人类新基因的分离和鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞周期调节是细胞重要而又复杂的生命现象之一,在众多与调节有关的环节中,任何一个环节发生问题将导致细胞分裂异常并最终影响到机体的正常功能。CDK蛋白激酶和周期素是目前研究较多的与细胞周期调节有关的一些重要蛋白因子,以它们为核心的调节途径在G2-M过渡期内起关键性作用。新的研究发现在Asperxillus nidulans中,除了p34(CDC2)和cyclin B外还有另外的途径与它一起在G2-M过渡期内共同发挥作用,这就是以NIMA为代表的一些Ser/Thr蛋白激酶所参与的调节途径。NIMA相关的蛋白在大多数的物种中都存在,并形成了一个庞大而又保守的基因家族,在高等哺乳类中,这一家族甚至还衍生出另一类大的家族,即nek或nrk基因家族。近年来的研究成果证实nek基因同样与G2-M过渡期有关,而且nek基因的异常功能可能导致包括PKD在内的多种严重疾病。
     为了进一步从人体中分离到nek家族中的其他基因,本研究根据NIMA家族的保守性特点,先从人胎盘cDNA文库中PCR分离到一个探针,再利用该探针筛选人胎盘cDNA文库,最终成功克隆到一个与nimA相关的基因,即NEK6基因。它的完整开放阅读框可能编码一个由306个氨基酸组成的蛋白质。经过Genbank数据库中的查新结果证实,NEK6基因是一个迄今为止尚未报道过的新基因,Genbank登录号为AF087909。在催化功能区,它与小鼠NEK1蛋白具有39.32%的同源性。在大多数的组织中(结肠组织除外),NEK6基因都能表达一个长1.6kb的mRNA片段,卵巢组织中的NEK6基因表达水平明显高于睾丸组织。应用Radiation Hybrid染色体定位技术,NEK6基因被定位于9号染色体9q33.3-43.11上。结果初步显示:NEK6基因是哺乳类NEK基因家族中的重要成员之一,可能具有Ser/Thr蛋白激酶活性,并在细胞分裂中发挥调节作用。
     此外,GMP还原酶是GMP向IMP转变的一个重要的代谢酶,它的功能
Cell cycle regulation is one of the most important and complicated life phenomena for all cells. The cell division will become deviant and the normal function of animals will be affected abnomally as soon as there are some problems on the stages of cell cycle regulation. As some cell cycle factors which had been studied by most researchers, CDK protein kinases and cyclins are the core proteins in a regulating pathway to function mainly during the G2-M transition of cell division. The newly studies showed that some other Ser/Thr protein kinases sampled by NIMA (encoded by nimA of Aspergillus. nidulans) have the same functions as CDK protein kinases and cyclins do. A conservative nimA gene family was found in most organisms and a conservative nek family in advanced mammalias was obvious. The neks genes may functioned in the G2-M transition and some serious diseases including PKD will caused while it's knocked out in the rats.
    In order to clone other human members of nek family, we gained a probe from human placenta cDNA library by PCR. A novel gene (i.e NEK6) has been isolated at last by using this probe to screen the human placeta cDNA library. This gene's complete ORF encodes a protein, which is composed with 306 animo acids. The results of gene and protein sequences' Blastzing in the GeneBank data testified that NEK6 was an unreported gene. Its assession number is AF087909 Its functional part in N terminal has 39.32% identity with mouse NEK1 's. In most tissues (except colon tissue), NEK6 gene expressed a 1.6kb transcript and much more in ovary tissue than in testis tissue. NEK6 gene was laterly mapped to the chromosome 9q33.3-43.11 by Radiation Hybrid mapping. These primary results show that NEK6 is a true member of nek gene family and it may function as an enzyme just like the Ser/Thr protein kinases in the cell division regulation.
引文
1. Norbur. C and Nurse, E Animal cell cycles and their control., Annu. Rev. Biochem., 61: 441-470, 1992.
    2. Sherr, C. J. Mammalian G1 cyclins. Cell., 73: 1059-1065, 1993.
    3.沈珝琲和方福德主编,真核基因表达调控,第一版,北京,高等教育出版社,140-157,1996。
    4. Osmani, S. A., Pu, R. T. and Morris, N. R. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase., Cell., 53: 237-244, 1988.
    5. Osmani, A. H., McGuire, S. L. and Osmani, S. A. Parallel activation of the NIMA and p34~(cdc2) cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans., Cell., 67: 283-291, 1991.
    6. Oakley, B. R. and Morris, N. R. A mutant in Aspergillus nidulans that blocks the transition from interphase to prophase., J. Cell. Biol., 96: 1155-1158, 1983.
    7. Bergan, L. G., Upshall, A. and Morris, N. R. S-phase, G2, and nuclear division mutants of Aspergillus nidulans., J. Bacterial., 159: 114-119, 1984.
    8. Hank, S. K., Quirm, A. M. and Hunter, I. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains., Science., 241: 42-52, 1988.
    9. Nash, R., Tokiwa, G., Anaud, S., Erickson, K. and Futcher, B. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog., EMBO. J., 7: 4335-4328, 1988.
    10. Lu, K. P., Osmani. S. A. and Means, A. R. Properties and regulation of the cell cyclespecific NIMA protein kinase of Aspergillus nidulans., J. Biol. Chem., 268: 8769-8776, 1993.
    11. Oamani. A. H., O'Donnell, K., Pu, R. T. and Osmani. S. A. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE??checkpoint. EMBO. J., 10: 2669-2679, 1991.
    12. Ye. X. S.. Xu, G.. Pu. P. T., Fincher, R. R... McGuire. S. L. Osmani, A. H. and Osmani, S. A. The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordinaiton of two mitosis promoting kinases., EMBO. J., 14: 986-994, 1995.
    13. Yaglom, J., Linskens, M. H. K., Sadis, S., Rubin, D. M. and Futcher, B. P34~(CDC28)-mediated control o f Cln3 cyclin degradation., Mol. Cell. Biol., 15: 731-741,1995.
    14. O'Connell, M. J., Norbury, C. and Nurse, P. Premature chromatin condensation upon accumulation of NIMA., EMBO. J., 13: 4296-4937,1994.
    15. Pu, R. T., Gang, X., Wu, L, Vierula, J., O'Donnell, K., Ye, X. and Osmani, S. A. Isolation of a functional hmolog of the cell cycle-specific NIMA protein kinase of Aspergillns nidulans and functional analysis of conserved residues., J. Biol. Chem., 270: 18110-18116, 1995.
    16. Davis, F. M., Tsao, T. Y, Fowler, S. K. and Rao, P. N. Monoclonal antibodies to mitotic cells., Proc. Natl. Acad. Sci. U. S. A, 80: 2926-2930, 1983.
    17. Lu, K. P. and Hunter, T. Evidence for a NIMA-like mitotic pathway in verberate cells.. Cell., 81:413-424,1995.
    18. Letwin, K., Mizzen, L, Motro, B., Ben-David, Y., Bernstein, A. and Pawson, T. A mammalian dual specificity protein kinase, Nekl, is related to the NIMA cell cycle regulator and highly expressed in meiotic germcells., EMBO. J., 11: 3521-3531,1992.
    19. Schultz, S. J. and Nigg, E. A. Identification of 21 novel human protein kinases, including 3 members of a family related to the cell cycle regulator nimA of Aspergillus nidulans., Cell Growth Differ.. 4: 821-830, 1993.
    20. Gate, J. M. and Parsons, A Trypanosoma brucei gene family encoding protein kinases with catalytic domains structurally related to Nekl and NIMA., Mol. Biochem. Parasitol., 59: 111-122. 1993.21. Levedakou, E. N., He, M., Baptist, E. W., Craven, R. J., Cance, W. G., Welesh, P. L., Simmons. A., Naylor, S. L., Leach, R. J., Lewis. T. B., Bowcock. A. and Liu. E. T. Two novel human serine/threonine kinases with homologies to the cell cycle regulating Xenopus MO15, and NIMA kinases: choning and characterization of their expressin pattern., Oncogene., 9: 1977-1988, 1994.
    22. Jones, D. G. L. and Rosamond, J. Isolation of a novel protein kinase-encoding gene from yeast by oligodeoxyribonuleotide probing., Gene., 90: 87-92, 1990
    23. Upadhya, P., Birkenmeier, E., Birkenmeimer, C. S. and Barker, E. B. Mutations in a NIMA-related kinase gene, Nekl, cause pleiotropic effects including a progressive polycystic kidney disease in mice., Proc. Natl. Acad. Sci. U. S. A., 97: 217-221, 2000.
    24.杜传书和刘祖洞主编,医学遗传学,第一版,北京,人民卫生出版社,571-573,1983。
    25. Reeders, S. T., Brueing, M. H., Davies. K. E., Nicholls, D. R., Jarman, A. J., Higgs, D. R., Person, P. L. and Weatherall, D. J. A highly polymorphic DNA marker linked to adult polycystic kidney disease on chromosome 16., Nature., 317: 542-544, 1985.
    26. Peters, D. J., Spruit, L., Saris, J., Ravine, D., Sandkuijl, L. A., Fossdal, R., Boersma, J., van Eijik, R., Norby, S. and Constantinou-Deltas, C. D. Chremosome 4 localization of a second gene for autosomal dominant polyeystic kidney disease., Nat. Gene., 5: 359-362, 1993.
    27. Harris, P. C. The European polyeystic kidney disease consortium., Cell., 77: 881-894, 1994.
    28. Mochizuki, T., Wu, G., Hayashi, T., Xenophontos, S. L., Veldhuisen, B., Saris, J. J., Reynolds, D. M, Cai, Y., Gabow, P. A. And Pierides, A. PKD, a gene for plolyeystie kidney disease that encodes an integarl membrane., Science., 272: 1339-1342, 1996.
    29. Janaswami. P. M.. Birkenmeier. E. H., Cook, S. A., Rowe, L. B.. Bronson, R. T. and Davisson. M. T. Identification and genetic mapping of a new polycystic kidney disease on mouse chromosome 8., Genomics., 40: 101-107, 1997.
    30. Vogler. C., Homan, S., Pung, A., Thorpe, C., Barker, J., Birkenmeier, E. H. and Upadhya, P. Clinical and pathologic findings in two new allelic routine models of polycystic kidney??disease. . Am. J. Nephrol. , 10: 2591-2598, 1999.
    31. Fr. A. M. , Meraldi. P. and Nigg, E A. Acentrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. , EMBO. J. , 17: 470-451, 1998.
    32. Church, D. M. , Stotler, C. J. , Rutter. J. L. , Murrell. J. R. , Yrofatter, J. A. and Bucker, A. J. Isolation of genes from complex sources of mamalian genomic DNA using exon amplication. , Nature. Genet. , 6: 98-105, 1994.
    33.闫楠等,NAFP1—一个NEK6相关基因的克隆(待发表),1999年。
    34. Doonan, J. H. Cell division in Aspergillus. , J. Cell. Sci. , 103: 599-611, 1992.
    35. Schultz, S. J. , Fry, A. M. , Siitterlin, C. , Ried, T. and Nigg, E. A. Cell cyclye-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. , Cell. Growth & Differentiation. , 5: 625-635, 1994.
    36. Tanaka, K. and Nigg, E. A. Cloning and characterizatio of the routine Nek3 protein kinase, a novel member of the NIMA family of putative cell cycle regulators. , J. Biol. Chem. , 274: 13941-13497,1999.
    37. Pu, R. T. and Osmani, S. A. Mitotic destruction of the cell cycle regulated NIMA protein kinase ofAspergillus nidulans is required for Mitotic exit. , EMBO. J. , 14: 995-1003, 1995.
    38. Tyers, M, Tokiwa, G. , Nash, R. and Futcher, B. The Cln 3-Cde 28 kinase complex of S Cerevisiae is regulated by proteolysis and phosphorylation. , EMBO. J. , 11: 1773-1784, 1992.
    39. Kornitzer, D. , Raboy, B. , Kulka, R. G. and Fink, G. R. Regulated degradation of the transcription factor Gcn4. , EMBO. J. , 13: 6021-6030, 1994.
    40. Ciechanover, A. Proteasome: protein degradaion machines of the cell. , Cell. , 79: 13-21, 1994.
    41. Peter, J. M. Trends. The ubiquitin-proteasome proteolytic pathway. Biochem. , Sci. , 19: 377-382, 199442. Reed. S. I. Gl-specific cyclins: in search of an S-phase-promotiing factor., Trends. Genet., 7:95-99. 1991.
    43. Osmani. S. A., May. G. S., and Morris. N. R. Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans., J. Cell. Biol., 104: 1495-1504. 1987.
    44. Fry. A. M., Arnaud, L. and Nigg, E. A. Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif., J. Biol. Chem., 274: 16304-16310, 1999.
    45. Chen, A., Yanai, A., Arama, E., Kilfin, G. and Motro, B. NIMA-related kinase: isolation and characterization of murine nek3 and nek4 cDNAs, and chromosomal localization of nek, nek2 and nek3., Gene., 24: 127-137, 1999.
    46. Stephen, A., Osmani, A. H. and Xiang, S. YE. Cell cycle regulation in Aspergillus by two protein kinase., Biochem. J. 317: 633-641, 1996.1. Nurse, P. Universal control mechanism regulating onset of M-phase. , Nature. , 344: 503-508, 1990.
    2. Norbur, C and Nurse, P. Animal cell cycles and their control. , Annu. Rev. Biochem. , 61: 441-470, 1992.
    3. Osmani, A. H. , MeGuire, S. L. and Osmani, S. A. Parallel activation of the NIMA and p34~(cac2) cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. , Cell. , 67: 283-291, 1991.
    4. Sorger, P. K. , Surana, U. , Muroff, I. and Nasmyth: K. S-phase feeedback control in budding yeast independent of tyrosine phosphorylation of p34~(CDC28). , Nature. , 355: 365-368, 1992.
    5. Osmani, S. A. , May, G. S. and Morris, N. R. Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. , J. Cell. Biol. , 104: 1485-1504, 1987.
    6. Oakley, B. R. and Morris, N. R. A mutant in Aspergillus nidulans that blocks the transition from interphase to prophase. , J. Cell. Biol. , 96: 1155-1158, 1983.
    7. Bergan, L. G. , Upshall, A. and Morris, N. R. S-phase, G2, and nuclear division mutants of Aspergillus nidulans. , J. Bacteriol. , 159: 114-119. 1984
    8. O' Dormell, K. L. , Osmani, A. H. , Osmani, S. A. and Morris, N. R. bimA encodes a member of the tetratricopeptide repeat family of proteins and is required for the completiorm of mitosis in Aspergillus nidulans. , J. Cell. Biol. , 99: 711-719, 1991.
    9. Osmani, S. A. , Engle, D. B. , Doonan, J. H. and Morris, N. R. Spindle formation and ehromatin condensation in cells blocked at interphase by mutation of a negative cell cycle control gene. , Cell. , 52: 241-251, 1988.
    10. Osmani, S. A. , Pu, R. T. and Morris, N. R. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. , Cell. , 53: 237-244, 1988.
    11. Hank, S. K. , Quirm, A. M. and Hunter, I. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. , Science. , 241: 42-52, 1988.
    12. Doonan, J. H. and Morris, N. R. The bimG gene of Aspergillus nidulans, required for??completion of anaphase, encodes a homolog of mammalian phosploprotein phosphatase 1., Cell, 57: 987-996, 1989.
    13. Letwin, K... Mizzen, L., Motro, B., Ben-David, Y, Bernstein, A. and Pawson, T. A mammanlian dual specificity protein kinase, Nekl, is related to the NIMA cell cycle regulator and highly expressed in meiotic germcells., EMBO. J., 11: 3521-3531, 1992.
    14. Schultz. S. J. and Nigg, E. A. Identification of 21 novel human protein kinases, including 3 members of a family related to the cell cycle regulator nimA of Aspergillus nidulans., Cell Growth Differ., 4: 821-830, 1993.
    15. Gate. J. M. and Parsons.. A Trypanosoma brucei gene family encoding protein kinases with catalytic domains structurally related to Nekl and NIMA. M. Mol., Biochem. Parasitol., 59: 111-122, 1993.
    16. Levedakou, E.N.. He, M., Baptist. E. W., Craven, R. J. Cance, W. G., Welcsh, P. L., Simmons, A.. Naylor. S. L. Leach, R. J., Lewis. T. B.. Bowcock. A. and Liu, E. T. Two novel human serine/threonine kinases with homologies to the cell cycle regulating Xenopus MO15, and NIMA kinases: choning and characterization of their expressin pattern., Oncogene., 9: 1977-1988, 1994.
    17. Jones, D. G. L. and Rosamond, J. Isolation of a novel protein kinase-encoding gene from yeast by oligodeoxyribonuleotide probing., Gene., 90: 87-92, 1990
    18. Oamani, A. H., O'Donnell, K., Pu, R. T. and Osmani, S. A. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint, EMBO. J., 10: 2669-2679, 1991.
    19. Ye, X. S., Xu, G., Pu, P. T., Fincher, R. R., McGuire, S. L., Osmani, A. H. and Osmani, S. A. The NIMA protein kinase is hyperphosphorylated and activated downstream of p34cdc2/cyclin B: coordinaiton of two mitosis promoting kinases., EMBO. J., 14: 986-994, 1995.
    20. O'Connell, M. J., Norbury, C. and Nurse, P. Premature chromatin condensation upon accumulation of NIMA., EMBO. J.. 13: 4296-4937, 1994.
    21. Lu, K. P. and Hunter, T. Evidence for a NIMA-like mitotic pathway in verberate cells., Cell., 81:413-424,1995.
    22. Pu, R. T., Gang, X., Wu, L., Vierula, J., O'Donnell, K., Ye, X. and Osmani, S. A. Isolation??of a functional hmolog of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans and functional analysis of conserved residues., J. Biol. Chem., 270: 18110-18116, 1995.
    23. Steinberg, R. A., Cauthron, R. D., Symcox, M. M. and Shuntoh, H. Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197., Mol. Cell. Biol., 13: 2332-2341,1993.
    24. Lu, K. P., Osmani, S. A. and Means, A. R. Properties and regulation of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans., J. Biol. Chem., 268: 8769-8776, 1993.
    25. Evans. T. E., Rosenthal. J., Youngbloom, K., distel, K. and Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division., Cell., 33. 389-396, 1983.
    26. Ciechanover. A. Proteasome: protein degradaion machines of the cell., Cell., 79: 13-21, 1994.
    27. Pu. R. T .and Osmani, S. A. Mitotic destruction of the cell cycle regulated NIMA protein kinase of Aspergillus nidulans is required for Mitotic exit. EMBO., J., 14: 995-1003, 1995.
    28. Nash, R., Tokiwa, G., Anaud, S., Erickson, K. and Futcher, B. The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog., EMBO. J., 7: 4335-4328, 1988.
    29. Yaglom, J., Linskens, M. H. K., Sadis, S., Rubin, D. M. and Futcher, B. P34~(CDC28)-mediated control of Cln3 cyclin degradation., Mol. Cell. Biol., 15: 731-741, 1995.
    30. Meyerson, M., Enders, G. H., Wu, C. L., Su, L. K., Gorka, C., Nelson, C, Harlow, E. and Tsain. L. H. A family of human cdc2-related protein kinases., EMBO. J., 11: 2909-2917,1992.
    31. Hollooway, S. L., Glotzer, M., King, R. W. and Murray, A. W. Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor., Cell., 73: 1393-1402, 1993.
    32. Luca, F. C, Shibuya, E. K., Dohmann, C. E. and Ruderman, J. V Both cyclin A delta 60 and B delta 97 are stable and arrest cells in M-phase, but only cyclin B delta 97 turns on cyclin destruction., EMBO. J., 10: 4311-4320, 1991.33. King, R. W. , Peters, J. M. , Tugendreich, S. , Rolfe, M. , Hieter, P. and Kirschner, M. W. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. , Cell. , 81: 279-288, 1995.
    34. Felix, M. A. , Labbe, J. C. , Doree. M. , Hunt, T. and Karsenti, E. Triggering of cyclin degradation in interphase extracts of amphibian eggs by cdc2 kinase. , Nature. , 346: 379-382, 1990.
    35. Mirabito, P. M. and Morris, N. R. J. BIMA, a TPR-containing protein required for mitosis, localizes to the spindle pole body in Aspergillus nidulans. , Cell. Biol. , 120: 959-968, 1993.
    36. Tugendreich, S. , Tomkiel, J. , Eamshaw, W. and Heiter, P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. , Cell. , 81: 261-268, 1995.
    37. Cohen. C. and Parry, D. A. Trends Biochem. Sci. , 11: 245-248.
    38. Ho, C. , Gordon Adanson. J. , Hodges, R. S. and Smith, M. Heterodimerization of the yeast MATal and MAT alpha 2 proteins is mediated by two leucine zipper-like coiled-coil motifs. , EMBO. J. , 13: 1403-1413, 1994.
    39. Dingwall, C. and Laskey, R. A. Trends. Nuclear targeting sequences-a consensus. , Biochem. Sci. , 16: 478-481, 1991.
    40. Wu, J. , Rossomando, A. J. , Her, J. H. , Del Vecchio, R. , Weber, M. J. and Sturgill, T. W. Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine. , Pro. Nail. Sci. USA. , 88: 1-10, 1991.
    41. Seger, R. , Ahn, N. G. , Boulton, T. G. , Yancopoulos, G. D. , Parayotatos, N. , Radziejewsk, E. , Ericsson, L. , Bratlien, R. L. , Cobb, M. H. and Krebs, E. G. Microtubule-associated protein 2 kinases, ERK1 and ERK2. undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. , Pro. Nail. Sci. USA. , 88: 6142-6146, 1991.
    42. Keshet, E. , Rosenberg, M. P. , Mercer, J. A. , Propst, R. , Vande Woude, G. E, Jenkis, N. A. and Copeland, N. G. Developmental regulation of ovarian-specific Mos expression. , Oncogene. Oncogene. , 2: 235-240, 1988
    43. Manova, K. , Nocka, K. , Besmer, P. and Bachvarova, R. E Gonadal expression of c-kit encoded at the W locus of the mouse. , Development. , 110: 1057-1069, 1990.
    44. Sagata, N. , Oskarsson, M. , Copeland, T. , Brumbaugh, J. and Vande Woude, G. F. Function??of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes., Nature., 335: 519-525,1988.
    45. Fry, A. M., Meraldi, P. and Nigg, E. A. Acentrosomal function for the human Nek2 protein kinase. a member of the NIMA family of cell cycle regulators., EMBO. J., 17: 470-481., 1998.
    46. Schiliwa. M., Pryzwansky, K. B. and Euteneuer. U. Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility., Cell., 31: 705-717, 1982.
    47. Kellogg, D. R., Moritz, M. and Alberts. B. M. The centrosome and cellular organization. Annu. Rev. Biochem., 63: 639-674, 1994.
    48. Heald. R., Tournebiz, R., Blank. T., Sandaltzopoulos. R., Becker. P., Hyman, A. and Karsenti, E. Self-organization of microrubules .into bipolar spindles around artificial chromosomes in Xenopus egg extracts.. Nature., 382: 420-425, 1996.
    49. Heald, R., Tournebiz, R., Habermann, A.. Karsenti, E. and Hyman, A. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization., J. Cell. Biol., 138:615-628. 1997.
    50. Sawin, K. E., leguellec, K., Philippe, M. and Mitchison, T. J. Mitotic spindle organization by a plus-end-directed microtubule motor., Nature., 359: 540-543, 1992.
    51. Hayashi, K., Igarashi, H. Ogawa, M. and Sakaguchi. N. Activity and substrate specificity of the murine STK2 Serine/Threonine kinase that is structurally related to the mitotic regulator protein NIMA of Aspergillus nidulans., Biochem. Biophs. Res. Commun., 264: 449-456, 1999.
    52. Chen, A.. Yanai. A., Arama, E., Kilfin, G. and Motro, B. NIMA-related kinase: isolation and characterization of murine nek3 and nek4 cDNAs, and chromosomal localization of nek, nek2 and nek3., Gene., 24: 127-137, 1999.
    53. Tanaka. K. and Nigg, E. A. Cloning and characterizatio of the murine Nek3 protein kinase, a novel member of the NIMA family of putative cell cycle regulators., J. Biol. Chem., 274: 13941-13497, 1999.
    54. Arama, E., Yanai, A., Kilfin, G., Bernstein, A. and Motro, B. Murine NIMA-related kinases are expressed in patterns suggesting distinct functions in gametogenesis and a role in the nervous system., Oncogene., 16: 1813-1823, 1998.1. Spector, T., Jones, T. E., LaFon, S. W., Nelson, D. J., Berens, R. L and Marr, J. J. Monophosphates of formycin B and allopurinol riboside. Interactions with leishmanial and mammalian succino-AMP synthetase and GMP reductase., Biochem. Pharmacol., 33: 1611-167. 1984.
    2. Benson, C. E and Gots, J. S. Regulation of GMP reductase in Salmonella typhimurium., Biochim. Biophys., 403: 47-57, 1975.
    3. Petersen, C. Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP., J. Biol. Chem., 274: 5348-5356,1999.
    4. Kessler, A. I and Gots, J. S. Regulation of guaC expression in Eshcherichia coli., Bacteriol., 164: 1288-1293, 1985.
    5. Nakamura, H., Natsumeda, Y, Nagai, M., Takahara, J., Irion, S and Weber, G. Reciprocal alterations of GMP reductase and IMP dehydrogenase activities during differentiation in HL-60 leukemia cells., Leuk. Res., 16: 561-564, 1992.
    6. Nishizawa, T., Nishida, Y and Akaoka. Erythrocyte adenosine kinase activity in gout., Clin Chim. Acta., 67: 15-20,1976.
    7. Page, T., Jacobsen, S. J., Smejkal, R. M., Scheele, J., Nyhan, W. L., Mangum, J. H and Robins, R. K. Studies on the mechanism of cytotoxicity of 3-deazaguanosine in humna cancer cells., Cancer Chemother Pharmacol., 15: 59-62,1985.
    8. Renart, M. F, Renart. J., Sillero, M. A and Sillero, A. Guanosine monophosphate reductase from Artemia salina: Inhibition by xanthosien monophophate and activation by diguanosine tetraphophate., Biochemistry., 15: 4962-4966, 1976.
    9. Roberts, R. E., Lienhard, C. I., Gaines. C. G., Smith, J. M and Guest, J. R. Genetic and molecular characterization of the guaC-nadC-aroP region of Escherichia coli K-12., J.??Bacteriol. 170:463-467. 1988.
    10. Andrews. S. C and Guest. J. R. Nucleotide sequence of the gene encoding the GMP reductase of Escherichia coli kl2., Biochem. J., 255: 35-43, 1988.
    11. Kondoh. T., Kanno, H., Chang, L and Yoshida. A. Genomic structure and expression of human guanosine monophosphate reductase., Hum. Genet, 88: 219-224, 1991.
    12. Murano, I., Tsukahara, M, Kajii, T and Yoshida, A. Mapping of the human guanosine monophosphate reductase gene (GMPR) to chromosome 6p23 by fluorescence in situ hybridization., Genomics., 19: 179-180, 1994.
    13. Kondoh, T., Kanno, H., Chang, L. F and Yoshida, A. Identification of common variant allelles of the human guanosine monophophate reductase gene., Hum. Genet., 88: 225-227.
    14. Bork, P., Gellerich, J., Groth, H., Hooft, R and Martin. F. Divergent evolution of a beta/alpha-barrel subclass: detection of numerous phosphate-binding sites by motif search. Protein. Sci., 4: 268-274, 1995.
    15. Becerra, A and Lazcano, A. The role of gene duplication in the evolution of purine nucleotide salvage pathways. Orig. Life. Evol. Biosph., 28: 539-553, 1998.
    16. Salvatore, D, Bartha, T and Larsen, P. R. The guanosine monophosphate reductase gene is conserved in rats and its expression increases rapidlly in brown adipose tissue during cold exposure. J. Biol. Chem., 273: 31092-31096, 1998.
    17. Kanno. H., Huang, I., Kan, Y. W and Yoshida, A. Two structural genes on different chromosomes are glucose-6-phosphate dehydrogenease. Cell., 58: 595-606, 1989.1. Prajda, N., Hata, Y, Abonyi, M., Singhal, R. L and Weber, C. Sequential impact of tiazofurin and ribavirin on the enzymic program of the bone marrow.. Cancer, Res. 53: 5982-5986,1993.
    2. Kokunin, V A., Kotsiuruba, A. V, Tarakanov, S. S and Kostychev, Iu. N. Characteristics of purine nucleotide metabolism and GMP-reductase activity in chichen tissues., Ukr. Biokhim., Zh. 59: 47-52, 1987.
    3. Hassan, H. F and Coombs, G. H. Purine-metabolsing enzymes in Entamoeba hitolytica., Mol. Biochem. Parasitol., 19: 19-26,1986.
    4. Petersen, C. Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP., J. Biol Chem.. 274: 5348-5356. 1999.
    5. Bork, P., Gellerich, J., Groth, H., Hooft, R and Martin, F. Divergent evolution of a beta/alpha-barrel subclass: detection of numerous phosphate-binding sites by motif search., Protein. Sci., 4: 268-274, 1995.
    6. Kessler, A. I and Gots, J. S. Regulation of guaC expression in Eshcherichia coli., Bacteriol., 164: 1288-1293,1985.
    7. Moffat, K. G and Mackinnon, G. Cloning of the Escherichia coli K-12 guac gene following its transposition into the RP4:: Mu cointegrate., Gene., 40: 141-143, 1985.
    8. Roberts, R. E., Lienhard, C. I., Gaines, C. G., Smith, J. M and Guest, J. R. Genetic and molecular characterization of the guaC-nadC-aroP region of Escherichia coli K-12., J. Bacteriol.. 170:463-467. 1988.
    9. Andrews, S. C and Guest, J. R. Nucleotide sequence of the gene encoding the GMP reductase of Escherichia coli k12., Biochem., J. 255: 35-43, 1988.
    10. Garber. B. B., Jochimsen, B. U and Gots. J. S. Glutamine and related analogs regualte??guanosine monophosphate reductase in Salmonella typhimurium.. J. Bacteriol.. 143: 105-111. 1980.
    11. Kondoh. T.. Kanno, H., Chang, L and Yoshida, A. Genomic structure and expression of human guanosine monophosphate reductase., Hum. Genet., 88: 219-224, 1991.
    12. Gots, J. S., Benson, C. E, Jochimsen, B and Koduri, K. R. Microbial models and regulatory elements in the control of purine metabolism., Ciba. Found. Symp., 48: 23-41
    13 Weber. G. Nakamura. H.. Natsumeda, Y. Szekeres. T and Nagai, M. Regulation of GTP biosynthesis., Adv. Enzyme. Regul., 32: 57-69, 1992.
    14. Nakamitra, H.. Natsumeda, Y, Nagai, M., Takahara, J., Irion, S and Weber, G. Reciprocal alterations of GMP reductase and IMP dehydrogenase activities during differentiation in HL-60 leukemia cells., Leuk. Res., 16: 561-564, 1992.
    15. Page. T., Jacobsen, S. J., Smejkal, R. M., Scheele, J., Nyhan, W. L, Mangum, J. H and Robins. R. K. Studies on the mechanism of cytotoxicity of 3-deazaguanosine in humna cancer cells., Cancer Chemother Pharmacol., 15: 59-62, 1985.
    16. Spector, T., Jones, T. E., LaFon, S. W., Nelson, D. J.. Berens, R. L and Marr, J. J. Monophosphates of formycin B and allopurinol riboside. Interactions with leishmanial and mammalian succino-AMP synthetase and GMP reductase., Biochem. Pharmacol., 33: 1611-167, 1984.
    17. Spector, T and Jones, T. E. Guanosine 5'-monophosphate reductase from Leishmania donovani. A possible chemotherapeutic target., Biochem. Pharmacol., 31: 3891-3897, 1982.
    18. Nishizawa, T., Nishida, Y and Akaoka. Erythrocyte adenosine kinase activity in gout., Clin Chim. Acta., 67: 15-20, 1976.
    19. Kondoh, T., Kanno, H., Chang, L and Yoshida. A. Genomic structure and expression of human guanosine monophosphate reductase., Hum. Genet., 88: 219-224, 1991.
    20. Murano. I.. Tsukahara. M., Kajii. T and Yoshida, A. Mapping of the human guanosine monophosphate reductase gene (GMPR) to chromosome 6p23 by fluorescence in situ??hybridization.. Genomics.. 19: 179-180, 1994.
    21. Kondoh, T., Kanno, H., Chang, L. F and Yoshida. A. Identification of common variant allelles of the human guanosine monophophate reductase gene., Hum. Genet., 88: 225-227.
    22. Salvatore, D, Bartha. T and Larsen. P. R. The guanosine monophosphate reductase gene is conserved in rats and its expression increases rapidlly in brown adipose tissue during cold exposure., J. Biol. Chem., 273: 31092-31096. 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700