of-unity sequences, IEEE Transactions on Information Theory,1990, vol.36, no. 3, pp.633-640.
    [46]X. M. Deng, and P. Z. Fan, Spreading sequence sets with zero correlation zone, Electronics Letters,2000, vol.36, no.11, pp.993-994.
    [47]X. H. Tang, P. Z. Fan, D. B. Li, and N. Suehiro, Binary array set with zero correlation zone, Electronics Letters,2001, vol.37, no.13, pp.841-842.
    [48]X. H. Tang, and P. Z. Fan, A class of pseudonoise sequences over GF (P) with low correlation zone, IEEE Transactions on Information Theory,2001, vol.47, no.4, pp. 1644-1649.
    [49]L. Hao, and P. Z. Fan, On the Performance of Synchronous DS-CDMA Systems with Generalized Orthogonal Spreading Codes, Chinese Journal of Electronics (English version),2003, Vol.12, No.2, pp.219-224.
    [50]X. H. Tang, P. Z. Fan, and S. Matsufuji, Lower bounds on correlation of spreading sequence set with low or zero correlation zones, Electronics Letters,2000, vol.36, no. 6, pp.551-552.
    [51]X. H. Tang, and P. Z. Fan, Bounds on aperiodic and odd correlations of spreading sequences with low and zero correlation zone, Electronics Letters,2001, vol.37,, no. 19, pp.1201-1203.
    [52]D. Y. Peng, and P. Z. Fan, Generalised sarwate bounds on periodic autocorrelations and cross-correlations of binary sequences, Electronics Letters,2002, vol.38, no.24, pp. 1521-1523.
    [53]D. Y. Peng, and P. Z. Fan, Bounds on aperiodic auto-and cross-correlations of binary sequences with low or zero correlation zone, in parallel and distributed computing, applications and technologies, PDCAT Proceedings, Chengdu,2003, pp.882-886.
    [54]D. Y. Peng, and P. Z. Fan, Generalized Sarwate bounds on the periodic correlation of complex roots of unity sequences, in Personal, Indoor and Mobile Radio Communications, PIMRC 2003,14th IEEE Proceedings on,2003, pp.449-452 Vol.1.
    [55]D. Y. Peng, and P. Z. Fan, Generalised Sarwate bounds on the aperiodic correlation of sequences over complex roots of unity, IEE Proceedings:Communications,2004, vol. 151, no.4, pp.375-382.
    [56]D. Y. Peng, P. Z. Fan, and N. Suehiro, Bounds on aperiodic autocorrelation and crosscorrelation of binary LCZ/ZCZ sequences, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2005, vol. E88-A, no.12, pp. 3636-3642.
    [57]D. Y. Peng, and P. Z. Fan, New theoretical bounds on the aperiodic correlation functions of binary sequences, Science in China, Series F:Information Sciences,2005, vol.48, no.1, pp.28-45.
    [58]L. F. Feng, and P. Z. Fan, Generalized bounds on partial aperiodic correlation of complex roots of unity sequences, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Beijing,2006, pp.342-350.
    [59]L. F. Feng, and P. Z. Fan, Generalized bounds on the partial periodic correlation of complex roots of unity sequence set, Journal of Zhejiang University:Science A,2008, vol.9, no.2, pp.207-210.
    [60]R. Gold, Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.), IEEE Transactions on Information Theory,1968, vol.14, no.1, pp.154-156.
    [61]D. V. Sarwate, and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proceedings of the IEEE,1980, vol.68, no.5, pp.593-619.
    [62]O. Rothaus, Modified Gold codes. IEEE Transactions on Information Theory,1993, vol.39, no.2, pp.654-656.
    [63]N. Y. Yu, and G. Gong, A new binary sequence family with low correlation and large size. IEEE Transactions on Information Theory,2006, vol.52, no.4, pp.1624-1636.
    [64]J. O. Sebeni, and C. Leung, Performance of concatenated Walsh/PN spreading sequences for CDMA systems, in Vehicular Technology Conference,1999 IEEE 49th, 1999, vol.1, pp.226-232.
    [65]M. H. Fong, V. K. Bhargava, and W. Qiang, Concatenated orthogonal/PN spreading sequences and their application to cellular DS-CDMA systems with integrated traffic, IEEE Journal on Selected Areas in Communications,1996, vol.14, no.3, pp.547-558.
    [66]F. Adachi, M. Sawahashi, and K. Okawa, Tree-structured generation of orthogonal spreading codes with different lengths for forward link of DS-CDMA mobile radio, Electronics Letters,1997, vol.33, no.1, pp.27-28.
    [67]T. Kasami, S. Lin, V. K. Wei, and S. Yamamura, Coding for the binary symmetric broadcast channel with two receivers, IEEE Transactions on Information Theory,1985, vol. IT-31,no.5, pp.616-625.
    [68]X. Zeng, J. Liu, and L. Hu. Generalized Kasami sequences:The Large Set, IEEE Transactions on Information Theory,2007, vol.53, no.7, pp.2587-2598.
    [69]M. Antweiler and L. Bomer, Merit factor of Chu and Frank sequences, Electronics Letters,1990, vol.26, no.25, pp.2068-2070.
    [70]P. Z. Fan, M. Darnell, and B. Honary, Crosscorrelations of Frank sequences and Chu sequences, Electronics Letters,1994, vol.30, no.6, pp.477-478.
    [71]J. Wolfmann, Almost perfect autocorrelation sequences, IEEE Transactions on Information Theory,1992, vol.38, no.4, pp.1412-1418.
    [72]T. Hoholdt, and J. Justesen, Ternary sequences with perfect periodic autocorrelation, IEEE Transactions on Information Theory,1983, vol. IT-29, no.4, pp.597-600.
    [73]Jedwab, and C. Mitchell, Constructing new perfect binary arrays, Electronics Letters, 1988, vol.24, no.11, pp.650-652.
    [74]P. Wild, Infinite families of perfect binary arrays, Electronic Letters,1988, vol.24, no. 14, pp.845-847.
    [75]M. Antweiler, L. Bomer, and H. D. Luke, Perfect ternary arrays, IEEE Transactions on Information Theory,1990, vol.36, no.3, pp.696-705.
    [76]J. Olsen, R. Scholtz, and L. Welch, Bent-function sequences. IEEE Transactions on Information Theory,1982, vol.28, no.11, pp.858-864.
    [77]S. Boztas, and P. Kumar, Binary sequences with Gold-like correlation but larger linear span, IEEE Transactions on Information Theory,1994, vol.40, no.1, pp.532-537
    [78]P. Udaya, and M. Siddiqi, Optimal biphase sequences with large linear complexity derived from sequences over Z4, IEEE Transactions on Information Theory,1996, vol. 42, no.1, pp.206-216.
    [79]X. H. Tang, and P. Udaya, Generalized binary Udaya-siddiqi sequences, IEEE Transactions on Information Theory,2007, vol.53, no.8, pp.1225-1230.
    [80]S. Boztas, A. Hammons, and P.V. Kumar.4-phase sequences with near-optimum correlation properties. IEEE Transactions on Information Theory,1992, vol.38, no.3, pp.1101-1113.
    [81]X. H. Tang, and P. Udaya. A note on the optimal quadriphase sequences families. IEEE Transactions on Information Theory,2007, vol.33, no.1, pp.433^436.
    [82]P. Kumar, and O.Moreno. Prime-phase sequences with periodic correlation properties better than binary sequences. IEEE Transactions on Information Theory,1991, vol.37, no.3, pp.603-616.
    [83]P. Kumar, T. Helleseth, A. Calderbank, and A. Hammons, Large families of quaternary sequences with low correlation, IEEE Transactions on Information Theory,1996, vol. 42, no.2, pp.579-592.
    [84]J. Jang, Y. Kim, J. No, and T. Helleseth, New family of p-ary sequences with optimal correlation property and large linear span, IEEE Transactions on Information Theory, 2004, vol.50, no.8, pp.1839-1844.
    [85]X. H. Tang, and W. H. Mow, Design of spreading codes for quasi-synchronous CDMA with intercell interference, IEEE Journal on Selected Areas in Communications,2006, vol.24, no. 1,pp.84-93.
    [86]A. Rathinakumar, and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Transactions on Information Theory,2006, vol.52, no.8, pp.3817-3826.
    [87]X. H. Tang, and P. Z. Fan, J. Lindner, Multiple binary ZCZ sequence sets with good crosscorrelation property based on complementary sequence sets, IEEE Transactions on Information Theory,2010, vol.56, no.8, pp.4038-4045.
    [88]S. Matsufuji, N. Kuroyanagi, N. Suehiro, and P. Z. Fan. Two types of polyphase sequence sets for approximately synchronized CDMA Systems. IEICE Transactions on Fundamentals.2003, vol. E86-A, no.1,229-234.
    [89]H. Torii, M. Nakamura, and N. Suehiro, A new class of zero-correlation zone sequences, IEEE Transactions on Information Theory,2004, vol.50, no.3, pp. 559-565.
    [90]S. Matsufuji, Families of sequence pairs with zero correlation zone, IEICE Transactions on Fundamentals,2006, vol. E89-A, no.11, pp.3013-3017.
    [91]X. H. Tang, and W. H. Mow, A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences, IEEE Transactions on Information Theory,2008, vol.54, no.12, pp.5729-5734.
    [92]B. Q. Long, P. Zhang, and J. D. Hu, A generalized QS-CDMA system and the design of new spreading codes, IEEE Transactions on Vehicular Technology,1998, vol.47, no.4, pp.1268-1275.
    [93]G. Gong, S. W. Golomb, and H. Song, A note on low correlationzone signal sets, IEEE Transactions on Information Theory,2007, vol.53, no.7, pp.2575-2581.
    [94]Z. C. Zhou, X. H. Tang, and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Transactions on Information Theory,2008, vol.54, no.9, pp.4267-4273.
    [95]Z. C. Zhou, X. H. Tang, and D. Y. Peng, New optimal quadriphase zero correlation zone sequences with mismatched filtering, IEEE Signal Processing Letter,2009, vol. 16, no.7, pp.636-639.
    [96]王扬志.零相关区序列与零相关区序列偶理论的研究.燕山大学博士学位论文,2009.
    [97]H. D. Luke, Sequences and arrays with perfect periodic correlation, IEEE Transactions on Aerospace and Electronic Systems,1988, vol.24, no.3, pp.287-294.
    [98]S. W. Golomb, Two-valued sequences with perfect periodic autocorrelation, IEEE Transactions on Aerospace and Electronic Systems,1992, vol.28, no.2, pp.383-386.
    [99]K. R. Godfrey, Three-level m sequences, Electronic Letters,1966, vol.2, no.7, pp.241-243.
    [100]J. A. Chang, Ternary sequences with zero correlations, Electronic Letters,1967, vol. 55, no.7, pp.1211-1213.
    [101]D. A. Shed, and D.V. Sarwate, Construction of sequences with good correlation properties, IEEE Transactions on Information Theory,1979, vol.25, no.1, pp.94-97.
    [102]M. Darnell, P. Z. Fan, and F. Jin, Perfect sequences derived from M-sequences, IEEE International Symposium on Information Theory,1995, pp.461.
    [103]R. C. Hemiller, Phase shift pulse codes with good periodic correlation properties, IRE Transactions on Information Theory,1961, vol.7, no.4, pp.254-257.
    [104]R. Frank, S. Zadoff, and R. Hemiller, Phase shift pulse codes with good periodic correlation properties (Corresp.), IRE Transactions on Information Theory,1962, vol.8, no.6, pp.381-382.
    [105]R. Frank, Comments on 'Polyphase codes with good periodic correlation properties' by Chu, David C, IRE Transactions on Information Theory,1973, vol.8, no.6, pp.244.
    [106]D. C. Chu, Polyphase codes with good periodic correlation properties, IEEE Transactions on Information Theory,1972, vol.18, no.4, pp.531-532.
    [107]W. H. Mow, A new unified construction of perfect root-of-unity sequences, IEEE 4th International Spread Spectrum Techniques and Applications Proceedings, Mainz, September,1996, vol.3, pp.955-959.
    [108]E. I. Krengel, Perfect polyphase sequences with small alphabet, Electronic Letters, 2008, vol.44, no.17, pp.1013-1014.
    [109]X. D. Li, P. Z. Fan, and W. H. Mow, Multilevel perfect sequences over integers, Electronic Letters,2011, vol.47, no.8, pp.496-497.
    [110]X. D. Li, P. Z. Fan, and W. H. Mow, Existence of ternary perfect sequences with a few zero elements, The Fifth International Workshop on Signal Design and its Applications, Guilin, October,2011, pp.1013-1014.
    [111]M. J. E. Golay, Complementary series, IEEE Transactions on Information Theory, 1961, vol.7, No.2, pp.82-87.
    [112]R. Turyn, Ambiguity functions of complementary sequences (Corresp.), IEEE Transactions on Information Theory,1963, vol.9, No.1, pp.46-47.
    [113]C. C. Tseng, Complementary sets of sequences, IEEE Transactions on Information Theory,1972, vol.18, no.5, pp.644-652.
    [114]R. Sivaswamy, Multiphase complementary codes, IEEE Transactions on Information Theory,1978, vol.24, no.5, pp.546-552.
    [115]M. Darnell, and A. H. Kemp, Synthesis of multilevel complementary sequences, Electronic Letters,1988, vol.24, no.19, pp.1251-1252.
    [116]A. H. Kemp, and M. Darnell, Synthesis of uncorrelated and nonsquare sets of multilevel complementary sequences, Electronic Letters,1989, vol.25, no.12, pp.791-792.
    [117]S. Z. Budisin, New multilevel complementary pairs of sequences, Electronic Letters, 1990, vol.26, no.13, pp.881-883.
    [118]L. Bomer, and M. Antweiler, Periodic complementary binary sequences, IEEE Transactions on Information Theory,1990, vol.36, pp.1487-1494.
    [119]K. Feng, P. J. S. Shiue, and Q. Xiang, On aperiodic and periodic complementary binary sequences, IEEE Transactions on Information Theory,1999, vol.45, pp.296-303.
    [120]P. Z. Fan, W. N. Yuan, and Y. F. Tu, Z-complementary binary sequences, IEEE Signal Processing Letters,2007, vol.14, no.8, pp.509-512.
    [121]X. D. Li, P. Z. Fan, X. H. Tang, and Y. F Tu, Existence of binary Z-complementary pairs, IEEE Signal Processing Letters,2011, vol.18, no.1, pp.63-66.
    [122]X. D. Li, P.Z. Fan, X.H. Tang, and L. Hao, "Constructions of quadriphase Z-complementary sequences," Proceedings of the Fourth International Workshop on Signal Design and Its Applications in Communications, Fukuoka, Japan,2009, 10, pp.36-39..
    [123]X. D. Li, P. Z. Fan, X. H. Tang, and L. Hao, Quadriphase Z-Complementary sequences, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2010, vol. E93-A, No.11, pp.2251-2257.
    [124]冯莉芳,汪晓宁,叶文霞,彭代渊.基于无碰撞区跳频码的准同步组网方案. 西南交通大学学报,2004,39(6):776-779.
    [125]P. Z. Fan, and L. Hao, Generalized orthogonal sequences and their applicationsin synchronous CDMA systems, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,2000, vol.E83-A, no.11, pp.2054-2069.
    [126]W. C. Y. Li, The most spectrum-efficient duplexing system:CDD, IEEE Communication Magazine,2002, vol.40, no.3, pp.163-166.
    [127]P. Seong, P. S. Ryoung, S. Iickho, and N. Suehiro, Multiple-access interference reduction for QS-CDMA systems with a novel class of polyphase sequences, IEEE Transactions on Information Theory,2000, vol.46, no.4, pp.1448-1458.
    [128]P. Z. Fan, and W. H. Mow, On optimal training sequence design for multiple-antenna systems over dispersive fading channels and its extensions, IEEE Transactions on Vehicular Technology,2004, vol.53, no.5, pp.1623-1626.
    [129]T. Hayashi, and S. Matsufuji, On optimal construction of two classes of ZCZ codes, IEICE Transactions on Fundamentals,2006, vol. E89-A, no.9, pp.2345-2350.
    [130]H. G. Hu, and G. Gong, New sets of zero or low correlation zone sequences via interleavig technique, IEEE Transactions on Information Theory,2010, vol.56, no.4, pp.1702-1713.
    [131]邓新民.扩频序列设计与准同步CDMA通信系统研究.西南交通大学博士学位论文,2000.
    [132]S. A. Yang and J. S. Wu, Optimal binary training sequence design for multiple-antenna systems over dispersive fading channels, IEEE Transactions on Vehicular Technology, vol.51, no.5, pp.1271-1276, Sep.2002.
    [133]D. B. Li, The perspective of large area synchronous CDMA technology for the fourth-generation mobile radio, IEEE Communication Magazine,2003, vol.41, no.3, pp.114-118.
    [134]李建业LAS-CDMA—新一代的无线技术.电信科学.2001,1:60-62.
    [135]N. Suehiro, A signal design without co-channel interference for approximately synchronized CDMA systems, IEEE Journal on Selected Areas in Communications, 1994, vol.12, no.5, pp.837-841.
    [136]A. P. Clark, Z.C. ZHU, and I. K. Johsi, Fast start-up channel estimation, IEE Proceedings-F:Communications, Radar and Signal Processing,1984, vol.131, no.4, pp.375-382.
    [137]N. Levenon, and A. Freedman, Periodic Ambiguity Function of CW Signals with Perfect periodic autocorrelation, IEEE Transactions on Aerospace and Electronic Systems,1992, vol.28, no.2, pp.387-395.
    [138]陈罡,赵正予,杨国斌.近完美序列与m序列的分析和比较.电波科学学报.2008,23(1):68-73.
    [139]曾凡鑫.准完美周期16QAM序列的生成方法及装置,申请号:201010201873.0,中国专利发明,2010
    [140]M. J. E. Golay, Multi-slit spectrometry, Josa Optical Society of America,1949, vol. 39, No.6, pp.437-444.
    [141]N. Suehiro, and M. Hatori, N-shift cross-orthogonal sequences, IEEE Transactions on Information Theory,1988, vol. IT-34, no.1, pp.143-146.
    [142]H. M. Wang, X. Q. Gao, B. Jiang, X. H. You, and W. Hong, Efficient MIMO channel estimation using complementary sequences, IET Communications,2007, vol.1, no.5, pp.962-969.
    [143]S. M. Tseng, and R. Bell, Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary codes for new generations of wideband wireless communications, IEEE Transactions on Communications,2000, vol.48, no.1, pp. 53-59.
    [144]H. H. Chen, H. W. Chiu, and M. Guizani, Orthogonal complementary codes for interference-free CDMA technologies, IEEE Transactions on Wireless Communications,2006, vol.13, no.1, pp.68-79.
    [145]H. H. Chen, The next generation CDMA technologies, Chichester:John Wiley & Sons, 2007.
    [146]L. F. Feng, P. Z. Fan, X. H. Tang, and K. K. Loo, Generalized pairwise Z-complementary codes, IEEE Signal Processing Letters,2008, vol.15, pp.377-380.
    [147]L. F. Feng, P. Z. Fan, and X. Tang, A general construction of OVSF codes with zero correlation zone, IEEE Signal Processing Letters,2007, vol.14, pp.908-911.
    [148]W. N. Yuan, Y. F. Tu, and P. Z. Fan, Optimal training sequences for cyclic-prefix-based single-carrier multi-antenna systems with space-time block-coding, IEEE Transactions on Wireless Communications,2008, vol.7, no.11, pp.4047-4050.
    [149]袁伟娜.基于新型训练序列的多天线移动通信信道估计.西南交通大学博士学位论文,2007.
    [150]K. H. Rosen, Discrete Mathematics and Its Applications, Peking:China Machine Press, 2008.
    [151]H. H. Chen, J. F. Yeh, and N. Suehiro, A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications, IEEE Communications Magazine,2001, vol.39, pp.126-135.
    [152]何艳艳,施保昌,杨益.基于移位多相正交序列的周期完全互补码术.信号处理,2007,23(6):1-5.
    [153]贾志成,葛玲,王婧,李树峰.一种完全互补序列的简单构造方法.河北工业大学学报,2007,36(4):941-945.
    [154]X. D. Li, and L. Hao, Synthesis of four-level Z-complementary sequences,2010 3rd International Congress on Image and Signal Processing (CISP), Yantai, China,2010,10, pp.4463-4466.
    [155]P. S. Moharir, Generalized PN sequences, IEEE Trans. on Inform. Theory,1977, vol. 23, no.6, pp.782-784.
    [156]V. P. Ipatov, Ternary sequences with ideal autocorrelation properties, Radio Eng. E lectron. P.hys.,1979, vol.24, pp.75-79.
    [157]S. Boztas and U. Parampalli, Nonbinary sequences with perfect and nearly perfect autocorrelations, IEEE Int. Symp., Information Theory Proc., (ISIT), Austin, TX, USA,, Jun.2010, pp.1300-1304.
    [158]S. W. Golomb and G. Gong, Singal design for good correlation for wireless communication, cryptography and radar, Cambridge, U.K.:Cambridge University Press,2005
    [159]Q. K. Trinh, P. Z. Fan, and E. M. Gabidulin, Multilevel Hadamard matrices and zero correlation zone sequences, Electron. Lett.,2006, vol.42, no.13, pp.748-750.
    [160]B. M. Popovic, Complementary sets based on sequences with ideal periodic autocorrelation, Electron. Lett.,1990, vol.26, no.18, pp.1428-143.
    [161]X. D. Li, P. Z. Fan, and W. H. Mow, Existence of ternary perfect sequences with a few zero elements, IEICE Transactions on Fundamentals (SCI检索刊物,已投递,评审中)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700