具有高阶剪切效应的弹性和粘弹性板的理论及其静、动力学行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在有限变形条件下,建立了考虑高阶横向剪切效应的粘弹性板非线性分析的数学模型,建立了相关的微分求积方法;并针对该模型及其退化情形的非线性静、动力学行为展开了比较系统的研究。主要工作如下:
     1.基于Reddy高阶横向剪切理论,采用Boltzmann遗传积分本构关系,综合利用Laplace变换及其反变换技术,Boltzmann算子及卷积等手段,建立了有限变形条件下,考虑高阶横向剪切效应粘弹性板非线性分析的数学模型。其控制方程是关于5个广义位移的耦合的非线性积分-偏微分方程组。将微分求积方法推广以便对上述非线性问题进行数值分析。同时,推广Wang和Bert处理边界条件的方法(简称为DQWB途径)来处理这类问题中所包括的高阶矩的边界条件。给出了推广的微分求积算法的一般格式。
     2.基于本文建立的考虑高阶横向剪切效应粘弹性板非线性分析的数学模型,给出了正交各向异性层合板非线性静、动力学行为分析的数学模型;利用本文推广的微分求积格式得到了相应的非线性控制方程的DQ形式;推广运用特殊矩阵乘积及解耦技巧,对相应的耦合数值逼近方程进行解耦,在静态情况下,得到了以挠度W为基本变向量的微分求积迭代格式,避免了病态矩阵,极大的简化了非线性计算。在动态情况下,获得了简化的微分求积谐波平衡算法,并对具有不同节点分布及参数的正交各向异性层合板及其退化情形的静态弯曲、自由振动和强迫振动进行了数值模拟。对数值结果进行了收敛性和比较性研究,考察了不同的节点分布对收敛速度的影响。与传统方法相比,本文的算法在适用性、精度、效率等方面都具有相当的优势。同时考察了几何参数、材料参数及横向剪切效应和转动惯性对正交各向异性层合板非线性力学行为的影响。
     3.在小变形情况下,应用反逆法,结合通常的笛卡尔内积和卷积双线性形式,构造了一种以卷积形式表示的Gurtin型泛函,建立了具有任意边界条件考虑高阶横向剪切效应粘弹性板的卷积型变分原理。同时,对所建立的高阶剪切效应粘弹性板力学行为分析的数学模型,在空域上采用本文推广的微分求积算法进行简化,时域上进一步将其化为常微分方程,分析了简化系统在阶跃载荷作用下的准静态力学行为,得出了问题的DQ近似解析解;对简化的动力系统进行研究,得到了
    
    上海大学博士学位论文
    粘弹性简支板的动态响应。研究了DQ解的收敛性和精确性;表明该方法具有收
    敛性好,存贮量小,运算快,易于实现等优点,从而避免了变换法的局限性。并
    考察了几何参数、材料参数及横向剪切效应对粘弹性板静、动力学行为的影响。
     4.在有限变形条件下,对考虑高阶横向剪切效应粘弹性板的非线性稳定性问
    题进行了分析。通过使用Galerkin平均化法,并引进新的变量,将积分一非线性偏
    微分控制方程组,转化为高维非线性自治常微分方程组。综合使用非线性动力学
    中数值分析方法,对动力系统的响应进行了长时间力学行为的数值模拟,研究了
    系统的分岔,混沌等现象;揭示了粘弹性矩形板在周期激励下的丰富的动力学行
    为。比较了1一阶和2一阶Galerkin截断系统的动力学行为,发现它们定性上是基本
    相同的,但定量性质略有偏差。考察了载荷和材料等参数对粘弹性板动力稳定性
    的影响,发现系统的运动关于分岔参数具有很强的敏感性。
     5.建立了有限变形条件下,粘弹性基础上考虑高阶横向剪切效应粘弹性板的
    动力学行为的数学模型;对模型在空域上应用前述的推广的微分求积格式、特殊
    矩阵乘积及简化技巧得到了简洁的矩阵形式的非线性数值逼近公式,时域上进一
    步技巧地引进新的变量,并综合利用非线性动力学中的数值分析方法,揭示了粘
    弹性基础上粘弹性矩形板的丰富的动力学行为,如:不动点、极限环、拟周期、
    混沌等。系统研究了板和基础的材料、载荷和几何等参数以及横向剪切效应对非
    线性粘弹性板的动力学特性的影响。揭示了系统随参数的变化进入混沌的途径是
    阵发性的或是拟周期分岔。
In this dissertation, nonlinear mathematical models of visco-elastic plates with finite deformations and the effect of higher-order shear deformations are established. At the same time, an extended differential quadrature method is formulated. The static and dynamical problems of visco-elastic plates and the corresponding degenerate models are systematically studied in theoretical and in numerical. The main results contain as follows:
    1.Based on the Boltzmann superposition principles and the Reddy's theory of plates with the of effect of higher-order shear deformations, the nonlinear governing equations are established for static and dynamic analyses of visco-elastic plates with finite deformations and taking account of shear effects by the Laplace transformation and its inverse transformation. The governing equations are a set of coupled nonlinear integro-partial-differential equations. The differential quadrature method (DQM) is extended to analyze the nonlinear behaviors of such systems. The differential quadrature approach suggested by Wang and Bert is extended to handle the high-order moment boundary conditions of plates, too.
    2.Based on the above nonlinear model of visco-elastic plates with the effect of higher-order shear deformations, the coupled nonlinear governing equations for laminated plates with finite deformations are presented. The differential quadrature method presented in this dissertation is applied to discretize the nonlinear model and the corresponding DQ form is obtained. By extending the special matrix product and decoupled technique, the coupled nonlinear equations are decoupled and the simplified iterative formulae of DQ are presented for the static problem, and hence it is able to avoid the ill-conditioning matrix and greatly reduce nonlinear computation. For the dynamic problem, the harmonic balance method of DQ is presented. The static bending, free and force vibrations of the system with different parameters and grid spacing are simulated numerically. The numerical convergence and comparison studies are carried out to validate the validity of the present method. The influence of grid spacing on the converg
    ence rate is discussed. The results show that the presented differential quadrature method is more accurate and efficient than traditional one. Influences of geometric and material parameters, transverse shear deformations and rotation inertia as well as vibration amplitudes on nonlinear characteristics of laminated plates are studied in detail.
    3.In the case of small deflections, the convolution-type functional and the corresponding Gurtin-type variational principle are all presented for the static- and dynamic analysis of visco-elastic plates with higher-order shear deformations and arbitrary boundary. By the extended differential quadrature method in spatial domain, the original integro-partial-differential equations are transformed into a set of integro-ordinary equations. The latter may reduced to a set of ordinary differential equations in time domain. The approximate analytical solutions are proposed for the quasi-static bending of visco-elastic plates subjected to step loads. The dynamic response of the visco-elastic plate with simply supported is obtained. The convergence and comparison of solutions are studied. The numerical results proves that the DQ method presented in this paper is very a reliable and available computational method with higher precision. Moreover, the influences of geometric and material parameters as well as the transv
    erse shear deformations on dynamic behaviors are studied.
    4. The nonlinear dynamic stability of visco-elastic plates with finite deformations and taking
    
    
    account of higher-order shear deformation effects is discussed. By the Galerkin method, a system of integro-partial differential equations with infinite dimension is transformed into a set of nonlinear autonomous ordinary differential equations with higher-dimension via introducing new variables. The numerical methods in nonlinear dynamics, such as, time history, phase plane portrait
引文
[1] Cederbaum G., Dynamic instability of viscoelastic orthotropic laminated plates[J]. Composite Struct., 1991, 19(2): 131~144
    [2] Cederbaum G., Aboudi J., Dynamic instability of shear-deformable viscoelastic laminated Plates by Lyapunov exponents[J]. Int. J. Solids Structures, 1991, 28 (3): 317~327.
    [3] Cederbaum G., Parametric excitation of viscoelastic plates, Mech. Struct. Math. 1992, 20(1): 37-51.
    [4] Cederbaum G., Moon M., Stability properties of a viscoelastic column under a periodic force, J. Appl. Mech., 1992, 59(16): 16-19..
    [5] Cederbaum G., Drawshi M., Multiple equilibrium states in the analysis of viscoelastic nonlinear circular plates, Int. [J]. Mech. Sci., 1994, 36(20): 149-155
    [6] Cederbaum G., Dynamic instability of plates made of nonlinear viscoelastic materials[J]. Eng. Trans., 1996, 44(2): 169~ 180
    [7] Drozdov A. D, Kolmanovskii V B., Stability in Viscoelasticity[M]. Elsevier Science, Amsterdam, 1994
    [8] Drozdov A. D., Stability of viscoelastic shells under periodic and stochastic loading[J]. Mech. Res. Commun., 1993, 20(6): 481 ~486
    [9] Drozdov A. D., et. al. Stability of nonhomogeneous aging viscoelastic bodies under dynamic loading[J]. Nonlinear Anal., 1995, 24(9): 1361 ~ 1375
    [10] Drozdov A. D., Lyapunov stability of a class of operator integro-differential equations with applications to viscoelasticity[J]. Math. Methods Appl. Sci., 1996, 19(5): 341 ~ 361
    [11] Drozdov A. D., Almost sure stability of viscoelastic structural members driven by random loads[J]. J. Sound and Vibration, 1996, 197(3): 293~307
    [12] Potapov V. D., Stability of viscoelastic rod subjected to a random stationary longitudinal force [J], J. Appl. Math. Mech., 1992, 56(1): 90-95.
    [13] Potapov V. D., Stability of Viscoelastic column under random stationary follower force [J], Eur. J. Mech. A/Solids, 1994, 13(3): 419-429.
    [14] Potapov V. D., Almost sure stability of a viscoelastic column under random load[J], J. Sound and Vibration., 1994, 173(3): 301-308.
    [15] Potapov V. D., Almost sure stability of a viscoelastic column subjected to a random stationary longitudinal force [J], Mech. Solids, 1995, 30(4): 154-160.
    [16] Potapov V. D., Stability of elastic viscoelastic system under a random perturbations of their parameters [J], Arch. Appl. Mech., 1996, 66(4): 273-283.
    [17] Dall'Asta A., Menditto G., Perturbed motion of viscoelastic columns: a variational approach, Int, J.Solids Struct., 1993, 30(3): 325-335.
    [18] Dall'Asta A., Stability of viscoelastic solid systems with monotone relaxation[J], Eur. J. Mech. A/Solids, 1996, 15(5): 787-797.
    [19] Plaut R. H., Lyapunov stability of columns, pipes and rotating shafts under time-dependent excitations [J], Dynamic Stability System, 1994, 9(1): 89-94.
    
    
    [20] 沈亚鹏,李录贤,王晓明,粘弹性准静态、动态问题的数值解法[J],力学进展,1994,25(2):265-272.
    [21] 沈亚鹏,以Kirchhoff应力张量—Green应变张量表示本构关系的粘弹性大变形平面问题的有限元法[J],固体力学学报,1987,7(4):310-320.
    [22] 沈亚鹏,薛奇,平面粘弹性大变形问题的研究,上海交通大学学报,1990.24(5):7-15
    [23] 杨挺青,非线性粘弹性理论中的单积分型本构关系[J],力学进展,1988,18(1):52-60.
    [24] 杨挺青,张晓春,刚芹果,粘弹性薄板蠕变屈曲的载荷—时间特性研究[J],力学学报,2000,32(3):319-325.
    [25] 杨挺青,杨正,粘弹性基支粘弹性板轴对称问题的动力响应[J],力学学报,1990,22(2),217-222.
    [26] 杨挺青,粘弹性力学[M],华中理工大学出版社,1990.
    [27] Qin T H., Global Solvability Of Nonlinear Wave Equation With A Viscoelastic Boundary Condition[J]. Chin Am. Math., 1993, 14(3): 335-346
    [28] Qin T H., Breakdown of solutions to nonlinear wave equation with a viscoelastic boundary condition[J]. Arabian J. Sci. Engrg., 1994, 19(2A): 195-202
    [29] Qin T H., Asymptotic of weak solutions to a boundary value problem for dynamic viscoelastic equations with memory[J], Proceedings of the Royal Society of Edinburg, 1995, 125A: 153-164
    [30] Qin T H., Global existence of weak solutions to the boundary value problem for a three-dimensional viscoelastic dynamic system[J]. J. Elasticity, 1996, 136:359-381
    [31] Qin T H., Existence of periodic weak solutions to viscoelastic dynamic equation with memory[J]. Nonlinear analysis: theory, methods & applications, 1997, 29(9): 979-987
    [32] Cheng C J, Fan X J., Nonlinear mathematical theory of perforated viscoelastic thin plates with its applications[J]. Int. J. Solids Structures, 2001, 38(36/37): 6627-6641
    [33] Cheng C J, Fan X J., A method for calculating the Liapunov exponent spectrum of a periodically excited non-autonomous dynamical system[J]. Acta Mechanica Solida Sinica, 2000, 13(3): 254-261
    [34] 程昌钧,范晓军,粘弹性圆薄板的动力学行为[J].固体力学学报,2000,21(4):306-312
    [35] 张能辉,程昌钧.粘弹性薄板弯曲问题的描述及其解法[J].兰州大学学报(自然科学版),1997,33(3):25-30
    [36] Zhang Neng-Hui, Cheng Chang-Jun, Chaos behavior of viscoelastic plates in supersonic flow [C]. Chien Wei-Zang edited, Proc. of the 3rd Inter. Conf. on Nonlinear Mech., Shanghai: Shanghai Univ. Press, 1998:432-436
    [37] 张能辉,程昌钧,在面内周期激励下粘弹性板的混沌和周期行为[J).固体力学学报,2000,21(增刊):160-164
    [38] Zhang N H, Cheng C J, Dynamical properties of viscoelastic open shallow shells[J]. J. Shanghai Univ. (英文版), 2000, 4(4): 279-283
    [39] 程昌钧,卢华勇,粘弹性Timoshenko梁的变分原理和静动力学行为分析[J].固体力学学报,2002,3(2):190-196
    
    
    [40] Sathyamoorthy M., Nonlinear vibrations of plates: an update of recent developments[J]. Applied Mechanics Reviews 1996, 49 (10): 55-62.
    [41] Sathyamoorthy M., nonlinear analysis of Structures. Boca Raton:CRC Press, 1997
    [42] Chia C.Y., Geometrically nonlinear behavior of composite plate: a review[J], Applied Mechanics Reviews, 1988, 41:439-451
    [43] Lee Y. S. and Kim Y. W., Analysis of nonlinear vibration of hybrid composite plates[J]. Computers and Structures 1996, 61(3): 573-8.
    [44] 罗祖道,李思简,各向异性材料力学[M],上海:上海交通大学出版社,1994.
    [45] Reddy J.N., A refined nonlinear theory of plates with transverse shear deformation[J], Int. J: of Solids and Structures, 1984, 20:881-896
    [46] Reddy J.N., Mechanices of Laminated Composite Plates.CRC-Press, New York, 1997
    [47] Tenneti R. and Chandrashekhara K., Large amplitude flexural vibration of laminated plates using a higher order shear deformation theory[J]. Journal of Sound and Vibration .1994, 176(2): 279-85.
    [48] Tenneti R. and Chandrashekhara K., Nonlinear vibration of laminated plates using a refined flexural finite element[J]. Advanced Composite Materials 1994, 4(2): 145-58.
    [49] Singhand G. , Rao G. V. and Iyengar NGR., Finite element analysis of the non-linear vibration of moderately thick unsymmetric laminated composite plates[J]. Journal of Sound and Vibration 1995, 181(2): 315-29.
    [50] Shiau L. C. and Wu T. Y., Fee vibration of buckled laminated plates by finite element method[J]. Journal of Vibration and Acoustics 1997, 119(4): 635-40.
    [51] Shen H.S., Nonlinear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations[J], J. Strain Anal. Eng. Des, 2000, 35: 93-108.
    [52] Shen H.S., Postbuckling of shear deformable laminated plates under biaxial compression and lateral pressure and resting on elastic foundations[J], Int. J. Mech. Sci. 2000, 42:1171-1195
    [53] Lockett F J., Nonlinear Viscoelastic Solids[M]. Academic Press, London, 1972
    [54] Findley W N, Lai J S Y, Onaran K., Creep and Relaxation of Nonlinear Viscoelastic Materials[M], North-Holland Pub. Co., 1976
    [55] Ferry J D., Viscoelastic Properties of Polymers[M]. 3rd ed., John Wiley, New York, 1980
    [56] Drozdov A D., A model for the viscoelastic behavior of polymers at finite strains[J]. Arch. Appl. Mech., 1998, 68:308-322
    [57] 阿克洛尼斯J等,聚合物粘弹性引论[M].北京:科学出版社,1986
    [58] Christensen R. M., Theory of Viscoelasticity, An Introduction (Second edition) [M], New York:Academic Press, 1982, 郝松林,老亮译,粘弹性力学理论,科学出版社, 1990.
    [59] Zhang Neng-hui, Cheng Chang-jun, Non-linear mathematical model of viscoelastic thin plates with applications[J],Computer. Methods in Appl. Mech. Engrg. 1998, 165:307-319
    [60] Fan Xiao-jun, Cheng Chang-jun, Buckled states of viscoelastic nonlinear circular plates [J],
    
    Proceedings of ICNM-Ⅲ, Shanghai: Shanghai Univ. Press, 1998, 196-200.
    [61] 傅依铭.结构非线性动力分析[M].广州:暨南大学出版社,1997
    [62] 胡浩,傅衣铭,郑健龙.粘弹性中厚板非线性动力方程[J].长沙交通学院学报,2001,17(3):10~15
    [63] Klebanov J M., Uniqueness of solutions of nonhomogeneous and anisotropic problems of nonlinear viscoelasticity[J]. Int. J. Nonlinear Mech., 1996, 31 (4): 419-423
    [64] Gurtin M E., Variational principles in the linear theory of Viscoelasticity[J]. Arch .Rat. Mech. Anal. 1963, 13(3): 179-191
    [65] Gurtin M E., Variational principles for linear elastodynamics[J]. Arch. Rat. Mech. Anal. 1964, 16:34-50
    [66] Reddy J N., Modified Gurtin,s variational principles in the linear dynamic theory of Viscoelasticity[J]. Int. J. Solids Structures, 1976, 12:227-235
    [67] 罗恩,关于线弹性动力学中Gurtin型变分原理[J].中国科学(A),1987,17(9):936-948
    [68] 罗恩,关于线性粘弹性动力学中各种变分原理[J].力学学报,1990,22(4):484-489
    [69] 罗恩,压电热弹性动力学的一些基本原理[J].中国科学(A辑),1999,29(9):851-858
    [70] Luo En et al., Uncoventional Gurtin-type variational principles for finite deformation elastodynamics[J]. ACTA Mechanica Solida Sinica, 2003, 16(1): 1-7
    [71] Cheng Chang-jun, Zhang Neng-hui, Variational principles on static-dynamic analysis of viscoelastic thin plates with applications[J], Int. J. Solids Struct., 1998, 35(33): 4491-4505
    [72] Zhang Neng-hui, Cheng Chang-jun, A variational principles on perturbed motion of viscoelastic thin plates with applications[J], Acta Mech Solida Sin. 1999, 12(2): 121-128
    [73] Chen Tzer-ming, The hybrid Laplace transform /finite element method applied to the quasi-static dynamic analysis of viscoelastic Timoshenko beams[J], Int. J. Numer. Mech. Engrg., 1995, 38(3): 509-522.
    [74] Akoz Y. and Kadioglu F., The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams[J]. Int. J. Numer. Meth. Engrg., 1999, 44: 1909-1932.
    [75] Argyris, J. H., Pister K. S., Willaim K.J., Unified concepts of constitutive modelling and numerical solution methods for concrete creep problems[J], Comput. Methods Appl. Mech. Engrg. 1977, 10: 199-246.
    [76] Srinatha H R, Lewis R W. A finite element method for thermoviscoelastic analysis of plane problems[J]. Comput. Methods Appl. Mech. Engrg., 1981, 25:21 ~33
    [77] Suarez L.E., Shokooh A. and Arroyo J., Finite element analysis of beams with constrained damping treatment modeled via fractional derivatives[J], Appl. Mech. Rev., 1997, 50(11): S216-454
    [78] 陈前,朱德懋,复合结构振动分析德数值方法[J],计算结构力学及其应用,1990,7(3):27-35.
    [79] Duan Qian, Hansen J S. Substructure synthesis method for non-symmetric viscoelastic systems[J]. J. Sound Vib., 1995, 185(4): 627~641
    
    
    [80] Duan Q and Hansen J. S., Time domain substructure synthesis method for viscoelastic structures[J], J. Appl. Mech. 1995, 62(2): 407-413.
    [81] Kobayashi S., Kawakawi T., Boundary Element, Ⅶ, Springer-Verlag, 1988.
    [82] 赵明嗥,程昌钧,裂纹问题的非局部弹性力学分析[J],应用数学和力学,20(2):135-143
    [83] 丁睿,朱正佑,程昌钧,粘弹性薄板动力响应的边界元方法(I)[J],应用数学和力学,1997,18(3):211-216.
    [84] 丁睿,朱正佑,程昌钧,粘弹性薄板动力响应的边界元方法(Ⅱ)[J].理论分析,应用数学和力学,1998,19(2):95-103.
    [85] Abhyankar N S, Hall E K, Hanagud S V., Chaotic vibrations of beams: numerical solution of partial differential equation [J] , J. Appl. Mech., 1993, 60: 167-174.
    [86] Suire G., Cederbaum G., Periodic and chaotic behavior of viscoelastic nonlinear (elastic) bars under harmonic excitations[J], Int. J. Mech. Sci., 1995, 37(3): 753-772.
    [87] Touati D., Cederbaum G., Dynamic stability of nonlinear viscoelastic plates [J] , Int. J. Solids Struct., 1994, 31 (17): 2367-2376.
    [88] Touati D., Cederbaum G., Influence of large deflection on the dynamic stability of nonlinear viscoelastic plates [J], Acta Mech., 1995, 113(2): 215-231.
    [89] Ding Rui, The Dynamic Analysis of Viscoelastic Structure, Doctoral Dissertation of Lanzhou University, 1997.
    [90] 程昌钧,张能辉,粘弹性矩形板的混沌与超混沌行为[J],力学学报,1998,30(6):690-699.
    [91] 张能辉,粘弹性板壳结构的静动力分析,兰州大学博士论文,1998.
    [92] 范晓军,开孔粘弹性薄板的非线性分析,上海大学硕士论文,1999.
    [93] 陈立群,程昌钧,关于基于Galerkin截断的粘弹性结构动力学行为研究[J],自然杂志,1999,21(1):1-4.
    [94] 陈立群,程昌钧,张能辉,有几何和物理非线性粘弹性梁的混沌运动[J],工程力学,2001,18(1):1-6
    [95] Chen L. Q. and Cheng C. J., Dynamical behavior of nonlinear viscoelastic columns based on 2-order Galerkin truncation [J], Mech. Research Comm., 2000, 27(4): 413-419.
    [96] 张能辉,粘弹性结构的非线性分析,上海大学博士后研究工作报告,2000.
    [97] 李根国,具有分数导数型本构关系的粘弹性结构的静动力学行为分析,上海大学博士学位论文,2001
    [98] Bert, C.W., Malik M., Differential quadrature method in computational mechanics: a review [J], Applied Mechanics Reviews, 1996,49:1-28
    [99] Chen Wen; Zhong T., Differential quadreture method and its applications in engineering, Ph.D. dissertation, Shanghai Jiao Tong Uneiversity, China 1996
    [100] Bellmam R. E. and Casti J., Differential quadrature and long term integration[J]. J. Math. Anal. Appl.1971, 34:235-238.
    [101] Bellman,R.E, Kashef, B.G, Casti, J., Differential quadrature:A technique for the rapid
    
    solution of nonlinear partial differential equations [J], J. Comput.Phys. 1972, 10:40-52
    [102] Civan, F., Sliepcevich, C, M., Differential quadreture for multidimensional problems[J], J. Math. Anal. Appl., 1984,101:423-443
    [103] Quan,J.R.; Chang, C.T., New insights in solving distributed system equations by the quadreture methods - Ⅰ[J], Comput. Chem. Engrg., 1989,13: 779-788
    [104] Quan,J.R.; Chang, C.T., New insights in solving distributed system equations by the quadreture methods - Ⅱ[J], Comput. Chem. Engrg., 1989, 13:1017-1024
    [105] Shu,C.;Richards, B.E., parallel simulation of incompressible viscous flows by generalized differential quadreture [J], Computing Systems in Engineering,1992, 3:271-281
    [106] Bert, C.W., Wang,X.; Striz,A.G., Differential quadrauture for static and free vibrational analysis of anisotropic plates [J], Int. J. Solids and Structures 1993,30:1737-1744
    [107] Striz A.G., Wang X. Bert C.W., Harmonic Differential Method and Applications to Structure Components, Acta Mechanica, 1995, 111 : 85-94
    [108] Chang C.T., Tasi C.S., Lin T.T., Modified differential quadreture and their applications[J], Chem. Eng. Commun.1993, 123:135-164
    [109] Wang, X., Bert, C.W., A new approach in applying differential quadreture to static and free vibrational analyses of beams and plates [J], J. Sound & Vibration, 1993, 162:566-572
    [110] 王鑫伟.调和微分求积法权系数矩阵的一种显式计算式[J].南京航空航天大学学报.1995.027(004):496-501.
    [111] Sun Jian-An, Zhu Zheng-You, Application of differential quadrature method to solve entry flow of viscoelastic second-order fluid [J], Int. J. For Numer. Mech. Fluids, 1999, 30(8): 1109-1117.
    [112] 孙建安,朱正佑,一种求解二维不可压N-S方程的混合型微分求积法[J],应用数学与力学,1999,20(12):1358-1366
    [113] Sun Jian-an, Zhu Zheng-you, Upwind local differential quadrature method for solving incompressible viscous flow[J], Compute. Methods in Appl. Mech. Engng. 2000, 188: 495-504.
    [114] Striz, A.G. Chen,W. Bert, C.W., Application of differential quadreture method to the driven cavity problem [J]. Int. J. Non-Linear Mech. 1994 29:665-670
    [115] Engles, H., Numerical quadreture and cubature, Academic Press, San Diego, 1980
    [116] Civan, F., Differential cubature for multidimentional problems[J], in Proc. of the 20th Annual Pittsburgh Conference on Modeling and Simulation, W. G. Vogt and M. H. Mickle, Eds. Instrument Society of American, North Carolina, 1989, 1843-1847
    [117] Civan F., Solving multivariable mathematical models by the quadreture and cubature methods [J], Numer. Methods for ED.E., 1994,10:545-567
    [118] Liew K.M., Liu F.L., Differential cubature method : A solution technique for Kirchhoff plates of arbitrarily shape [J], Comput. Meth. Appl. Mech. Engrg. 1997, 145:1-10
    [119] Liu EL., Liew K.M., Differential cubature method for static solutions of arbitrarily shaped thick plates [J], Int. J. Solids Struct. 1998, 35:3665-3674
    [120] Striz A. G., W. L., Bert C.W., Free vibration of plates by the high accuracy differential
    
    quadrature element method. [J], J. Sound and Vibration. 1997, 202 : 689-702
    [121] Wang X.W., Y Wang,.L. Chen R.B., Static and free vibrational analysis of rectangular plates by the differential quadrature element method [J], Commun. Numer. Meth. Engrg. (1998), 14:1133-1141.
    [122] Liu E L., Liew K.M. Analysis of vibrating thick rectangular plates with mixed boundary constraints using differential quadrature element method[J]. Journal of Sound and Vibration 21999, 25(5): 915-934..
    [123] LIU F. L., LIEW K.M., Vibration analysis of discontinuous Mindlin plates by differential quadrature element method[J] .Vibration and Acoustics. 1999,121: 204-208.
    [124] Han J.B., Liew K.M., Static analysis of Mindlin plates, the differential quadrature element method (DQEM) [J], Comput. Mech. Appl. Mech Engrg. 1999, 177:51-75
    [125] Liu EL, Liew K.M., Static analysis of Reissner-Minslin plates by differential quadrature element method [J], J.Appl. Mech. 1998, 65:705-710
    [126] Liu F.L, Liew K.M., Differential quadrature element method: a new approach for free vibration analysis of polar Mindlin plates having discontinuities [J], Comput. Meth. Appl. Mech. Engrg. 1999, 179:407-423
    [127] Liu EL., Liew K.M., Differential quadrature element method for static analysis of Reissner-Mindlin polar plates [J], Int. J. Solids Struct. 1999, 36:5101-5123
    [128] Bert,C.W., Jang S. K.;Striz,A.G., Two new methods for analyzing free vibration of structure components [J], AIAA Journal, 1988,26:612-618
    [129] Wang X, Bert CW., Differential quadrature analysis of deflection, buckling and free vibration of beams and rectangular plates[J]. Comput. Struct. 1993,48:473-479.
    [130] Bert CW, Wang X, Striz AG., Differential quadrature for static and free vibrational analyses of anisotropic plates [J]. Int J Solids struct 1993,30:1737-1744
    [131] Bert, C.W.,Wang,X., Striz, A.G., Convergence of the DQ method in the analysis of anisotropic plates[J], J. Sound & Vibr. 1994,170:140-144
    [132] Bert, C.W., Malik, M., Free vibration analysis of thin cylindrical shells by the differential quadrauture method[J], ASME J. Pressure Vessel Tech. 1996, 118: 1- 12
    [133] Bert, C.W., Malik, M., Free vibration analysis of tapered retangular plates by differential quadrature method: A semi-analytical approach [J], J. Sound & Vib. 1996,190:41-63
    [134] Bert C.W., Malik M., The differential quadrature method for irregular domains and applications to plates vibration [J], Int. J. Mech. Sci. 1996,38:589-606
    [135] Kang K., Bert C.W., Striz A.G., Vibration analysis of shear deformable circular arches by the differential quadreture method [J], J. Sound & Vibr. 183, 1995:353-360
    [136] Laurra ,P.A.A, Guitierrez R.H., Analysis of vibrating Timoshenko beams using the method of differential quadrature [J], Shock Vib., 1993, 1:89-93
    [137] Liew K.M., Han J.K., Xiao Z.M., Du H., Differential quadrature method for mindlin plates of Winkler foundations[J], Int. J. Mech. Sci., 1996,38:405-421
    [138] Shu C., Chen W., Du H., Free vibration analysis ofcurvilinear quadrilateral plates by the differential quadrature method [J]. J. Comput. Phys. 2000, 163:452-466
    
    
    [139] Shu C., Du H., Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates[J], Int. J. Solids Struct. 1997,34: 819-835
    [140] Shu C., Wang C. M., Treatment of mixed and nonuniform boundary conditions in GDQ vibration analysis of rectangular plates[J], Engrg. Struct. 1999,21 : 125-134
    [141] Liew K.M., Han J.B., Xiao Z.M., Vibration analysis of circular Mindlin plates using the differential quadrature method [J], J. Sound and Vibration. 1997, 205:617-630.
    [142] Liu F.L., Liew K.M., Analysis of vibrating thick rectangular plates with mixed boundary constrains using differential quadrature method[J], J. Sound and Vibration. 1999, 225:915-934.
    [143] Han J.B, Liew K.M., Axisymmetric free vibration of thick annular plates[J], Int. J. Mech. Sci. 1999, 41:1089-1109
    [144] Liu EL., Liew K.M., Free vibration analysis of Mindlin sector plates: numerical solutions by differential quadrature method[J], Comput. Mech. Appl. Mech. Engrg. 1999, 177 : 77-92
    [145] Bert C.W., M., Differential quadrature analysis of free vibration of symmetric cross-plylar Malik minates with shear deformation and rotatory inertia[J], Shock Vibration. 1995, 2:321-338
    [146] Bert C.W., Malik M., On the relative effects of transverse shear deformation and rotary inertia on the free vibration of symmetric cross-ply laminated plates[J], J. Sound and Vibration. 1996,193:927-933.
    [147] Liew K.M., Teo T.M., Three-dimensional vibration analysis of rectangular plates based on differential quadrature method [J], J. Sound and Vibration. 1999,220:577-599
    [148] Malik M., Bert C.W., Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method [J], Int. J. Solids Struct, 1998, 35: 299-318
    [149] Bert CW, Striz AG, Jang SK., Nonlinear bending of analysis of orthotropic rectangular plates by the method of differential quadrature [J]. Comput Mech. 1989,5:217-226
    [150] Chen W, Shu C, He W, Zhong T., The applications of special matrix products to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates[J]. Comput. Struct. 2000,74:65-76
    [151] 武际可,苏先樾,弹性系统的稳定性[M],北京:科学出版社,1994.
    [152] Bolotin V V., Dynamic instabilities in mechanics structures[J], Appl. Mech. Rev., 1999, 52(1): R1-9.
    [153] 朱正佑,程昌钧,分支问题的数值计算方法[M],兰州:兰州大学出版社,1989.
    [154] 程昌钧,朱正佑,结构的屈曲和分叉[M],兰州:兰州大学出版社,1991.
    [155] 程昌钧,范晓军,粘弹性环形板的临界载荷及其动力稳定性[J].力学学报,2001,33(3):365-376.
    [156] Cheng Chang-jun, Zhang Neng-hui, Buckling and multiple equilibrium states of viscoelastic rectangular plates[J], J. Shanghai Univ. (English edition), 1999, 3(3):
    
    192-198.
    [157] Chen L Q, Cheng C J, Zhang N H. Chaotic motion of nonlinear viscoelastic bearms [J], J. Shanghai Univ. (英文版), 2000, 4 (4) : 7-10
    [158] 刘延柱,陈立群,非线性振动[M],北京:高等教育出版社,2001
    [159] 陈安华 刘德顺 郭迎福 振动诊断的动力学理论与方法[M],北京:机械工业出版社,2001.
    [160] 朱正佑,李根国,程昌钧.具有分数导数本构关系的粘弹性Timoshenko梁的静动力学行为分析[J].应用数学和力学,2002,23(1):1-10
    [161] Chen Liqun, Cheng Changjun, Controlling chaotic oscillations of viscoelastic plates by linearization via output feedback [J], Appl. Math. Mech., 1999, 20(12): 1324-1330
    [162] Chen L Q, Cheng C J, Zhang N H. Chaotic motion of nonlinear viscoelastic bearms [J], J. Shanghai Univ. (英文版), 2000, 4 (4) : 7-10
    [163] 陈立群,程昌钧,非线性粘弹性梁的动力学行为[J],应用数学和力学,2000,21(9):896-902.
    [164] 陈立群,程昌钧,非线性粘弹性柱的稳定性和混沌运动[J],应用数学和力学,2000,21(9),890-896
    [165] 李根国,朱正佑,具有分数导数本构关系的非线性粘弹性Timoshenko梁动力学行为分析[J].非线性动力学学报,2001,8(1):19-26
    [166] Zhu Yan-Yan, Zhang Neng-Hui, Miura F., Dynamical behavior of viscoelastic rectangular plates [C]. Chien Wei-Zang edited, Proc. of the 3rd Inter. Conf. on Nonlinear Mech., Shanghai: Shanghai Univ. Press, 1998:445-450
    [167] 丁睿,朱正佑,程昌钧,粘弹性柱壳的若干动力学性质[J],应用数学和力学,1999,20(3):221-228.
    [168] 张能辉,程昌钧,粘弹性薄板准静态分析中的一种时域算法[J].应用数学和力学,2001,22(1):1001-1008
    [169] 程昌钧,弹性力学[M],兰州:兰州大学出版社,1996.
    [170] 曹志远,杨舁田.厚板动力学理论及其应用[M].北京:科学出版社,1983
    [171] 刘延柱,陈立群,非线性动力学[M],上海:上海交通大学出版社,2000.
    [172] 陈予恕,唐云等.非线性动力学中的现代分析方法[M].北京:科学出版社,2000
    [173] 刘延柱,陈文良,陈立群,振动力学[M],北京:高等教育出版社,1998.
    [174] 薛惠钰,计算一维结构瞬态响应的微分求积法.苏州大学学报,2000,16(1):58-65
    [175] Lo K H, A higher-order theory of plate deformation, Part 2: Laminated plates[J]. J Applied Mechanics.1977, 12:669
    [176] Reddy J.N., A simple higher-order theory for laminated composite plates[J], J: Applied mechanics. 1984, 51: 745
    [177] Lancaster P, Timenetsky M., The theory of matrices with applications[M], 2nd ed. Orlando, FL: Academic Press. 1985.
    [178] Zhu G, Wang H., Quasi-conforming penalty FEM for large deflection of composite laminated plate [J]. Acta Mater Compos Sinica 1989,6:39-47
    
    
    [179] Mei C. and Decha-Umphai K., A finite element method for nonlinear forced vibration of rectangular plates [J]. American institute of Aeronautics and Astronautics Journal 1985, 23: 1104-1110.
    [180] 钱伟长,变分法与有限元[M].北京:科学出版社,1980
    [181] 罗恩,朱慧坚,有限变形弹性动力学的非传统Gurtin型变分原理[J].固体力学学报,2003,24(1):1-7
    [182] Oden J T, Reddy J N., Variational method in theoretical mechanics[M]. 2nd ed. Berlin: Springer-Verlag, 1983, 139-17.
    [183] 克鲁译E.,凌复华译,非线性动力学系统的数值研究[M],上海:上海交通大学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700