人—牛异种体细胞克隆胚胎构建及其线粒体来源检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人-动物异种间体细胞核移植技术可利用动物的卵母细胞为核受体,以人类的体细胞为核供体构建异种间体细胞克隆胚,通过体外培养获取人源性胚胎干细胞。这项技术为获得人类干细胞以及人类器官移植开辟了一条崭新的途径。但极低的成功率限制了这项技术在实践中的应用,这可能归因于体细胞核在异种卵母细胞中未能完全再程序化。同时,异种间克隆胚存在广泛的线粒体杂合现象,即来源于供受体细胞的两套线粒体共存。影响异种间克隆胚及克隆后代中线粒体杂合性的因素还不清楚。动物源性线粒体的存在,是人-动物异种体细胞克隆胚胎应用于实践的一大障碍。
     本实验以体外培养成熟的牛卵母细胞为核受体,分别以人胎儿成纤维细胞(HFFs)、牛胎儿成纤维细胞(BFFs)为核供体构建同异种间体细胞克隆胚,通过体外培养观察两者在发育能力方面的差异。此外,在早期发育的不同阶段(2-、4-、8-、桑椹胚、囊胚),采用PCR的方法检测了异种间克隆胚中供受体来源的线粒体DNA(mtDNA)存在情况,以及异种克隆胚胎核基因来源情况。
     人-牛异种克隆胚胎构建试验中发现,试验的批次效应明显,说明卵母细胞与供体细胞的协调性有很强的随机性,两者的协调性也是影响克隆效率的最关键因素。
     同异种间克隆胚的体外发育结果表明,同种间克隆胚的体外囊胚发育率(10.1%)高于异种间克隆胚的体外囊胚发育率(2.88%),且这种差异主要是由异种间克隆胚在8-细胞到桑椹胚期间的发育能力显著低于同种间克隆胚(p<0.05)造成的。
     对异种间克隆胚核基因来源的检测表明,异种间克隆胚的核基因来源于人类供体细胞。
     对不同发育阶段异种间克隆胚中供受体来源的mtDNA检测结果表明人线粒体DNA存在于桑椹胚之前的各个胚胎发育阶段,牛线粒体DNA存在于整个植入前的胚胎发育阶段。
The technique of interspecies somatic cell nuclear transfer, in which interspecies cloned embryos can be reconstructed by using domestic animals oocytes as nuclear recipient and human somatic cell as nuclear donor, can afford more opportunities in human embryonic stem cell and human organ transplantation by obtaining embryonic stem cell from interspecies cloned embryos which were cultured in vitro. But the application of this technique was limited by its extremely low efficiency which maybe can be attributed to donor nucleus not fully reprogrammed by xenogenic recipient cytoplasmy. Moreover, two types of mitochondria, which were derived respectively from nuclear donor and nuclear recipient, were observed in many interspecies cloned embryos and offspring. But the factors which affected mitochondrial heteroplasmy were still unclear. It should be considered that allogeneic mitochondria present in NT-ESC or NT-ESC derived cells could be recognized by the host immune system, leading to disrupted mitochondrial membrane potential that induces the apoptotic cell signaling pathway, thus leading to cell death.
     In present study, intra- and inerspecies cloned embryos were constructed using in vitro matured bovine oocytes as nuclear recipient and human- (HFFs) or bovine fetal fibroblasts (BFFs) as nuclear donor. The difference in developmental ability between intra- and interspecies cloned embryos were investigated by cultured them in vitro. Moreover, at various developmental stage (2-, 4-, 8-, morula and blastocyst) of interspecies cloned embryos, the percentage of two types of mtDNA and mtRNA was examined using PCR.
     A significant batch effect was found in construction of interspecies embryos. This showed that the cooperation between the enucleated oocytes and the donor cell is random. The cooperation is the most important factor in somatic cell nuclear transfer.
     The result of development in vitro showed that the rate of intra- blastocyst (10.1%) was higher than that of interspecies blastocyst (2.88%), and this difference was mainly due to lower developmental ability (p<0.05) of intra- than that of interspecies cloned embryos during 8- to morula.
     The results of analyzing on karyogene of interspecies embryos showed that the karyogene of interspecies embryos is from human donor cell.
     The results of examining two types of mitochondria in interspecies cloned embryos showed that before morula stage, the mtDNA from HFF can existed in interspecies cloned embryos; at all developmental stage, the mtDNA from bovine oocyte can existed in interspecies cloned embryos.
引文
[1] Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles[J]. J. Embryol. Exp. Morphol., 1962, 10: 622-641.
    [2] Di Beradino MA, Hoffner N. Development and chromosomal constitution of nuclear transplants derived from male germ cells[J]. J. Exp. Zool, 1971, 176: 61-72.
    [3] Illmensee K, Hoppe PC. Nuclear transplantation in musmusculus: developmental potential of nuclei from preimplantation embryos[J]. Cell, 1981, 23: 9-18.
    [4] McGrath J, Solter D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion[J]. Science, 1983,220(4603): 1300-1302.
    
    [5] Willadsen SM. Nuclear transplantation in sheep embryos[J]. Nature, 1986, 320: 63-65.
    [6] Prather RS, Barnes FL, Sims MM, et al. Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol. Reprod.,1987, 37: 859-866.
    [7] Prather RS, Sims MM, First NL. Nuclear transplantation in early pig embryos[J]. Biol. Reprod.,1989, 41:414-418
    [8] Wilmut I, Schnieke AE, Mc Whir J, et al. Viable offspring derived from fetal and adult mammalian cellsfJ]. Nature, 1997, 385: 810-813.
    [9] Keefer CL, Keyston R, Lazaris A, et al. Production of cloned goats after nuclear transfer using adult somatic cellsfJ]. Biol. Reprod., 2002, 66: 199-203.
    [10] Woods GL, White KL, Vanderwall DK, et al. A mule cloned from fetal cells by nuclear transfer[J]. Science, 2003,301(5636): 1063.
    [11] Zhou Q, Renard JP, Le Friec G, et al. Generation of fertile cloned rats by regulating oocyte activation[J]. Science, 2003, 302 (5648): 1179.
    
    [12] Byeong CL, Min KK, Goo J, et al. Dogs cloned from adult somatic cells[J]. Nature, 2005, 436: 641.
    [13] Kim MK, Jang G, Oh HJ, et al. Endangered wolves cloned from adult somatic cells[J]. Cloning Stem Cells, 2007, 9(1): 130-137.
    [14] Polejaeval A, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells[J]. Nature, 2000,407: 86-90.
    [15] Bourc'his D, Le Bourhis D, Patin D, et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryosfJ]. Curr. Biol., 2001, 11: 1542-1546.
    [16] Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos[J]. Proc. Natl. Acad. Sci. USA, 2001, 98: 13734-13738.
    [17] Kang YK, Koo DB, Park JS, et al. Aberrant methylation of donor genome in cloned bovine embryos[J]. Nat. Genet., 2001, 28: 173-177.
    [18] Rideout WM III, Eggan K, Jaenisch R.. Nuclear cloning and epigenetic reprogramming of the genome[J]. Science, 2001,293: 1093-1098.
    [19] Wells DN, Laible G, Tucker FC, et al. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle[J]. Theriogenology, 2003, 59: 45-59.
    [20]Yin XJ,Lee HS,Kim LH,et al.Effect of serum starvation on the efficiency of nuclear transfer using odd-eyed white cat fibroblasts[J].Theriogenology,2007,67(4):816-823.
    [21]Hashem MA,Bhandari DP,Kang SK,et al.Cell cycle analysis and interspecies nuclear transfer of in vitro cultured skin fibroblasts of the Siberian tiger(Panthera tigris Altaica)[J].Mol.Reprod.Dev.,2007,74(4):403-411.
    [22]Zhang DF,Liu D,Tang LL,et al.Effects of different donor cells on the development of nuclear-transferred porcine embryos[J].Hereditas,2007,29(2):211-217.
    [23]Arat S,Rzucidlo SJ,Gibbons J,et al.Production of transgenic bovine embryos by transfer of transfected granulosa cells into enucleated oocytes[J].Mol.Repro& Dev.,2001,60:20-26.
    [24]Eilertsen KJ,Power RA,Harkins LL,et al.Targeting cellular memory to reprogram the epigenome,restore potential,and improve somatic cell nuclear transfer[J].Anim.Reprod.Sci.,2007,98(1/2):129-146.
    [25]Mayer W,Niveleau A,Walter J,et al.Demethylation of the zygotic paternal genome[J].Nature,2000,403:501-502.
    [26]Oswald J,Engemann S,Lane N,et al.Active demethylation of the paternal genome in the mouse zygote[J].Curr.Biol.,2000,10:475-478.
    [27]Shi W,Zakhartchenko V,Wolf E.Epigenetic reprogramming in mammalian nuclear transfer[J].Differentiation,2003,71:91-113.
    [28]Santos F,Hendrich B,Reik W,et al.Dynamic reprogramming of DNA methylation in the early mouse embryo[J].Dev.Biol.,2002,241:172-182.
    [29]Daniels R,Hall V,Trounson AO.Analysis ofgene transcription in bovine nuclear transfer embryos reconstructed with granulos cell nuclei[J].Biol.Reprod.,2000,63:1034-1040.
    [30]Beyhan Z,Forsberg EJ,Eilertsen KJ,et al.Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring[J].Mol.Reprod.Dev.,2007,74(1):18-27.
    [31]Yang F,Hao R,Kessler B,et al.Rabbit somatic cell cloning:effects of donor cell type,histone acetylation status and chimeric embryo complementation[J].Reproduction,2007,133(1):219-230.
    [32]Baguisi A,Behboodi E,Melican DT,et al.Production of goats by somatic cell nuclear transfer[J].Nat.Biotechnol.,1999,17:456-461.
    [33]Chen DY,Jiang MX,Zhao ZJ,et al.Cloning of Asian yellow goat(C.hircus)by somatic cell nuclear transfer:telophase enucleation combined with whole cell intracytoplasmic injection[J].Mol.Reprod.Dev.,2007,74(1):28-34.
    [34]Khatir H,Anouassi A,Tibary A.Effect of follicular size on in vitro developmental competence of oocytes and viability of embryos after transfer in the dromedary(Camelus dromedarius)[J].Anim.Reprod.Sci.,2007,99(3-4):413-420.
    [35]禹学礼,昝林森,邓雯等.卵泡大小及卵泡液对牛卵母细胞体外受精后发育的影响[J].中国农业科学,2005,38(8):1664-1668.
    [36]陈永福,张忠诚,李树静等.卵泡直径和卵丘细胞对牛卵母细胞体外受精后发育潜力的影响[J].农业生物技术学报,2000,8(4):357-360.
    [37]Wakayama T,Perry ACF,Zuccotti M,et al.Full term development of mice from enucleated oocytes injected with cumulus cell nuclei[J].Nature,1998,394:369-374.
    [38] Kishigami S, Wakayama S, Thuan NV, et al. Production of cloned mice by somatic cell nuclear transfer[J]. Nat. Protoc, 2006, 1(1): 125-138.
    [39] Wakayama T. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency[J]. J. Reprod. Dev., 2007, 53(1): 13-26.
    [40] Baguisi A, Overstrom EW. Induced enucleation in nuclear transfer procedures to produce cloned animals[J]. Theriogenology, 2000, 54: 209.
    
    [41] Peura TT, Lewis IM, Trounson AO. The effect of recipient oocyte volume on nuclear transfer in cattle[J]. Mol. Reprod. Dev., 1998, 50: 185-191.
    [42] Vajta G, Lewis IM, Hyttel P, et al. Somatic cell cloning without micromanipulators[J]. Cloning, 2001,3:89-95.
    [43] Vajta G, Lewis IM, Trounson AO, et al. Handmade somatic cell cloning in cattle: analysis of factors contributing to high efficiency in vitro[J]. Biol. Reprod., 2003, 68: 571-578.
    [44] Oback B, Wiersema AT, Gaynor P. Cloned cattle derived from a novel zona-free embryo reconstruction system[J]. Cloning Stem Cells, 2003, 5(1): 3-12.
    [45] Ribas R, Oback B, Ritchie W, et al. Modifications to improve the efficiency of zona-free mouse nuclear transfer[J]. Cloning and Stem Cells, 2006, 8(1): 10-15.
    [46] Lagutina I, Lazzari G, Galli C. Birth of cloned pigs from zona-free nuclear transfer blastocysts developed in vitro before transfer[J]. Cloning and Stem Cells, 2006, 8(4): 283-293.
    [47] Ribas R, Oback B, Ritchie W, et al. Development of a zona-free method of nuclear transfer in the mouse[J]. Cloning and Stem Cells, 2005,7(2): 126-138.
    [48] Wang MK, Liu JL, Li GP, et al. Sucrose pretreatment for enucleation: An efficient and non-damage method for removing the spindle of the mouse MII oocytes[J]. Mol. Reprod. Dev., 2001, 58: 432-436.
    [49] Liu J, Sung L, Barber M, et al. Hypertonic medium treatment for localization of nuclear material in bovine metaphase-II oocytes[J]. Biol. Reprod., 2002, 66: 1342-1349.
    [50] Peura TT. Improved in vitro development rate of sheep somatic nuclear transfer embryos by using a reverse order zone free cloning method system[J]. Cloning Stem Cells, 2003, 5(1): 13-24.
    [51] Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression[J]. Nature, 1998, 392: 933-936.
    [52] Presicce GA, Yang X. Nuclear dynamics of parthenogenesis of bovine oocytes matured in vitro for 20 and 40 hours and activated with combined ethanol and cycloheximide treatment[J]. Mol. Reprod. Dev., 1994,37:61-68.
    [53] Soloy E, Kanka J, Viuff D, et al. Time course of pronuclear deoxyribonucleic acid synthesis in parthenogenically activated bovine oocytes[J]. Biol. Reprod., 1997, 57: 27-35.
    [54] Liu L, Ju JC, Yang X. Parthenogenic development and protein patterns of newly matures bovine oocytes after chemical activation[J]. Mol. Reprod. Dev., 1998, 49: 298-307.
    [55] Mitalipov S, White KL, Farrar VR, et al. Development of nuclear transfer and parthenogenic rabbit embryos activated with inositol 1,4,5 triphosphate[J]. Biol. Reprod., 1999, 60: 821-827.
    [56] Wrenzycki C, Herrmann D, Keskintepe L. Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embyros[J]. Hum. Reprod., 2001,16: 893-901.
    [57] Ock SA, Lee SL, Kim JG, et al. Development and quality of porcine embryos in different culture system and embryo-producing methods[J].Zygote,2007,15(1):1-8.
    [58]Moreira PN,Femandez-Gonzalez R,Ramirez MA,et al.Differential effects of culture and nuclear transfer on relative transcript levels of genes with key roles during preimplantation[J].Zygote,2006,14:81-87.
    [59]Mastromonaco GF,Scruple E,Robert C,et al.Different culture media requirements of IVF and nuclear transfer bovine embryos[J].Reprod.Domest.Anita.,2004,39(6):462-467.
    [60]陈大元,孙青原,刘冀珑等.大熊猫供核体细胞在兔卵胞质中可去分化而支持早期重构胚发育.中国科学(C)[J].1999,29(3):324-330.
    [61]Dominko T,Mitalipova M,Haley B,et al.Bovine oocyte cytoplasm supports development of embryos produced by nucleat transfer of somatic cell nuclei from various mammalian species[J].Biol.Reprod.,1999,60:1491-1502.
    [62]White KL,Bunch TD,Mitalipov S,et al.Establishment of pregnancy after the transfer of nuclear transfer embryos produced from the fusion of Argali(Ovis ammon)nuclei into domestic sheep(Orvis aries)enucleated oocytes[J].Cloning,1999,1:47-54.
    [63]Chen DY,Wen DC,Zhang YP,et al.Interspecies implantation and mitochondria fate of panda-rabbit cloned embryos[J].Biol.Reprod.,2002,67:637-642.
    [64]Chen Y,He ZX,LiuA,et al.Embryonic cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes[J].Cell Res.,2003,13:252-263.
    [65]Damiani P,Wirtu G,Miller F,et al.Development of giant eland(Taurotragusoryx)and bovine(Bos taurus)oocytes[J].Theriogenology,2003,59:390.
    [66]Yang CX,Kou ZH,Wang K,et al.Quantitative analysis of mitochondrial DNAs in macaque embryos reprogrammed by rabbit oocytes[J].Biol.Reprod.,2004,127:201-205.
    [67]Jiang Y,Chen T,Nan CL,et al.In vitro culture and mtDNA fate of ibex-rabbit nuclear transfer embryos[J].Zygote,2005,13:233-240.
    [68]Li Y,Dai Y,Du W,et al.Cloned endangered species takin(Budorcas taxicolor)by interspecies nuclear transfer and comparison of the blastocyst development with yak(Bos grunniens)and bovine.Mol.Reprod.Dev.,2006,73:189-195.
    [69]Lanza RP,Cibelli JB,Diaz F,et al.Cloning of endangered species(Bosgaurus)using interspecies nuclear transfer[J].Cloning,2000,2:79-90.
    [70]Loi CP,Ptak G,Barboni B,et al.Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells[J].Nat.Biotechnol.,2001,19:962-964.
    [71]EvansMJ,Kaufman MH.Establishment in culture of pluripotential cells from mouse embryos[J].Nature,1981,292:154-156
    [72]Thomson JA,Itskovitz-Eldor J,Shapiro SS,et al.Embryonic stem cell lines derived from human blastocysts[J].Science,1998,282:1145-1147
    [73]Reubinoff BE,Pera MF,Fong CY,et al.Embryonic stem cell lines from human blastocysts:somatic differentiation in vitro[J].Nat Biotechno,2000,18(4):399-40
    [74]Cibelli JB,Stice SL,Golueke PJ,et al.Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells[J].Nat Biotechnol,1998,16(7):642-646
    [75]MunsieMJ,Michalska AE,Orien CM,et al.Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei[J]. Curr Biol, 2000, 10(16):989-992
    [76] Wakayama T, Tabar V, Rodriguez I, el al. Diferentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer[J]. Science, 2001, 292(5517):740-743
    [77] Hochedlinger K, and Jaenisch R. Monoclonal mice generated by 393 nuclear transfer frommature B andTdonor cells[J]. Nature, 2002, 415:1035-1038
    [78] Li J, Ishii T, Feinstein P, el al. Odorant receptor gene choice is resetby nuclear transfer from mouse olfactory sensory neurons [J]. Nature, 2004, 428 (6981):393-399
    [79] Rideout WM, Hochedlinger Kyba M, et al. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy [J]. Cell, 2002, 109 (1):17-27
    [80] Hwang WS, Ryu YJ, Park JH, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocysts [J]. Science, 2004,303(5664):1669-1674
    [81] Stojkovic M, Stojkovic P, Leary C, et al. Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes [J]. Bio-Medicine Online, 2005, 11(2):226-231
    [82] French A J , Adams CA., Anderson LS ,el al. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts.Stem Cell,2008,26(2), 485-493
    [83] Chen Y, He ZX, Liu A, et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes[J]. Cell Res, 2003,. 13 (4):251-263
    [84] Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice[J]. Nat Biotechnol, 2003, 21 (10): 1200-1207
    [85] Wakayama T. Cloned mice and embryonic stem cell lines generated from adult somatic cells by nuclear transfer [J]. Oncol Res,2003, 13 (6-10):309-314
    [86] Justin C, Rhiannon E, Emma J, et al. The consequences of nuclear transfer for mammalian foetal development and offspring survival[J]. A mitochondrial DNA perspective[J]. Reproduction, 2004, 127: 631-641.
    [87] Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome[J]. Nature, 1981, 290: 457-465.
    [88] Garesse R, Vallejo CG. Animal mitochondrial biogenesis and function: a regulatory cross-talk between genomes[J]. Gene, 2001, 263: 1-16.
    [89] Sutovsky P, Moreno R, Ramalho-Santos J, et al. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos[J]. Biol. Reprod., 2000, 63:582-590.
    [90] Sutovsky P, Moreno RD, Ramalho-Santos J, et al. Ubiquitin tag for sperm mitochondria[J]. Nature, 1999, 402:371-372.
    [91] Ingman M, Kaessmann H, Paabo S, et al. Mitochondrial genome variation and the origin of modern humans[J]. Nature, 2000, 408: 708-713.
    [92] Thompson WE, Ramalho-Santos J, Sutovsky P. Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control[J]. Biol. Reprod., 2003, 69: 254-260.
    [93] Pinkert C A, Irwin M H, Johnson L W, Moffatt R J, Mitochondria transfer into mouse ova by microinjection. Transgenic Res, 1997,6 (6);379-383.
    [94] Brenner C A, Barritt J A, Willadsen S, Cohen J. Mitochondria] DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril, 2000,74(3);573-578.
    [95] Cohen J, Scott R, Alikani M, et al. Ooplasmic transfer in mature human oocytes, Mol Hum Reprod, 1998,4 (3);269-280
    [96] Barritt J A, Brenner C A, Maker H E, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod,2001,16(3):513-516
    
    [97] Cummins J. Mitochondrial DNA in mammalian reproduction. Rev Reprod, 1998,3(3):172—182
    [98] Meirells F V, Bordignon V, Watanabe Y, Watanabe M, Dayan A, Lobo R B, Garcia J M, Smith L C.Comlete Replacement of the Mitochondrial Genotype in a Bos indicus Calf Reconstructed by Nuclear Transfer to a Bos Taurus Oocyte. Genetics,2001,158:351 -356
    [99] Hiendleder S, Schmutz S M, Erhardt G, Green R D,Plante Y. Transmitochondrial differences and varying levels of hereroplasmy in nuclear transfer clond cattle. Mol Reprod Dev, 1999,54(1): 24—31
    [100] Susan M H, Carmen S, Keith E L,Ooplasmic donation in humans The potential for epigenic modifications. Hum Reprod,2002,17(4):850-852.
    
    [101] Allan T. Ooplasmic Transfer-Proceed with Care. N Engl J Med,2002,346(10):773-775.
    [102] Shoffner J M, Brown MD,Torroni A, et al. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients[J].Genomics,1993,17:171-184.
    [103] Nielsen KM, Van Weerelt MD, Berg TN, et al. Natural transformation and availability of transforming DNA to Acinetobacter alcoaceticus in soil microcosms[J]. Appl.Environ. Microbiol, 1997,63:1945-1952.
    [104] Nielson KM, Bones AM, Smalla K, et al. Horizontal gene transfer from transgenic plants to terrestrial bacteria - a rare event?[J]. FEMS Microbiol. Rev, 1998,2:79-103.
    [105] Steinborn R, Zakhartchenko V, Wolf E, et al. Non-balanced mix of mitochondrial DNA in cloned cattle produced by cytoplast-blastomere fusion[J]. FEBS Letters, 1998, 426: 357-361.
    [106] Piko L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos[J]. Development Biology, 1987, 123: 364-374.
    [107] St. John JC, Sakkas D, Dimitriadi K, et al. Abnormal human embryos show a failure to eliminate paternal mitochondrial DNA[J].The Lancet, 2000, 355: 200.
    [108] Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA[J]. New England Journal of Medicine, 2002, 347: 576-580.
    [109] Moyes CD, Battersby BJ, Leary SC. Regulation of muscle mitochondrial design[J]. Journal of Experimental Biology, 1998, 201: 299-307.
    [110] Miller FJ, Rosenfeldt FL, Zhang C, et al. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age[J]. Nucleic Acids Research, 2003, 31: E61.
    [111] Poulton J, Morten K, Freeman-Emmerson C, et al. Deficiency of the human mitochondrial transcription factor h-mtTFA in infantile mitochondrial myopathy is associated with mtDNA depletion[J]. Human Molecular Genetics, 1994, 3: 1763-1769.
    [112] Meirelles FV, Smith LC. Mitochondrial genotype segregation during preimplantation development in mouse heteroplasmic embryos[J]. Genetics, 1998, 148: 877-883.
    [113] Davis AF, Clayton DA. In situ localization of mitochondrial DNA replication in intact mammalian cells[J]. Journal of cell Biology, 1996, 135: 883-893.
    [114] Fryer A, Appleton R, Sweeney MG, et al. Mitochondrial DNA 8993 (NARP) mutation presenting with a heterogeneous phenotype including 'cerebral palsy'[J]. Archives of the Disabled Child, 1994, 71: 419-422.
    [115] Chinnery PF, Andrews RM, Turnbull DM, et al. Leber hereditary optic neuropathy: does heteroplasmy influence the inheritance and expression of the G11778A mitochondrial DNA mutation[J]. American Journal of Medical Genetics, 2001, 98: 235-243.
    [116] Irwin MH, Johnson LW, Pinkert CA. Isolation and microinjection of somatic cell-derived mitochondria and germline heteroplasmy in transmitochondrial mice[J]. Transgenic Res., 1999, 8(2): 119-123.
    [117] Lanza RP, Chung HY, Yoo JJ et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 2002;20:689-696.
    [118] Raisky O, Gomez L, Chalabreysse L et al. Mitochondrial permeability transition in cardiomyocyte apoptosis during acute graft rejection. Am J Transplant 2004;4:1071-1078.
    [119] Kristal BS, Stavrovskaya IG, Narayanan MV et al. The mitochondrial permeability transition as a target for neuroprotection. J Bioenerg Biomembr 2004;36:309 -312.
    [120] Vats A, Bielby RC, Tolley NS et al. Stem cells. Lancet. 2005;366:592-602.
    [121] Dabhi VM, Lindahl KF. MtDNA-encoded histocompatibility antigens. Methods Enzymol 1995;260:466-485.
    [122] Keefer CL, Baldassarre H, Keyston R, et al. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes[J]. Biol. Reprod., 2001, 64: 849-856.
    [123] Li XF (李雪峰), Li Y (李煜), An ZX (安志兴, et al.Effects of pre-activation of donor cells and enucleated oocytes on the in vitrodevelopment of bovine somatic nuclear transferred embryos.Chinese Journal ofAnnimal and Veterinary Science(畜牧兽医学报), 2003,34(1): 33-36.
    [124] Wan QH, Qian KX, Fang SG. A simple DNA extraction and rapid specific identification technique for single cells and early embryos of two breeds of Bos Taurus. Animal Reproduction Science.2003, 77 (1-2): 1-9
    [125] Evans MJ, Gurer C, Loike JD, et al. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep[J]. Nat. Genet., 1999,23: 90-93.
    [126] Takeda K, Takahashi S, Onishi A, et al. Dominant distribution of mitochondria DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer[J]. J. Reprod. Fertil., 1999, 116(2): 253-259.
    [127] Do JT, Hong KH, Lee BY, et al. In vitro development of reconstructed bovine embryos and fate of donor mitochondria following nuclear injection of cumulus cells[J]. Zygote, 2001, 9: 211-218.
    [128] Do JT, Lee JW, Lee BY, et al. Fate of donor mitochondrial DNA in cloned bovine embryos produced by microinjection of cumulus cells[J]. Biol. Reprod., 2002, 67: 555-560.
    [129] Steinborn R, Schinogl P, Zakhartchenko V, et al. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning.Nat.Genet.,2000,25:255-257.
    [130]Steinborn R,Schinogl P,Wells DN,et al.Coexistence of Bos taurus and B.indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones[J].Genetics,2002,162:823-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700