集光与长寿命三重态的铱配合物的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IrⅢ配合物由于在电致发光、氧传感、三重态-三重态湮灭(TTA)上转换以及光催化等领域的广泛应用而成为研究的热点。然而传统的IrⅢ配合物在可见区的吸收很弱并且其三重激发态寿命很短,这严重影响了其在新兴的领域(光催化、光动力治疗和TTA上转换等)中的应用。本论文利用不同的有机荧光团合成了4个系列的IrⅢ配合物,借助稳态和瞬态光谱以及DFT理论计算等研究了其光物理性质并进行了应用研究。
     首先将萘酰亚胺(NI)通过炔键分别连接到2-苯基吡啶(ppy)和2,2’-联吡啶(bpy)上合成了2-3和2-4。与2-1相比,2-3在402nm处的吸收增强了3倍。瞬态吸收光谱、77K发射光谱和自旋密度分布都表明2-3和2-4的最低三重激发态(T1)为NI的三重激发态(3IL*),而2-1的T1态是金属向配体电荷转移的三重态(3MLCT*)。2-1-2-4在氧传感和TTA上转换中的应用研究表明:2-4对O2的敏感性与2-1相比提高了156倍;2-3的TTA上转换效率达到14.4%,而2-1没有上转换能力。
     其次将香豆素(cou)与1,10-邻菲罗啉(phen)之间通过咪唑环(Im)连接合成了3-3和3-4。与3-1相比,3-3在466nm处的吸光能力提高了150倍。研究结果表明3-3和3-4的T1态为香豆素的3IL*态,而3-1的T1态是3MLCT*。TTA上转换和光氧化研究表明:3-3和3-4的TTA上转换效率分别达到21.3%和23.4%,而3-1在相同的条件下没有上转换能力;与3-1相比,3-3和3-4的光氧化速率明显加快,产率明显提高。
     为了研究IrⅢ中心原子和有机荧光团之间不同的连接方式对其性质的影响,本文将氟硼吡咯(Bodipy)通过炔键连接到bpy上合成了4-2(Bodipy苯环的meso位通过炔键连接到IrⅢ中心心原子)和4-3(Bodipy的π核的2位通过炔键连接到IrⅢ中心原子)。与4-1相比,4-3在527nm处的吸收增强了152倍。研究结果表吸4-2和4-3的T1态均为Bodipy的3IL*态,而4-1的T1态为3MLCT*。4-2和4-3的TTA上转换效率分别为1.2%和2.8%,而4-1在同样条件下没有上转换能力。另外与4-1相比,4-2和4-3的光氧化能力明显提高。实验结果还证明4-3比4-2的性质更加优异。
     本文最后选用花二酰亚胺(PBI)合成了5-1和PBI的港湾位用胺基取代的5-2。与4-1相比,5-1在541nm处的吸收增强了70倍;5-2的最大吸收波长红移到669nm。研究结果表明5-1和5-2的T1态也是3IL*态。光氧化研究结果表明:5-1和5-2做敏化剂时的光氧化速率与4-1相比明显加快,产率也明显提高。
IrⅢ complexes have attracted much attention owing to their applicabilities in electroluminescence, oxygen sensing, triplet-triplet annihilation (TTA) upconversion and photocatalysis. However, traditional IrⅢ complexes show weak absorption of visible light and short triplet excited state lifetimes that affects the newly developed applications (photocatalysis, photodynamic therapy and TTA upconversion) seriously. In this thesis, four series of IrⅢ complexes were synthesized by using different organic chromophores. The photophysical properties and applications of the complexes were studied by steady and transient spectra, as well as DFT calculations.
     Firstly,2-3and2-4were synthesized by attaching naphthalimide (NI) to ppy or bpy. The absorption of2-3was improved by3-fold at402nm compared to2-1. The low-lying triplet excited states (T1) of2-3and2-4were proved to be triplet excited states (3IL*) of NI while that of2-1was metal to ligand charge transfer triplet excited state (3MLCT*) by transient difference absorption spectra,77K emission spectra and spin density analysis. The application of2-1-2-4in oxygen sensing and TTA upconversion indicated that luminescent O2sensitivity of2-4was improved by156-fold than that of2-1; TTA upconversion quantum yield of14.4%was observed for2-3, whereas the upconversion was neglectable for2-1at the same experimental conditions.
     Furthermore,3-3and3-4were synthesized by attaching coumarin (cou) to1,10-Phenanthroline (phen) via imidazole (Im). The absorption of3-3was improved by150-fold at466nm compared to3-1at the same wavelength. The T1states of3-3and3-4were proved to be3TL*state while that of3-1was3MLCT*state. The applications in TTA upconversion and photooxidation showed that upconversion quantum yields of21.3%and23.4%were observed for3-3and3-4respectively, whereas the upconversion was neglectable for3-1at the same experimental conditions. The photooxidation rates of3-3and3-4were much faster than3-1and the yields were also improved.
     In order to study the effects of different linkers between IrⅢ coordination centre and organic chromophore,4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (Bodipy) was attached to bpy to prepare4-2(the meso-pheny1of Bodipy was attached to the IrⅢ coordination centre via π-conjugation linker) and4-3(2-position of π-core of Bodipy was attached to IrⅢ coordination centre via π-conjugation linker). The absorption of4-3was improved by 152-fold at527nm compared to4-1at the same wavelength. The T1states of4-2and4-3were proved to be3IL*state while that of4-1was3MLCT*state. The upconvcrsion quantum yields of4-2and4-3were1.2%and2.8%respectively, whereas the upconversion was neglectable for4-1at the same experimental conditions. The performance of photooxidation with4-2and4-3as photosensitizers was much better than4-1. The experiments results showed that the property of4-3was better than that of4-2.
     Lastly, perylenebisimide (PBI) was chosed to prepare5-1. Furthermore, with substitution of the bay position of PBI by amino group,5-2was prepared. The absorption of5-1was improved by70-fold at541nm compared to4-1at the same wavelength. The absorption wavelength of5-2is red-shift to669nm. The T1states of5-1and5-2were also proved to be3IL*state by the experiments results. The photooxidation results indicated that photooxidation rates with5-1and5-2as triplet photosensitizers were much faster and the yields were much higher than that with4-1as photosensitizers.
引文
[1]KIM T. H., LEE H. K., PARK O., et al. White-Light-Emitting Diodes Based on Iridium Complexes via Efficient Energy Transfer from a Conjugated Polymer [J]. Adv. Funct. Mater.,2006,16:611-617.
    [2]HUO S., DEATON J. C., RAJESWARAN M., et al. Highly Efficient, Selective, and General Method for the Preparation of Meridional Homo- and Heteroleptic Tris-cyclometalated Iridium Complexes [J]. Inorg. Chem.,2006,45:3155-3157.
    [3]CHOU P. T., CHI Y. Phosphorescent Dyes for Organic Light-Emitting Diodes [J]. Chem. Eur. J.,2007, 13:380-395.
    [4]FLAMIGNI L., BARBIERI A., SABATINI C., et al. Photochemistry and Photophysics of Coordination Compounds:Iridium [J]. Top. Curr. Chem.,2007,281:143-203.
    [5]BETTINGTON S., TAVASLI M., BRYCE M. R., et al. Tris-Cyclometalated Iridium (III) Complexes of Carbazole (fluorenyl)pyridine Ligands: Synthesis, Redoxand Photophysical Properties, and Electrophosphorescent Light-Emitting Diodes [J]. Chem. Eur. J.,2007,13:1423-1431.
    [6]DU B., WANG L., WU H., et al. High-Efficiency Electrophosphorescent Copolymers Containing Charged Iridium Complexes in the Side Chains [J]. Chem. Eur. J.,2007,13:7432-7442.
    [7]ORSELLI E., ALBUQUERQUE R. Q., FRANSEN P. M., et al.1.2.3-Triazolyl-pyridine derivatives as chelating ligands for blue iridium(Ⅲ) complexes. Photophysics and electroluminescent devices [J]. J. Mater. Chem.,2008,18:4579-1590.
    [8]SONG Y. H., CHIU Y. C., CHI Y., et al. Phosphorescent Iridium (Ⅲ) Complexes with Nonconjugated Cyclometalated Ligands [J]. Chem. Eur. J.,2008,14:5423-5434.
    [9]ZHOU G., HO C. L., WONG W. Y., et al. Manipulating Charge-Transfer Character with Electron-Withdrawing Main-Group Moieties for the Color Tuning of Iridium Electrophosphors [J]. Adv. Funct. Mater.,2008,18:499-511.
    [10]LO S. C., HARING R. E., SHIPLEY C. P., et al. High-Triplet-Energy Dendrons:Enhancing the Luminescence of Deep Blue Phosphorescent Iridium (Ⅲ) Complexes [J]. J. Am. Chem. Soc.,2009, 131:16681-16688.
    [11]HE L., QIAO J., DUAN L., et al. Toward Highly Efficient Solid-State White Light-Emitting Electrochemical Cells:Blue-Green to Red Emitting Cationic Iridium Complexes with Imidazole-Type Ancillary Ligands [J]. Adv. Funct. Mater.,2009,19:2950-2960.
    [12]LIU Y., YE K., FAN Y., et al. Amidinate-ligated iridium(Ⅲ) bis(2-pyridyl)phenyl complex as an excellent phosphorescent material for electroluminescence devices [J]. Chem. Commun.,2009, 3699-3701.
    [13]HO C. L., WANG Q., LAM C. S., et al. Phosphorescence Color Tuning by Ligand, and Substituent Effects of Multifunctional Iridium (III) Cyclometalates with 9-Arylcarbazole Moieties [J]. Chem. Asian J.,2009,4:89-103.
    [14]TIAN N., AULIN Y. V., LENKEIT D., et al. Cyclometalated red iridium (Ⅲ) complexes containing carbazolylacetylacetonate ligands:efficiency enhancement in polymer LED devices [J]. Dalton Trans., 2010,39:8613-8615.
    [15]DU B. S., LIN C. H., CHI Y., et al. Diphenyl(1-naphthyl)phosphine Ancillary for Assembling of Red and Orange-Emitting Ir(Ⅲ) Based Phosphors; Strategic Synthesis, Photophysics, and Organic Light-Emitting Diode Fabrication [J]. Inorg. Chem.,2010,49:8713-8723.
    [16]CHI Y., CHOU P. T. Transition-metal phosphors with cyclometalating ligands:fundamentals and application [J]. Chem. Soc. Rev.,2010,39:638-655.
    [17]COSTA R. D., FERNANDEZ G., SANCHEZ L., et al. Dumbbell-Shaped Dinuclear Iridium Complexes and Their Application to Light-Emitting Electrochemical Cell [J]. Chem. Eur. J.,2010,16: 9855-9863.
    [18]HSIEH C. H., WU F., FAN C., et al. Design and Synthesis of Iridium Bis (carbene) Complexes for Efficient Blue Electrophosphorescence [J]. Chem. Eur. J.,2011,17:9180-9187.
    [19]PENG T., YANG Y., LIU Y., et al. A phosphorescent material with high and balanced carrier mobility for efficient OLEDs [J]. Chem. Commun.,2011,47:3150-3152.
    [20]BARANOFF E., ORSELLI E., ALLOUCHE L., et al. A bright tetranuclear iridium(Ⅲ) complex [J]. Chem. Commun.,2011,47:2799-2801.
    [21]KOZHEVNIKOV D. N., KOZHEVNIKOV V. N., SHAFIKOV M. Z., et al. Phosphorescence vs Fluorescence in Cyclometalated Platinum(Ⅱ) and Iridium(Ⅲ) Complexes of (Oligo)thienylpyridines [J]. Inorg. Chem.,2011,50:3804-3815.
    [22]KUWABARA J., NAMEKAWA T., HAGA M., et al. Luminescent Ir(Ⅲ) complexes containing benzothiazole-based tridentate ligands:synthesis, characterization, and application to organic light-emitting diodes [J]. Dalton Trans.,2012,43:44-46.
    [23]LO K. K. W.. CHUNG C. K., LEE T. K. M., et al. New Luminescent Cyclometalated Iridium(III) Diimine Complexes as Biological Labeling Reagents [J]. Inorg. Chem.,2003,42:6886-6897.
    [24]LO K. K., CHUNG C. K., ZHU N. Nucleic Acid Intercalators and Avidin Probes Derived from Luminescent Cyclometalated Iridium(IIl)-Dipyridoquinoxaline and-Dipyridophenazine Complexes [J]. Chem. Eur.J.,2006,12:1500-1512.
    [25]LO K. K., ZHANG K. Y., CHUNG C. K., et al. Synthesis, Photophysical and Electrochemical Properties, and Protein-Binding Studies of Luminescent Cyclometalated Iridium (Ⅲ) Bipyridine Estradiol Conjugates [J]. Chem. Eur. J.,2007,13:7110-7120.
    [26]BORISOV S. M., KLIMANT I. Ultrabright Oxygen Optodes Based on Cyclometalated Iridium(III) Coumarin Complexes [J]. Anal. Chem.,2007,79:7501-7509.
    [27]LAU J. S. Y., LEE P. K., TSANG K. H. K., et al. Luminescent Cyclometalated Iridium(Ⅲ) Polypyridine Indole ComplexessSynthesis, Photophysics, Electrochemistry. Protein-Binding Properties, Cytotoxicity, and Cellular Uptake [J]. Inorg. Chem.,2009,48:708-718.
    [28]ZHAO Q., LI F., HUANG C. Phosphorescent chemosensors based on heavy-metal complexes [J]. Chem. Soc. Rev.,2010,39:3007-3030.
    [29]XIONG L., ZHAO Q., CHEN H., et al. Phosphorescence Imaging of Homocysteine and Cysteine in Living Cells Based on a Cationic Iridium (Ⅲ) Complex [J]. Inorg. Chem.,2010.49:6402-6408.
    [30]FERNANDEZ-MOREIRA V., THORP-GREENWOOD F. L., Coogan M. P. Application of a6 transition metal complexes in fluorescence cell imaging [J]. Chem, Commun.,2010,46:186-202.
    [31]MURPHY L., CONGREVE A., PALSSON L. O., et al. The time domain in co-stained cell imaging: time-resolved emission imaging microscopy using a protonatable luminescent iridium complex [J]. Chem. Commun.,2010,46:8743-8745.
    [32]SHI H.-F., LIU S.-J., SUN H.-B., et al. Simple Conjugated Polymers with On-Chain Phosphorescent Iridium (III) Complexes:Toward Ratiometric Chemodosimeters for Detecting Trace Amounts of Mercury(Ⅱ) [J]. Chem. Eur. J.,2010,16:12158-12167.
    [33]LI S. P. Y., LIU H. W., ZHANG K. Y., et al. Modification of Luminescent Iridium (III) Polypyridine Complexes with Discrete Poly(ethylene glycol) (PEG) Pendants:Synthesis, Emissive Behavior, Intracellular Uptake, and PEGylation Properties [J]. Chem. Eur. J.2010,16,8329-8339.
    [34]XIE Z., MA L., DEKRAFFT K. E., et al. Porous Phosphorescent Coordination Polymers for Oxygen Sensing [J]. J. Am. Chem. Soc.,2010,132:922-923.
    [35]TIAN N., LENKEIT D., PELZ S., et al. Structure-Property Relationship of Red-and Green-Emitting Iridium(III) Complexes with Respect to Their Temperature and Oxygen Sensitivity [J]. Eur. J. Inorg. Chem.,2010:4875-4885.
    [36]KOREN K., BORISOV S. M., SAF R., et al. Strongly Phosphorescent Iridium(Ⅲ)-Porphyrins-New Oxygen Indicators with Tuneable Photophysical Properties and Functionalities [J]. Eur. J. Inorg. Chem.,2011,1531-1534.
    [37]LIU Y., LI M., ZHAO Q., et al. Phosphorescent Iridium(III) Complex with an NO Ligand as a Hg2+ -Selective Chemodosimeter and Logic Gate [J]. Inorg. Chem.,2011,50:5969-5977.
    [38]LI C., YU M., SUN Y., et al. A Nonemissive Iridium(Ⅲ) Complex That Specifically Lights-Up the Nuclei of Living Cells [J]. J. Am. Chem. Soc.,2011,133:11231-11239.
    [39]YOU Y., LEE S., KIM T., et al. Phosphorescent Sensor for Biological Mobile Zinc [J]. J. Am. Chem. Soc.,2011,133:18328-18342.
    [40]ZANARINI S., FELICI M., VALENTI G., et al. Green and Blue Electrochemically Generated Chemiluminescence from Click Chemistry—Customizable Iridium Complexes [J]. Chem. Eur. J., 2011,17:4640-4647.
    [41]SHAN G., ZHANG L., Ll H., et al. A cationic iridium(Ⅲ) complex showing aggregation-induced phosphorescent emission (AIPE) in the solid state:synthesis, characterization and properties [J]. Dalton Trans.,2012.41:523-530.
    [42]GOLDSMITH J. I., HUDSON W. R., LOWRY M. S., et al. Discovery and High-Throughput Screening of Heteroleptic Iridium Complexes for Photoinduced Hydrogen Production [J]. J. Am. Chem. Soc.,2005,127:7502-7510.
    [43]LOWRY M. S., BERNHARD S. Synthetically Tailored Excited States:Phosphorescent Cyclometalated Iridium (III) Complexes and Their Applications [J]. Chem. Eur. J.,2006,12: 7970-7977.
    [44]TAKIZAWA S., ABOSHI R., MURATA S. Photooxidation of 1,5-dihydroxynaphthalene with iridium complexes as singlet oxygen sensilizers[J]. Photochem. Photobiol. Sci.,2011,10:895-903.
    [45]GARTNER F., COZZULA D., LOSSE S., et al. Impact of Ligand Modification on Hydrogen Photogeneration and Light-Harvesting Applications Using Cyclometalated Iridium Complexes [J]. Chem. Eur. J.,2012,51:4123-4133.
    [46]GARTNER F., DENURRA S., LOSSE S., et al. Synthesis, Characterisation and Application of Iridium (III) Photosensitisers for Catalytic Water Reduction [J]. Chem. Eur. J.,2011,17:6998-7006.
    [47]GARTNER F., DENURRA S., LOSSE S., et al. Synthesis and Characterization of New Iridium Photosensitizers for Catalytic Hydrogen Generation from Water [J]. Chem. Eur. J.,2012,18: 3220-3225.
    [48]ZHAO W., CASTELLANO F. N. Upconverted Emission from Pyrene and Di-tert-butylpyrene Using Ir(ppy)3 as Triplet Sensitizer [J]. J. Phys. Chem. A.,2006,110:11440-11445.
    [49]SUN J., WU W., GUO H., et al. Visible-Light Harvesting with Cyclometalated Iridium (Ⅲ) Complexes Having Long-Lived 3IL Excited States and Their Application in Triplet-Triplet-Annihilation Based Upconversion [J]. Eur. J. Inorg. Chem.,2011,3165-3173.
    [50]ZHAO J., JI S., GUO H. Triplet-triplet annihilation based upconversion:from triplet sensitizers and triplet acceptors to upconversion quantum yields [J]. RSC Adv.,2011,1:937-950.
    [51]ZHAO J., JI S., GUO H. Transition metal complexes with strong absorption of visible light and long-lived triplet excited states:from molecular design to applications [J]. RSC Adv.,2011,2: 1712-1728.
    [52]SUN J., WU W., ZHAO J. Long-Lived Room-Temperature Deep-Red-Emissive Intraligand Triplet Excited State of Naphthalimide in Cyclometalated IrⅢ Complexes and its Application in Triplet-Triplet Annihilation-Based Upconversion [J]. Chem. Eur. J.,2012,18:8100-8112.
    [53]唐小真,杨宏秀,丁马太编.材料化学导论[M].北京:高等教育出版社,1997.
    [54]朱若华,晋卫军编.室温磷光分析法原理与应用[M].北京:科学出版社,2006.
    [55]LAKOWICZ J. R. Principles of Fluorescence Spectroscopy,2nd ed. [M]. New York:Kluwer Academic/Plenum Publishers,1999.
    [56]许金钩,王尊本编.荧光分析法[M].北京:科学出版社,2006.
    [57]LEWIS G. N., KASHA M. Phosphorescence and the triplet state [J]. J. Am. Chem. Soc.,1944,66: 2100-2116.
    [58]PARKER C. A., HATCHARD C. G. The possibilities of phosphorescence measurement in chemical analysis:tests,with a new instrument [J]. Analyst,1962,87:664-676.
    [59]PORTER G., WINDSOR M. W. The triplet state in fluid media [J]. Proc. R. Soc. A,1958,245: 238-258.
    [60]LIU S., ZHAO Q.. FAN Q., et al. A Series of Red-Light-Emitting Ionic Iridium Complexes:Structures, Excited State Properties, and Application in Electroluminescent Devices [J]. Eur. J. Inorg. Chem., 2008,2177-2185.
    [61]RAGNI R., ORSELLI E., KOTTAS G. S., et al. Iridium (Ⅲ) Complexes with Sulfonyl and Fluorine Substituents:Synthesis, Stereochemistry and Effect of Functionalisation on their Photophysical Properties [J]. Chem. Eur. J.,2009,15:136-148.
    [62]HALLETT A. J., KARIUKI B. M., POPE S. J. A. New 2,3-disubstituted-5-hydroxyquinoxaline ligands and their coordination chemistry with cyclometallated iridium(Ⅲ):syntheses, structures and tunable electronic properties [J]. Dalton Trans.,2011.40:9474-9481.
    [63]BARANOFF E., FANTACCI S., ANGELIS F. D., et al. Cyclometalated Iridium(Ⅲ) Complexes Based on Phenyl-Imidazole Ligand [J]. Inorg. Chem.,2011,50:451-462.
    [64]YAN Q., FAN Y.. ZHAO D. Unusual Temperature-Dependent Photophysics of Oligofluorene-Substituted Tris-Cyclometalated Iridium Complexes [J]. Macromolecules,2012,45: 133-141.
    [65]EDKINS R. M., BETTINGTON S. L., GOETA A. E., et al. Two-photon spectroscopy of cyclometalated iridium complexes [J]. Dalton Trans.,2011,40:12765-12770.
    [66]TURRO N. J., RAMAMURTHY V., SCAIANO J. C. Principles of Molecular Photochemistry:An Introduction [M]. University Science Books:Sausalito., CA,2009.
    [67]FLEISCHAUER P. D., FLEISCHAUER P. Photoluminescence of transition metal coordination compounds [J]. Chem Rev.,1970,70:199-230.
    [68]HANSON K., TAMAYO A., DIEV V. V., et al. Efficient Dipyrrin-Centered Phosphorescence at Room Temperature from Bis-Cyclometalated Iridium(Ⅲ) Dipyrrinato Complexes [J]. Inorg. Chem., 2010,49:6077-6084.
    [69]RACHFORD A. A., ZIESSEL R., BURA T., et al. Boron Dipyrromethene (Bodipy) Phosphorescence Revealed in [Ir(ppy)2(bpy-C(?0C-Bodipy)] [J]. Inorg. Chem.,2010,49:3730-3736.
    [70]MA L., GUO H., LI Q., et al. Visible light-harvesting cyclometalated Ir(III) complexes as triplet photosensitizers for triplet-triplet annihilation based upconversion [J]. Dalton Trans.,2012,41: 10680-10689.
    [71]YI X., YANG P., HUANG D., et al. Visible light-harvesting cyclometalated Ir(III) complexes with pyreno[4,5-d] imidazole C(?)N ligands as triplet photosensitizers for tripletetriplet annihilation upconversion [J]. Dyes and Pigments,2013,96:104-115.
    [72]RAGHAVACHARI K., POPLE J. A. Calculation of one-electron properties using limited configuration interaction techniques [J]. Int. J. Quant. Chem.,1981,20:1067-1071.
    [73]FORESMAN J. B., HEAD-GORDON M., POPLE J. A. Toward a systematic molecular orbital theory for excited states [J]. J. Phys. Chem.,1992,96:135-149.
    [74]PETERSILKA M., GOSSMANN U. J., GROSS E. K. U. Excitation energies from time-dependent density-functional theory [J]. Phys. Rev. Lett.,1996,76:1212-1215.
    [75]JAMORSKI C., CASIDA M. E., SALAHUB D. R. Dynamic polarizabilities and excitation spectra from a molecular implementation of time - dependent density - functional response theory:N2 as a case study [J]. J. Chem. Phys.,1996,104:5134-5147.
    [76]BAUERNSCHMITT R.. AHLRICHS R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J]. Chem. Phys. Letters,1996,256: 454-464.
    [77]CASIDA M. E., JAMORSKI C., CASIDA K. C., et al. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:Characterization and correction of the time-dependent local density approximation ionization threshold [J]. J. Chem. Phys.,1998,108: 4439-4449.
    [78]STATMANN R. E., SCUSERIA G. E. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules [J]. J. Chem. Phys.,1998,109:8218-8224.
    [79]MATSUZA WA N. N., ISHITANI A., DIXON D. A., et al, Time-dependent density functional theory calculations of photoabsorption spectra in the vacuum ultraviolet region [J]. J. Phys. Chem. A,2001, 105:4953-4962.
    [80]BOULET P.. CHERMETTE H., DAUL C., et al. Absorption spectra of several metal complexes revisited by the time-dependent density-functional theory-response theory formalism [J]. J. Phys. Chem. A,2001,105:885-984.
    [81]FRANCK J. Elementary processes of photochemical reactions [J]. Trans. Faraday Soc,1925,21: 536-542.
    [82]CONDON E. U. Nuclear motions associated with electron transitions in diatomic molecules [J]. Phys. Rev.,1928,32:858-872.
    [83]HAY P. J., WADT W. R. An initio effective core potential for molecular calculations. Potentials for the transition metal atoms Sc to Hg [J]. J. Chem. Phys.,1985,82 (1):270-283.
    [84]WADT W. R., HAY P. J. An initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi [J]. J. Chem. Phys.,1985,82 (1):284-298.
    [85]HAY P. J., WADT W. R. An initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys.,1985,82 (1):299-310.
    [86]WU W., WU W., JI S., et al. Tuning the emission properties of cyclometalated platinum(Ⅱ) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing [J]. J. Mater. Chem.,2010,20:9775-9786.
    [87]WU W., WU W., JI S., et al. Tuning the emission property of carbazole-caped cyclometalated platinum(Il) complexes and its application for enhanced luminescent oxygen sensing [J]. J. Organomet. Chem.,2011.696:2388-2398.
    [88]WU W., WU W.,JI S., et al. Observation of room-temperature deep-red/near-IR phosphorescence of pyrene with cycloplatinated complexes:an experimental and theoretical study [J]. Eur. J. Inorg. Chem., 2010,4470-4482.
    [89]WU W., CHENG C., WU W., et al. Tuning the emission colour of triphenylamine-capped cyclometallated platinum(Ⅱ) complexes and their application in luminescent oxygen sensing and organic light-emitting diodes [J]. Eur. J. Inorg. Chem.,2010,4683-4696.
    [90]WU W., WU W., JI S., et al. Accessing the long-lived emissive 3IL triplet excited states of coumarin fluorophores by direct cyclometallation and its application for oxygen sensing and upconversion [J]. Dalton Trans.,2011,40:5953-5963.
    [91]WU W., WU W., JI S., et al. The synthesis of 5.10,15,20-tetraarylporphyrins and their platinum(Ⅱ) complexes as luminescent oxygen sensing materials [J]. Dyes and Pigments,2011,89:199-211.
    [92]HAN F., CHI L., LIANG F., et al.3.6-Disubstituted carbazole-based bisboronic acids with unusual fluorescence transduction as enantioselective fluorescent chemosensors for tartaric acid [J]. J. Org. Chem.,2009,74:1333-1336.
    [93]ZHANG X.. CHI L., JI S., et al. Rational design of d-PeT phenylethynylated-carbazole monoboronic acid fluorescent sensors for the selective detection of r-hydroxyl carboxylic acids and monosaccharides [J]. J. Am. Chem. Soc.,2009,131:17452-17463.
    [94]ZHANG X., WU Y., JI S., et al. Effect of the electron donor/acceptor orientation on the fluorescence transduction efficiency of the d-PET effect of carbazole-based fluorescent boronic acid sensors [J]. J. Org. Chem.,2010.75:2578-2588.
    [95]JI S., YANG J., YANG Q., et al. Tuning the intramolecular charge transfer of alkynylpyrenes:effect on photophysical properties and its application in design of OFF-ON fluorescent thiol probes [J].J. Org. Chem.,2009,74:4855-4865.
    [96]JI S., WU W., WU W., et al. Tuning the luminescence lifetimes of ruthenium(ll) polypyridine complexes and its application in luminescent oxygen sensing [J]. J. Mater. Chem.,2010,20: 1953-1963.
    [97]白福全.过渡金属配合物激发态和光谱性质的量子理论研究:Pt配合物[D].吉林:吉林大学理论化学研究所,2009.
    [98]BALUSCHEV S., MITEVA T., YAKUTKIN V., et al. Up-conversion fluorescence:noncoherent excitation by sunlight [J]. Phys. Rev. Lett.,2006,97:143903-143905.
    [99]雷永泉编.新能源材料(M).天津:天津大学出版社,2002.
    [100]PARKER C. A., HATCHARD C. G. Sensitised anti-stokes delayed fluorescence [J]. Proc. Chem. Soc.,1962,386-387.
    [101]ISLANGULOV R. R., KOZLOV D. V., CASTELLANO F. N. Low power upconversion using MLCT sensitizers [J]. Chem. Commun.,2005,3776-3778.
    [102]SINGH-RACHFORD T. N., CASTELLANO F. N. Nonlinear photochemistry squared:quartic light power dependence realized in photon upconversion [J]. J. Phys. Chem. A,2009,113:9266-9269.
    [103]SINGH-RACHFORD T. N., NAYAK A., MURO-SMALL M. L., et al. Supermolecular-chromophore-sensitized near-infrared-to-visible photon upconversion [J]. J. Am. Chem. Soc.,2010,132:14203-14211.
    [104]CHENG Y. Y., FUCKEL B., KHOURY T., et al. Entropically driven photochemical upconversion [J]. J. Phys. Chem. A,2011,115:1047-1053.
    [105]YOSHIHARA T., YAMAGUCHI Y., HOSAKA M., et al. Ratiometric Molecular Sensor for Monitoring Oxygen Levels in Living Cells [J]. Angew. Chem. Int. Ed..2012.51:4148-4151.
    [106]ZHANG S., HOSAKA 1 M., YOSHIHARA T., et al. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals [J]. Cancer Res., 2010,70:4490-4498.
    [107]EKINS-DAUKES N. J., SCHMIDT T. W. A molecular approach to the intermediate band solar cell: The symmetric case [J]. Appl. Phys. Lett.,2008.93:063507.
    [108]BALUSCHEV S., YAKUTKIN V., MITEVA T., et al. Blue-green up-conversion:noncoherent excitation by NIR light [J]. Angew. Chem. Int. Ed.,2007,46:7693-7696.
    [109]SINGH-RACHFORD T. N., CASTELLANO F. N. Photon upconversion based on sensitized triplet-triplet annihilation [J]. Coord. Chem. Rev.,2010,254:2560-2573.
    [110]SINGH-RACHFORD T. N, ISLANGULOV R. R., CASTELLANO F. N. Photochemical upconversion approach to broad-band visible light generation [J]. J. Phys. Chem. A,2008,112: 3906-3910.
    [111]ISLANGULOV R. R., CASTELLANO F. N. Photochemical upconversion:anthracene dimerization sensitized to visible light by a RuⅡ chromophore [J]. Angew. Chem. Int. Ed.,2006,45:5957-5959.
    [112]SINGH-RACHFORD T. N., CASTELLANO F. N. Triplet sensitized red-to-blue photon upconversion [J]. J. Phys. Chem. Lett.,2010,1:195-200.
    [113]CHENG Y. Y, FUCKEL B., KHOURY T., et al. Kinetic Analysis of photochemical upconversion by triplet-triplet annihilation:beyond any spin statistical limit [J]. J. Phys. Chem. Lett.,2010,1: 1795-1799.
    [114]MONGUZZI A., MEZYK J., SCOTOGNELLA F., et al. Upconversion-induced fluorescence in multicomponent systems:Steady-state excitation power threshold [J]. Phys. Rev. B,2008,78:195112.
    [115]MONGUZZI A., TUBINO R., MEINARDI F. Upconversion-induced delayed fluorescence in multicomponent organic systems:Role of Dexter energy transfer [J]. Phys. Rev. B,2008,77:155122.
    [116]SHANGGUAN W., YOSHIDA A. Peptide formation from amino acid with particulate semiconductor photocatalysts [J]. Solar Energy Materials and Solar Cells,2001,69:189-196.
    [117]METZ S., BERNHARD S. Robust photocatalytic water reduction with cyclometalated Ir(Ⅲ) 4-vinyl-2,2'-bipyridine complexes [J]. Chem. Commun.,2010,46:7551-7553.
    [118]DISALLE B., BERNHARD S. Orchestrated Photocatalytic Water Reduction Using Surface-Adsorbing Iridium Photosensitizers [J]. J. Am. Chem. Soc.,2011,133:11819-11821.
    [119]JASIMUDDIN S., YAMADA T., Fukuju K., et al. Photocatalytic hydrogen production from water in self-assembled supramolecular iridium-cobalt systems [J]. Chem. Commun.,2010,46:8466-8468.
    [120]LIU Z., GUAN M., BIAN Z., et al. Red Phosphorescent Iridium Complex Containing Carbazole-Functionalized β-Diketonate for Highly Efficient Nondoped Organic Light-Emitting Diodes [J]. Adv. Funct. Mater.,2006,16:1441-1448.
    [121]YANG C., TAI C., SUN I. Synthesis of a high-efficiency red phosphorescent emitter for organic light-emitting diodes [J]. J. Mater. Chem.,2004,14:947-950.
    [122]DEATON J., YOUNG R., LENHARD J., et al. Photophysical Properties of the Series fac-and mer-(1-Phenylisoquinolinato-N(?)C2)X(2-phenylpyridinato-N(?)C2)3-xIridium(Ⅲ) (x= 1-3) [J]. Inorg. Chem.,2010,49:9151-9161.
    [123]LAMANSK.Y S., DJUROVICH P.. MURPHY D., et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc.,2001,123:4304-4312.
    [124]LADOUCEUR S., FORTIN D., ZYSMAN-COLMAN E. Role of Substitution on the Photophysical Properties of 5.5'-Diary1-2.2'-bipyridine (bpy*) in [Ir(ppy)2(bpy*)]PF6 Complexes:A Combined Experimental and Theoretical Study [J]. Inorg. Chem.,2010,49:5625-5641.
    [125]AOKI S., MATSUO Y., OGURA S., et al. Regioselective Aromatic Substitution Reactions of Cyclometalated Ir(III) Complexes:Synthesis and Photochemical Properties of Substituted Ir(Ⅲ) Complexes That Exhibit Blue, Green, and Red Color Luminescence Emission [J]. Inorg. Chem.,2011. 50:806-818.
    [126]LOWRY M. S., HUDSON W. R., PASCAL R. A., et al. Accelerated Luminophore Discovery through Combinatorial Synthesis [J]. J. Am. Chem. Soc.,2004,126:14129-14135.
    [127]FISCHER L. H., STICH M. I. J., WOLFBEIS O. S., et al. Red-and Green-Emitting Iridium (Ⅲ) Complexes for a Dual Barometric and Temperature-Sensitive Paint [J]. Chem. Eur. J.,2009,15: 10857-10863.
    [128]derosa M. C., Hodgson D. J., Enright G. D., et al. Iridium Luminophore Complexes for Unimolecular Oxygen Sensors [J]. J. Am. Chem. Soc.,2004,126:7619-7626.
    [129]ZHAO Q., LI F., LIU S., et al. Highly Selective Phosphorescent Chemosensor for Fluoride Based on an Iridium(Ⅲ) Complex Containing Arylborane Units [J]. Inorg. Chem.,2008,47:9256-9264.
    [130]ZHANG K. Y., LI S. P. Y., ZHU N., et al. Structure, Photophysical and Electrochemical Properties, Biomolecular Interactions, and Intracellular Uptake of Luminescent Cyclometalated Iridium(Ⅲ) Dipyridoquinoxaline Complexes [J]. Inorg. Chem.,2010,49:2530-2540.
    [131]GUO H., MURO-SMALL M. L., JI S., et al. Naphthalimide Phosphorescence Finally Exposed in a Platinum(Ⅱ) Diimine Complex [J]. Inorg. Chem.,2010,49:6802-6804.
    [132]HARRIMAN A., KHATYR A., ZIESSEL A. Extending the luminescence lifetime of ruthenium(II) poly(pyridine) complexes in solution at ambient temperature [J]. Dalton Trans.,2003,2061-2068.
    [133]POMESTCHENKO I. E., LUMAN C. R., HISSLER M., et al. Room Temperature Phosphorescence from a Platinum(II) Diimine Bis(pyrenylacetylide) Complex [J]. Inorg. Chem.,2003,42:1394-1396.
    [134]RACHFORD A. A., GOEB S., CASTELLANO F. N. Accessing the Triplet Excited State in Perylenediimides [J]. J. Am. Chem. Soc.,2008,130:2766-2767.
    [135]LANOE P. H., FILLAUT J. L., TOUPET L., et al. Cyclometallated platinum(II) complexes incorporating ethynyl-flavone ligands:switching between triplet and singlet emission induced by selective binding of Pb2'ions [J]. Chem. Commun.,2008,4333-4335.
    [136]NASTASI F., PUNTORIERO F., CAMPAGNA S., et al. Photoinduced intercomponent processes in multichromophoric species made of Pt(II)-terpyridine-acetyiide and dipyrromethene-BF2 subunits [J]. Phys. Chem. Chem. Phys.,2008,10:3982-3986.
    [137]BRONNER C., BAUDRON S. A., HOSSEINI M. W., et al. Dipyrrin based luminescent cyclometallated palladium and platinum complexes [J]. Dalton Trans.,2010,39:180-184.
    [138]JI S., WU W., WU Y., et al. Real-time monitoring of luminescent lifetime changes of PtOEP oxygen sensing film with LED/photodiode-based time-domain lifetime device [J]. Analyst,2009,134: 958-965.
    [139]赵建章,吴玉波,梁晓芬,等.一种多用途高效光光纤化学与生物传感器组件:中国,200720016145.6[P].2008,09,03.
    [140]赵建章,赵泰祥,张婷,等.一种基于时域法的测量荧光寿命的通用光电装置:中国,200820010364.8[P].2009,06,03.
    [141]WANG Z., CHEN T., XU J. Gas and water vapor transport through a series of novel poly (aryl ether sulfone) membranes [J]. Macromolecules,2001,34:9015-9022.
    [142]PEREZ M. D., DJUROVICH P. I., HASSAN A., et al. Exciplex quenching of a luminescent cyclometallated platinum complex by extremely poor Lewis bases [J]. Chem. Commun.,2009, 4215-4217.
    [143]DRAGONETTI C.,FALCIOLA L., MUSSINI P., et al. The Role of Substituents on Functionalized 1.1,10-Phenanthroline in Controlling the Emission Properties of Cationic Iridium(III) Complexes of Interest for Electroluminescent Devices [J]. Inorg. Chem.,2007,46:8533-8547.
    [144]GOLDSTEIN D. C., CHENG Y. Y., SCHMIDT T. W., et al. Photophysical properties of a new series of water soluble iridium bisterpyridine complexes functionalised at the 4'position [J]. Dalton Trans., 2011,40:2053-2061.
    [145]GOZE C., KOZLOV D. V., TYSON D. S., et al. Synthesis and photophysics of ruthenium (Ⅱ) complexes with multiple pyrenylethynylene subunits [J]. New J. Chem.,2003,27:1679-1683.
    [146]KOZLOV D. V., TYSON D. S., GOZE C., et al. Room Temperature Phosphorescence from Ruthenium(II) Complexes Bearing Conjugated Pyrenylethynylene Subunits [J]. Inorg. Chem.,2004, 43:6083-6092.
    [147]NATRAJAN L. S., TOULMIN A., CHEW A., et al. Two-photon luminescence from polar bis-terpyridyl-stilbene derivatives of Ir(III) and Ru(Il) [J]. Dalton Trans.,2010,39:10837-10846.
    [148]HOFBECK T., YERSIN H. The Triplet State offac-Ir(ppy)3 [J]. Inorg. Chem.,2010,49:9290-9299.
    [149]SHI L. L., GENG Y., GAO H. Z., et al. Theoretical study on the electron transfer and phosphorescent properties of iridium(III) complexes with 2-phenylpyridyl and 8-hydroxyquinolate ligands [J]. Dalton Trans.,2010,39:7733-7740.
    [150]LI Y., LI H., ZHAO X., et al. Electronic Structure and Optical Properties of Dianionic and Dicationic π-Dimers [J]. J. Phys. Chem. A,2010,114:6972-6977.
    [151]WOLFBEIS O., NARAYANASWAMY R. Optical sensors:Industrial, Environmental and Diagnostic Applications [M]. Berlin-Heidelberg: Springer-Verlag,2004.
    [152]VELASCO-GARCIA N., VALENCIA-GONZALEZ M. J., DIAZ-GARCIA M. E. Fluorescent organofilms for oxygen sensing in organic solvents using a fiber optic system [J]. Analyst,1997,122: 1405-1409.
    [153]CARRAWAY E. R., DEMAS J. N., DEGRAFF B. A., et al. Photophysics and photochemistry of oxygen sensors based on luminescent transition-metal complexes [J]. Anal Chem,1991,63:337-342.
    [154]YAN H. M., KRAUS G., GAUGLITZ G., et al. Ddtection of mixture of organic pollutants in water by polymer film receptors in fiber-optical sensors based on reflectometric interference spectrometry [J]. Anal Chem Acta,1995.312:1-8.
    [155]MAK C. S. K., PENTLEHNER D., STICH M., et al. Exceptional Oxygen Sensing Capabilities and Triplet State Properties of Ir(ppy-NPh2)3 [J]. Chem. Mater.,2009,21:2173-2175.
    [156]ZHANG H., SUN Y,. YE K., et al. Oxygen sensing materials based on mesoporous silica MCM-41 and Pt(Ⅱ)-porphyrin complexes [J]. J. Mater. Chem.,2005,15:3181-3186.
    [157]DU P., EISENBERG R. Energy upconversion sensitized by a platinum(Ⅱ) terpyridyl acetylide complex [J]. Chem. Sci.,2010,1:502-506.
    [158]CHEN H. C., HUNG C. Y., WANG K. H., et al. White-light emission from an upconverted emission with an organic triplet sensitizer [J]. Chem. Commun.,2009,4064-4066.
    [159]WILSON G. J., LAUNIKONIS A., SASSE W. H. F., et al. Excited-state processes in ruthenium(II) bipyridine complexes containing covalently bound arenes [J]. J. Phys. Chem. A,1997,101: 4860-4866.
    [160]HARRIMAN A., HISSLER M., KHATYR A., et al. A ruthenium(Ⅱ) tris(2.2'-bipyridine) derivative possessing a triplet lifetime of 42 μs [J]. Chem. Commun.,1999,735-736.
    [161]TYSON D. S., HENBEST K. B., BIALECKI J., et al. Excited state processes in ruthenium(II)/ pyrenyl complexes displaying extended lifetimes [J]. J. Phys. Chem. A.2001.105:8154-8161.
    [162]TYSON D. S., BIALECKI J., CASTELLANO F. N. Ruthenium(Ⅱ) complex with a notably long excited state lifetime [J]. Chem, Commun.,2000,2355-2356.
    [163]TYSON D. S., LUMAN C. R.. ZHOU X., et al. New Ru(Ⅱ) chromophores with extended excited-state life [J]. Inorg. Chem.,2001,40:4063-4071.
    [164]CAKMAK Y., K.OLEMEN S., DUMAN S., et al. Designing Excited States: Theory-Guided Access to Efficient Photosensitizers for Photodynamic Action [J]. Angew. Chem. Int. Ed.,2011,50: 11937-11941.
    [165]KORINEK M., DEDIC R., SVOBODA A., et al. Luminescence Study of Singlet Oxygen Production by Meso-Tetraphenylporphine [J]. J. Fluoresc.,2004,14:71-74.
    [166]WU W., JI S., WU W., et al. Ruthenium(Ⅱ)-Polyimine - Coumarin Light-Harvesting Molecular Arrays:Design Rationale and Application for Triplet - Triplet-Annihilation-Based Upconversion [J]. Chem. Eur. J.,2012,18:4953-4964.
    [167]NEVE F., DEDA M. L., CRISPINI A., et al. Cationic Cyclometalated Iridium Luminophores: Photophysical, Redox, and Structural Characterization [J]. Organometallics,2004,23:5856-5863.
    [168]FELlCI M., CONTRERAS-CARBALLADA P., VIDA Y., et al. IrⅢ and RuⅡ Complexes Containing Triazole-Pyridine Ligands:Luminescence Enhancement upon Substitution with β-Cyclodextrin [J]. Chem. Eur. J.,2009,15:13124-13134.
    [169]COLOMBO M. G., HAUSER A., GUDEL H. U. Evidence for Strong Mixing between the LC and MLCT Excited States in Bis(2-phenylpyridinato-C2,N-) (2,2'-bipyridine)iridium(Ⅲ) [J]. Inorg. Chem., 1993,32:3088-3092.
    [170]CLENNAN E. L., PACE A. Advances in singlet oxygen chemistry [J]. Tetrahedron,2005,61: 6665-6691.
    [171]MANJON F., GARCIA-FRESNADILLO D., ORELLANA G. Water disinfection with Ru(Ⅱ) photosensitisers supported on ionic porous silicones [J]. Photochem. Photobiol. Sci.,2009,8: 926-932.
    [172]DEROSA M. C., CRUTCHLEY R. J. Photosensitized singlet oxygen and its applications [J]. Coordination Chemistry Reviews,2002,233-234:351-371.
    [173]WANG S., GAO R., ZHOU F., et al. Nanomaterials and singlet oxygen photosensitizers:potential applications in photodynamic therapy [J]. J. Mater. Chem.,2004,14:487-493.
    [174]ALLISON R. R., DOWNIE G. H., CUENCA R., et al. Photosensitizers in clinical PDT [J]. Photodiag. Photodyn. Ther.,2004, I:27-42.
    1175] ALLISON R. R., MOTA H. C., SIBATA C. II. Clinical PD/PDT in North America:An historical review [J]. Photodiag. Photodyn. Ther.,2004,1:263-277.
    [176]ALLISON R. R. Futrue PDT [J]. Photodiag. Photodyn. Ther.,2009,6:231-234.
    [177]GALLETTA M., CAMPAGNA S., QUESADA M., et al. The elusive phosphorescence of pyrromethene-BF2 dyes revealed in new multicomponent species containing Ru(Ⅱ)-terpyridine subunits [J]. Chem. Commun.,2005,4222-4224.
    [178]NASTASI F., PUNTORIERO F., CAMPAGNA S., et al. Hybrid complexes:Pt(II)-terpyridine linked to various acetylide-bodipy subunits [J]. Phys. Chem. Chem. Phys.,2010,12:7392-7402.
    1179] LOUDET A., BURGESS K. BODIPY Dyes and Their Derivatives:Syntheses and Spectroscopic Properties [J]. Chem. Rev.,2007,107:4891-4932.
    [180]PENG X., DU J., FAN J., et al. A Selective Fluorescent Sensor for Imaging Cd2'in Living Cells [J]. J. Am. Chem. Soc.,2007,129:1500-1501.
    [181]ZHANG X., XIAO Y.,QIAN X. Highly Efficient Energy Transfer in the Light Harvesting System Composed of Three Kinds of Boron-Dipyrromethene Derivatives [J]. Org. Letter.,2008,10:29-32.
    [182]ULRICH G., ZIESSEL R., HARRIMAN A. The Chemistry of Fluorescent Bodipy Dyes:Versatility Unsurpassed [J]. Angew. Chem. Int. Ed.,2008,47:1184-1201.
    [183]BENNISTON A. C., COPLEY G. Lighting the way ahead with boron dipyrromethene (Bodipy) dyes [J]. Phys. Chem. Chem. Phys.,2009,11:4124-4131.
    [184]ZIESSEL R., HARRIMAN A. Artificial light-harvesting antennae:electronic energy transfer by way of molecular funnels [J]. Chem. Commun.,2011,47:611-631.
    [185]BOZDEMIR O. A., ERBAS-CAKMAK S., EKIZ O., et al. Towards Unimolecular Luminescent Solar Concentrators:Bodipy-Based Dendritic Energy-Transfer Cascade with Panchromatic Absorption and Monochromatized Emission [J]. Angew. Chem. Int. Ed.,2011,50:10907-10912.
    [186]LU H., SHIMIZU S., MACK J., et al. Synthesis and Spectroscopic Properties of Fused-Ring-Expanded Aza-Boradiazaindacenes [J]. Chem. Asian J.,2011,6:1026-1037.
    [187]WILKINSON F., HELMAN W. P., ROSS A. B. Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution [J]. J. Phys. Chem. Ref. Data.,1993,22:113-262.
    [188]RUGGI A., ALONSO M. B., REINHOUDT D. N., et al. An iridium(Ⅲ)-caged complex with low oxygen quenching [J]. Chem. Commun.,2010,46:6726-6728.
    [189]HISAMATSU Y., AOKI S. Design and Synthesis of Blue-Emitting Cyclometalated Iridium(Ⅲ) Complexes Based on Regioselective Functionalization [J]. Eur. J. Inorg. Chem.,2011,5360-5369.
    [190]WU W., ZHAO J., GUO H., et al. Long-Lived Room-Temperature Near-IR Phosphorescence of BODIPY in a Visible-Light-Harvesting N^C^N PtⅡ-Acetylide Complex with a Directly Metalated BODIPY Chromophore [J]. Chem. Eur. J.,2012,18:1961-1968.
    [191]ARMAROLI N. Electronic Excited-State Engineering [J]. ChemPhysChem.,2008,9:371-373.
    [192]KIM H. M., CHO B. R. Two-Photon Probes for Intracellular Free Metal Ions, Acidic Vesicles, And Lipid Rafts in Live Tissues [J]. Acc. Chem. Res.,2009,42:863-872.
    [193]LUTHI S. R., POLLNAU M., GUDEL H. U. Near-infrared to visible upconversion in Er3T-doped Cs3Lu2C4-L1, Cs3Lu2Br9, and Cs3Y2I9 excited at 1.54 μm [J]. Phys. Rev. B.,1999,60:162-178.
    [194]WENGER O. S., GUDEL H. U. Chemical Tuning of the Photon Upconversion Properties in Ti2+-Doped Chloride Host Lattices [J]. Inorg. Chem.,2001,40:5747-5753.
    [195]LIU Q., SUN Y., YANG T., et al. Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo [J]. J. Am. Chem. Soc.,2011,133:17122-17125.
    [196]LIU Y., ZHAO J. Visible light-harvesting perylenebisimide-fullerene (C60) dyads with bidirectional "ping-pong" energy transfer as triplet photosensitizers for photooxidation of 1,5-dihydroxynaphthalene [J]. Chem. Commun.,2012,48:3751-3753.
    [197]SUN J., ZHAO J., GUO H., et al. Visible-light harvesting iridium complexes as singlet oxygen sensitizers for photooxidation of 1,5-dihydroxynaphthalene [J]. Chem. Commun.,2012,48: 4169-4171.
    [198]BENITES J., VALDERRAMA, J. A., Bettega K., et al. Biological evaluation of donor-acceptor aminonaphthoquinones as antitumor agents [J]. Eur. J. Med. Chem.,2010,45:6052-6057.
    [199]夏盛钦,李承志,毛向辉.花四梭酸类染(颜)料的研究概况[J].染料工业,2000,37(1):16-19.
    [200]李梅彤,张天永,李绍武.花系颜料的制备方法研究[J].天津理工大学学报,2006,22(1):19-22.
    [201]洪心进,薛敏钊,刘燕刚.花酞亚胺类化合物的功能改性及光谱性能研究[J].影像技术,2006,4:11-12.
    [202]KOLHE N. B., ASHA S. K., SENANAYAK S. P., et al. n-Type Field Effect Transistors Based on Rigid Rod and Liquid Crystalline Alternating Copoly(benzobisoxazole) Imides Containing Perylene and/or Naphthalene [J]. J. Phys. Chem. B,2010,114:16694-16704.
    [203]YUE W., LV A., GAO J., et al. Hybrid Rylene Arrays via Combination of Stille Coupling and C-H Transformation as High-Performance Electron Transport Materials [J]. J. Am. Chem. Soc.,2012,134: 5770-5773.
    [204]DU Y., JIANG L., ZHOU J., et al. Perylenetetracarboxylic Diimide Derivatives Linked with Spirobifluorene [J]. Org. Lett.,2012,14:3052-3055.
    [205]BHOSALE S. V., BHOSALE S. V. BHARGAVA S. K. Recent progress of core-substituted naphthalenediimides:highlights from 2010 [J]. Org. Biomol. Chem.,2012,10:6455-6468.
    [206]FORD W. E., KAMAT P. V. Photochemistry of 3,4,9.10-Perylenetetracarboxylic Dlanhydrlde Dyes. 3. Singlet and Triplet Excited-State Properties of the Bls(2,5-di-tert-butylphenyl)imide Derivative [J]. J. Phys. Chem.,1987,91:6373-6380.
    [207]VENTURA B., LANGHALS H., BOCK B., et al. Phosphorescent perylene imides [J]. Chem. Commun.,2012,48:4226-4228.
    [208]PRUSAKOVA V., MCCUSKER C. E., CASTELLANO F. N. Ligand-Localized Triplet-State Photophysics in a Platinum(II) Terpyridyl Perylenediimideacetylide [J]. Inorg. Chem.,2012,51: 8589-8598.
    [209]COSTA R. D., CESPEDES-GUIRAO F. J., ORTI E., et al. Efficient deep-red light-emitting electrochemical cells based on a perylenediimide-iridium-complex dyad [J]. Chem. Commun.,2009, 3886-3888.
    [210]MIRENDA M., STRASSERT C. A., DICELIO L. E., et al. Dye-Polyelectrolyte Layer-by-Layer Self-Assembled Materials:Molecular Aggregation, Structural Stability, and Singlet Oxygen Photogeneration [J]. ACS Appl. Mater. Interfaces,2010,2:1556-1560.
    [211]EDKINS R. M., WRIGLESWORTH A., FUCKE K., et al. The synthesis and photophysics of tris-heteroleptic cyclometalated iridium complexes [J]. Dalton Trans.,2011,40:9672-9678.
    [212]FRISCH M.J., TRUCKS G. W., SCHLEGEL H. B., et al. Gaussian 09 [M]. Revision A.l, Gaussian Inc., Wallingford CT,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700