苯并环丁烯—苝二酰亚胺电致发光材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光(OLED)显示技术因符合未来发展趋势而引起越来越多的关注和重视,因此有机电致发光材料的研究成为该领域的研究热点。苝类化合物,尤其是苝二酰亚胺化合物,因其具有极好的光稳定性、热稳定性、化学稳定性和极高的荧光量子效率等优点而受到广泛关注。然而,因为苝类有机小分子存在诸多缺点,所以研究者倾向于将苝高分子化。本文首先提出将可反应、可聚合的苯并环丁烯基团引入至苝二酰亚胺的bay位(1,6,7,12位),增加其溶解性的同时,通过热聚合反应使其交联成高分子,使所得聚合物不仅具有良好的发光性能,而且具有良好的成膜特性,以解决小分子因溶解性差导致很难用溶液法成膜,最终使器件制作费用成本升高的问题。
     为了了解如何增加苝二酰亚胺的溶解性以及增加溶解性后对苝二酰亚胺性能的影响,我们首先对苝四甲酸酐的溴化反应过程进行了探索,同时合成了四种可溶性的苝二酰亚胺:N,N’-二(十二烷基)~(-1),7-二溴-3,4,9,10-苝二酰亚胺(d)、N,N’-二(十二烷基)~(-1),6,7,12-四溴-3,4,9,10-苝二酰亚胺(e)、N,N’-二(十二烷基)~(-1),7-二(叔丁基苯氧基)-3,4,9,10-苝二酰亚胺(f)和N,N’-二(十二烷基)~(-1),6,7,12-四(叔丁基苯氧基)-3,4,9,10-苝二酰亚胺(g)。利用1H NMR、FTIR和MS等手段确定了四种产物的结构,还研究了其紫外-可见吸收、荧光、循环伏安和热学等性能。实验结果表明:在酰亚胺的氮位置和bay位置引入基团能显著提高苝酰亚胺的溶解性,同时对其各方面性能也有一定影响。
     然后,对苯并环丁烯的聚合和成膜性能进行了研究。4-乙烯基苯并环丁烯(VBCB)首先与苯乙烯(St)发生自由基聚合反应,产物再与二乙烯基硅氧烷-双苯并环丁烯(DVSBCB)发生热聚合反应生成预聚体(VBCB-St-DVSBCB),随后把预聚体溶解到甲苯中进行旋转涂膜,最后进行固化反应。实验发现,苯并环丁烯衍生物在200℃左右四元环容易开环发生聚合反应,同时其成膜性能非常好,并且膜平整度很高,polymer resin薄膜(1)的Ra、P-V和RMS分别为4.473×10~(-1)、3.475×101和7.801×10~(-1) nm,而polymer resin薄膜(2)的Ra、P-V和RMS分别为7.807×10~(-1)、1.894×101和1.087 nm。最后,结合前两章内容合成了本文的目标产物,两种新型的苯并环丁烯-
     苝二酰亚胺化合物:N,N’-二(十二烷基)~(-1),6,7,12-四(苯并环丁烯基氧基)-3,4,9,10-苝二酰亚胺(h)和N,N’-二(十二烷基)~(-1),6,7,12-四(苯并环丁烯基)-3,4,9,10-苝二酰亚胺(i),并利用各种分析手段确定了产物的结构,还研究了产物的紫外-可见吸收、荧光及其热学等性能。同时对产物h的热聚合和成膜性能做了研究。实验发现,产物h在225℃左右四元环容易开环发生交联反应。生成h预聚体后,其紫外可见吸收、荧光和循环伏安特性相对于产物h变化不大,同时,预聚体h可旋转涂膜,为实现大面积成膜奠定基础。
OLED has been attracting increasing attentions and regards for its potential advantages in future display. So OLED materials have been a research hotspot. Perylene derivatives, especially perylene bisimides, have attracted intense investagation due to their high photo stability, chemical stability and thermal stability as well as high fluorescence quantum yield. However, small molecular perylene derivatives have many a shortcomings, so the researchers tend to make perylene derivatives polymerization. Hence, we want to induce benzocyclobutene which can polymerize through heating to the bay position of perylene bisimide to increase the solubility, and polymer perylene derivatives are prepared by thermal polymerization which not only posses luminescence properties, but also have good film forming ability. This process can account for the problem that is difficult to form in the solution which resulted in the cost increasing.
     In order to research on how to increase the solubility and the influence of performance of perylene bisimides after improving the solubility, The bromination reaction of perylene-3, 4, 9, 10-tetracarboxylic acid bisanhydride was first explored. And four soluble peyrlene bisimides [N,N’-didodecyl-1,7- dibromo-perylene-3,4,9,10-tetracar-boxylic acid diimide (d), N,N’-didodecyl- 1,6,7,12-tetrabromo-perylene-3,4,9,10-tetracarboxylic acid diimide (e), N,N’- didodecyl-1,7-di(4-t-butylphenoxy)perylene-3,4,9,10-tetra-carboxylic acid diimide (f) and N,N’-di-dodecyl-1,6,7,12- tetra(4-t-butylphenoxy)-3,4,9,10-tetra- carboxylic acid diimide (g) were synthesized. The structures were characterized by 1H NMR, FTIR and MS, and the UV-vis maximal absorption, fluorescence spectroscopy, electrochemical and thermal properties were investigated. The result indicated that the groups which were introduced into N and bay position can improve the solubility notability and can influence the performance of perylene bisimides.
     Subsequently, the polymerization and film forming ability of benzocyclobutene were investigated. Radical copolymerization of 4-vinyl-benzocyclobutene with styrene afforded the copolymer (4-vinylbenzocyclobutene-co-styrene) (VBCB-St). Reaction of VBCB-St and divinyl tetramethyl disiloxane-bisbenzocyclobutene (DVSBCB) gave the oligomer (VBCB-St-DVSBCB), which was subsequently subjected to the spin-coating and the cure reaction. It is found that benzocyclobutene opens the cyclobutene ring when heated to 200 oC and film forming ability is good, and the polymer resin possessed good film planarization. AFM images of polymer resin (1) shows that Ra, P-V and RMS are separately 4.473×10~(-1), 3.475×101 and 7.801×10~(-1) nm. Whereas Ra, P-V and RMS of polymer resin (2) are 7.807×10~(-1), 1.894×101 and 1.087 nm.
     Finally, two novel benzocyclobutene-peyrlene derivatives [N,N’-didodecyl~(-1),6,7,12-tetra(4-benzocyclobutenyloxy)perylene-3,4,9,10-tetracarboxy-lic acid diimide (h), N,N’-didodecyl~(-1),6,7,12-tetra- (4-benzocyclobutenyl)-3,4,9,10-tetra carboxylic acid diimide (i)] were synthesized. The structures were characterized by 1H NMR, FTIR and MS, and the UV-vis maximal absorption, fluorescence spectroscopy, thermal properties were also investigated. Meanwhile, the polymerization and film forming ability of compound i were investigated. It is found that compound h opens the cyclobutene ring to form polymers when heated to 225 oC, and UV-vis maximal absorption, fluorescence spectroscopy and electrochemical property of compound i change little after becoming oligomer i. At the same time, the film of oligomer h is received through spin-coating technique which provide the condition of achieving the large area film.
引文
1. Pope M., Kallmann H. P., Magnante P. Electroluminescence in organic crystals[J]. J. Chem. Phys., 1963, 38: 2042-2043.
    2. Helfrich W., Schneider W. G. Recombination Radiation in Anthracene Crystals[J].Phys. Rev. Lett., 1965, 14: 229-231.
    3. Vincett P. S., Barlow W. A., Hann R. A., et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin solid Films, 1982, 94(2): 171-183.
    4. Chiang C. K., Fincher C. R., Park Y. W., et al. Electrical Conductivity in Doped PolyacetylenePhys[J]. Rev. Lett.,1977, 39: 1098-1101.
    5. Partridge R. H. Electroluminescence using higher work function cathodes[J]. Polymer, 1983, 24: 755-762.
    6. Tang C. W.,Vanslyke S. A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51: 913-915
    7. Burroughes J. H., Bradley D. D. C., Brown A. R., et al. The first polymer LEDs. Light-emitting-diodes based on conjugated polymers[J]. Nature, 1990, 347: 539-541.
    8. Gustufsson G., Cao Y., Treacy G. M., et al. Flexible light-emitting diodes made from soluble conducting polymers[J]. Nature, 1992, 357:477-479.
    9. Cao Y., Treacy G. M., Klavetter F., et al. Solution-cast films of polyaniline: optical-quality transparent electrodes[J]. Appl. Phys. Lett., 1992, 60:2711-2813.
    10. Jiang X. Z., Liu Y. Q., Zhu D. B., et al. Reddish orange light-emitting diodes made with N,N’-bis(1-naphthyl)-3,4,9,10- perylebis(dicarboximide). Synthetic Metals, 1997, 91: 253-253.
    11. Schneider M., Haarer D., Müllen K., et al. Novel electroluminescent devices based on perylene-doped sol-gel layers. Adv. Mater. 2000, 12(5): 351-354.
    12. Ego C., Marsitzky D., Müllen K., et al. Attaching perylene dyes to polyfluorene: three simple, efficient methods for facile color tuning of light-emitting polymers. J. Am. Chem. Soc. 2003, 125: 437-443.
    13. He X., Li Y., Zhu D., et al. Synthesis and characterization of new type ofperylene bisimide-containing conjugated copolymers. Macromol. Rapid Commun. 2005, 26: 721-727.
    14.潘建峰,宋为宏,田禾.树枝状有机电致发光材料近期研究进展.世界科技研究与发展. 2005, 27(1): 27-33.
    15. Qu J., Müllen K., Neher D., et al. Dendronized perylene diimide emitters: synthesis, luminescence, and electron and energy transfer studies. Macromolecules, 2004, 37(22): 8297-8306.
    16. Oesterling I. and Mullen K. Multichromophoric polyphenylene dendrimers: toward brilliant light emitters with an increased number of fluorophores. J. Am. Chem. Soc. 2007, 129: 4595-4605.
    17.黄德音,段学辉,刘燕刚等.苝四羧酸多联体化合物的合成及其光谱特性研究.感光科学与光化学,1999 (17): 10-16.
    18.蓝闽波,任绳武.苝四羧酸二酰亚胺系化合物的合成及结构分析.华东理工大学学报,1996 (22): 147-152
    19. Nagao Y., Misono T. Synthesis and reaction of perylenecarboxylic acid derivatives, VIII. Bull. Chem. Soc.Jpn., 1981 (54): 1191-1194.
    20. Liu D., Xiao Y., Li Y., et al. Synthese and properties of PVK modified with perylene structures. Dyes and Pigments, 2004 (46): 63-67.
    21. Nagao Y., Misono T. Synthesis and reaction of perylenecarboxylic acid derivatives, VIL. Bull. Chem. Soc. Jpn., 1981 (54): 1269-1270.
    22. Prathapan S., Yang S. I., Seth J., et al. Synthesis and excited-state photodynamics of perylene-porphyrin dyads. 1 .Parallel energy and charge transfer via a diphenylethyne liker. J Phys.Chem. B, 2001 (105): 8237-8248.
    23. Y Nagao, T. Misono. Synthesis and reaction of perylenecarboxylic acid derivatives, X. Bull. Chem. Soc. Jpn., 1981 (54): 1575-1576.
    24. Troster H. Perylen-3,4,9,10 -tetracarbonsaurealkalisalzen. Dyes and Pigments, 1983 (4): 171-177.
    25. Nagao Y., Misono T. Synthesis and properties of N-alkyl-N'-aryl- 3,4,9,10-perylenebis (dicarboxirnide). Dyes and Pigments, 1984 (5): 171-181.
    26. Nagao Y., Misono T. Synthesis and properties of N, N’- unsymmetrical dialkyl-3,4,9,10-perylenebis (dicarboximide)s. Dyes and Pigments, 1985 (6):303-311.
    27. Nagao Y., Ishikawa N., Tanabe Y., et al. Synthesis of unsymmetrical perylenebis(dicarboximide) derivatives. Chem. Lett.,1979, 151-154.
    28.孙先胜,陈常孔.苝酰胺单酐和非对称取代苝四羧酰二亚胺的合成.染料工业, 1999 (36): 24-26.
    29. Karl N. Organic semiconductors: purification and crystal growth. Mol. Cryst.Liq.cryst.,1989 (171): 157-177.
    30.蓝闽波,陈惠民,任绳武. N, N’-二甲基苝四羧酸二酰亚胺化合物溴化反应过程的研究.染料工程. 1996, 33(2): 33-36.
    31. Pasaogullari N., Icil H., Demuth M. Symmetrical and unsymmetrical perylene diimides: their synthesis, photophysical and electrochemical properties. Dyes and Pigments 2006 (69): 118-127
    32. Qiu W., Chen S., Sun X., et al. Suzuki coupling reaction of
    1,6,7,12-tetrabromoerylene bisimide[J]. Org. Lett., 2006, 8(5): 867-870.
    33. Zhao C., Zhang Y., Li R. Di(alkoxy)- and di(alkythio)-substituted perylene-3,4,9,10-tetracarboxy diimides with tunable electrochemical and photophysical properties[J]. J. Org. Chem., 2007, 72: 2402-2410.
    34. Shi Y., Qian H., Wang Z., et al. Copper-mediated domino process for the synthesis of tetraodinated di(perylene bisimide). Org. lett., 2008, 10(12): 2337-2340
    35. Qian H., Negri F., Wang Z., et al. Fully conjugated tri(perylene bisimides): an approach to the construction of n-type graphene nanoribbons. J.Am. Chem.Soc., 2008, 130(52): 17970-17976.
    36. Li C., Schoneboom J., Müllen K., et al. Rainbow perylene monoimides: easy control of optical properties. Chem. Eur. J. 2009,15:878-884.
    37. King F. A. and King J. J. Engineering thermoplastics, Dekker N. Y. 1985, pp. 315-316.
    38. Dotcheva D., Klapper M. and Müllen K. Soluble polyimides containing perylene units. Macromol. Chem. Phys. 1994, 195: 1905-1911.
    39. Quante H., Schlichting P., Müllen K., et al. Novel perylene-containing polymers. Macromol. Chem. Phys. 1996, 197: 4029-4044.
    40. Icil H. and Icil S. Synthesis and properties of a new photostable polymer:perylene-3,4,9,10-tetracarboxylic acid-bis-(N,N’-dodecylpolyimide). J. Polym. Sci. A: Polym. Chem., 1997, 35: 2137-2142.
    41. Butt M. S., Akhtar Z., Zafar-uz-Zaman M., et al. Synthesis and characterization of some novel aromatic polyimides. European Polymer Journal, 2005, 41: 1638-1646.
    42. Yuney K. and Icil H. Synthesis, photochemical, and electrochemical properties of naphthalene-1,4,5,8-tetracarboxylic acid-bis(N,N’-bis-(2,2,4(2,4,4)-trimethylhexylpolyimide)) and poly(N,N’-bis-(2,2,4(2,4,4)-trimethyl-6-aminohexyl)3,4,9,10-perylenetetracarboxdiimide). European Polymer Journal, 2007, 43: 2308-2320.
    43. Feng L. and Chen Z. Synthesis and photoluminescent properties of polymer containing perylene and fluorene units. Polymer 2005, 46: 3952-3956.
    44. Xu S., Jin Y., Cao S., et al. Highly soluble diphenylfluorene-based cardo copolyimides containing perylene units. Polym. Adv. Technol. 2006, 17: 556-561.
    45. Wang H., Peng B. and Wei W. Synthesis and optoelectronic characterization of poly(fluorenylethynylene)s cotaining perylen bisimide moiety in the backbone. J. Poly. Sci.: Part B: Polymer Physics, 2008, 46: 1932-1938.
    46. Neuteboom E. E., Hal P. A., Janssen A. J., et al. Doner-acceptor polymers: a conjugated oligo(p-phenylene vinylene) main chain with dangling perylene bisimides[J]. Chem. Eur. J., 2004, 10(16): 3907-3918.
    47. Liu Y., Li Y. F., Zhu D., et al. Synthesis and photovoltaic characteristics of novel copolymers containing poly(phenylene vinylene) and triphenylamine moieties connected at 1,7 bay positions of perylene bisimide[J]. Macromolecules, 2005, 38(3): 716-721.
    48. He X., Li Y., Zhu D., et al. A new copolymer containing perylene bisimide and porphyrin moieties : synthesis and characterization[J]. Macromolecular.Chemistry and Physics, 2005, 206(21): 2199-2205.
    49. Hua J., Meng. F, Tian H., et al Synthesis and characterization of new highlysoluble and thermal-stable perylene-PPV copolymers containing triphenylamine moiety. European Polymer Journal, 2006, 42: 2686-2694.
    50. Liu Y., Wang N., Li Y., et al. A new class of conjugated polyacetylenes having perylene bisimide units and pendant fullerene or porphyrin groups. Macromolecules, 2005, 38: 4880-4887.
    51. He X., Li Y., Zhu D., et al. A new copolymer containing perylene bisimide and porphyrin moieties: synthesis and characterization. Macromol.Chem. Phys. 2005, 206: 2199-2205.
    52. Zhan X., Li Y., Zhu D., et al. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cell. J. Am. Chem. Soc. 2007, 129: 7246-7247.
    53. Huo L., Zhou Y. and Li Y. Synthesis and absorption spectra of n-type conjugated polymers based on perylene diimide. Macromol. Rapid. Commun. 2008, 29: 1444-1448.
    54. Zhang Q., Russell T. R., Emrick T., et al. Donor-acceptor poly(thiophene- block-perylene diimide) copolymers: synthesis and solar cell fabrication. Macromolecules, 2009, 42: 1079-1082.
    55.杨军校.苯并环丁烯单体的合成及其聚合物性能研究.四川大学博士学位论文. 2005.
    56.朱方华.新型苯并环丁烯树脂的合成与性能研究.四川大学博士学位论文. 2007.
    57. Garrou P. Polymer dielectrics for multichip module packaging, Proceedings of the IEEE. 1992, 80(12): 1942-1954.
    58. Hitoshi Y. and Hideo A. Process for fabricating an interconnected multilayer board. US Patent 5388328. 1995.
    59. Krishnamurthy V. B., Cole H. S. and Nieters S. Use of BCB in high frequency MCM interconnects, IEEE Transactions on Components, and Manufacturing Technology-Part B. 1996, 19(1): 42-47.
    60. Patrizi G. A., Lovejoy M. L., Enquist P. M., et al. Multi-level interconnects for heterjunction bipolar transistor integrated circuit technologies. Thin Solid Films. 1996, 290-291: 435-439.
    61. Neirynck J. M., Yang G. R., Murarka S. P., et al. The addition of surfactant toslurry for polymer CMP: effects on polymer surface, removal rate and underlying Cu. Thin Solid Films. 1996, 290-291: 447-452.
    62. Hong Y., Kim Y. I. Lee M., et al. Post-etch residue removal BCB/Cu interconnection structure, Thin Solid Films. 2003, 435: 238-241.
    63. Tessier T. G. and Lake C. Silicon etching process using polymeric mask, for example, to form V-groove for an optical fiber coupling. US Patent 5217568. 1993.
    64. Markus O., Volker S. and Stephanus B. Microcoils and microrelavs-an optimized multilayer fabrication process. Sensors and axtuators A: Physical. 2000, 83: 124-129.
    65. Shimoto T. and Matsul K. Liquid crystal device with benzocyclobutene alignment layer and protective coating for electrodes . US Patent 5287208. 1994.
    66. Lyu K. H. and Shi A. Method for manufaxturing liquid crystal display. US Patent 6001539. 1999.
    67. Oh Y. J. and Ha Y. M. Liquid crystal display and method for manufacturing the same. US Patent 6211928. 2001.
    68. Wolff S., Giehl A. R., Renno M., et al. Metallic waveguide mirrors in polymer film waveguides. Applied Physics B, Lasers and Optics. 2001, 73: 623-627.
    69. Beechinor J. T., McGlynn E., O’reilly M., et al. Optical characterization of thin film benzocyclobutene(BCB) based polymers. Microelectronic Engineering. 1997, 33: 363-368.
    70. Lee K., He J. Clement R., et al. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel. Biosensors and Bioelectronics. 2004, 2: 404-407.
    71. Würthner F., Stepanenko V., Chen Z., et al. Preparation and characterization of regioisomerically pure 1,7-disubstituted perylene bisimide dyes. J. Org. Chem. 2004, 69: 7933-7939.
    72. Fan L. Xu Y. and Tian H. 1,6-Disubstituted perylene bisimides: concise synthesis and characterization as near-infrared fluorescent dyes. Tetrahedron Letter. 2005, 46:4443-4447.
    73. Hill Z. B., Rodovsky D. B., Bartholomew G. P., et al. Synthesis and utilization of perylene-based n-type small molecules in light-emitting electrochemical cells. Chem. Commun., 2008, 6594-6596.
    74.李梅彤,张天永和李绍武.苝系染料的制备方法研究.天津理工大学学报,2006, 22(1): 19-22.
    75.彭必先,林童.苝四酸二亚酰胺和衍生物化学及其功能性应用的进展. 1998, 43(10): 1013-1025.
    76. Würthner F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun.,. 2004, 1564-1579.
    77. Chen S., Liu Y., Zhu D. et al. Oligothiophene-functionalized perylene bisimide system: synthesis, characterization, and electrochemical polymerization properties. Chem. Mater., 2005, 17: 2208-2215.
    78.施敏敏.氟代苝酰亚胺电子传输材料的研究. 2003,浙江大学博士学位论文。
    79.莫雄.苝类衍生物有机电子传输材料的研究. 2006,浙江大学博士学位论文。
    80.杨军校.苯并环丁烯及双苯并环丁烯的合成研究.四川大学硕士学位论文. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700