钼提高冬小麦抗寒力的生理基础及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钼是植物必需的微量元素之一,钼在植物体内的生理功能主要通过含钼酶来实现。本文在总结国内外植物钼营养和抗寒机理研究进展的基础上,通过土壤培养和营养液培养试验,以冬小麦钼高效品种和钼低效品种为材料,应用生理生化研究法并结合荧光定量PCR技术、双向电泳和质谱分析技术,深入研究了钼提高冬小麦抗寒力的生理基础,初步分析了钼提高冬小麦抗寒力的分子机制。主要研究结果如下:
     1.研究了在低温胁迫下施钼对冬小麦叶片半致死温度(LT_(50))、电解质渗透率和丙二醛(MDA)含量的影响。结果表明:随着低温胁迫的延长,2冬小麦品种(97003和97014)施钼处理叶片半致死温度(LT_(50))均呈一直下降趋势,缺钼处理半致死温度(LT_(50))先下降后有所回升;低温胁迫前后2个冬小麦品种施钼处理叶片半致死温度(LT_(50))均显著低于缺钼处理,低温胁迫后,2个冬小麦品种缺钼处理电解质渗透率和丙二醛(MDA)含量均显著高于施钼处理。在低温胁迫进程中,钼低效品种缺钼处理半致死温度(LT_(50))、电解质渗透率、丙二醛(MDA)含量的上升幅度高于钼高效品种,说明低温胁迫下冬小麦钼低效品种对缺钼更敏感。
     2.采用营养液培养的方法,研究了在低温胁迫下施钼对冬小麦根及叶片含钼酶活性的影响。低温胁迫前后施钼均显著提高2个冬小麦品种根及叶片中NRA_(max)、NRA_(act)活性和NRA活化状态;低温胁迫前后施钼显著提高了2个冬小麦品种根及叶片中AO和XDH活性,低温胁迫时间越长,缺钼处理AO和XDH活性下降幅度越大。低温胁迫下冬小麦含钼酶活性存在基因型差异,钼低效品种施钼处理含钼酶活性上升幅度更大。
     3.采用营养液培养的方法,研究了在低温胁迫下施钼对冬小麦根及叶片内源激素的影响。结果表明,低温胁迫前后施钼均显著提高2个冬小麦品种根及叶片中ABA和IAA含量,低温胁迫前期缺钼与施钼处理根及叶片中GA_3和Z含量差异不显著,低温胁迫后期施钼显著降低了冬小麦根及叶片中GA_3含量,显著提高了冬小麦根及叶片中Z含量。低温胁迫下缺钼冬小麦根及叶片ABA/GA比值显著下降破坏了的冬小麦激素稳态平衡。钼低效品种施钼处理叶片及根中ABA、IAA、Z含量和ABA/GA比值的上升幅度,GA_3含量下降幅度均远高于钼高效品种,说明缺钼对冬小麦内源激素及其稳态平衡的影响存在基因型差异。
     4.研究了在低温胁迫下施钼对冬小麦叶片抗氧化酶活性影响。结果表明,低温处理2、4和6d时施钼均显著提高了超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性,显著降低了2个冬小麦品种叶片中超氧阴离子产生速率;施钼后,随着低温胁迫时间的延长,2个冬小麦品种叶片中4种抗氧化酶活性均先升高而后呈下降或突降趋势,说明施钼冬小麦能通过正常的低温锻炼,有利于植株在经受更长时间低温胁迫时维持较高的抗寒力;钼对冬小麦钼高、低效品种叶片中抗氧化酶活性的影响存在基因型差异,与钼高效品种相比,钼低效品种缺钼处理叶片SOD、CAT、POD和APX等抗氧化酶活性下降幅度更大,活性氧自由基积累速率更大。
     5.低温胁迫下钼对冬小麦光合作用气体交换参数的影响。结果表明,低温胁迫下施钼显著提高2个品系叶片的净光合速率(P_n)和气孔限制值(L_s),显著降低叶片气孔导度(G_s)、胞间CO_2浓度(C_i)和蒸腾速率(T_r)。随着低温处理时间的延长P_n下降,施钼处理C_i降低、L_s升高,说明其P_n下降主要由气孔限制因素引起;不施钼处理低温胁迫前期(0-4d)C_i下降、L_s升高,而后期(4-6d)C_i升高、L_s下降,说明不施钼处理P_n下降在低温胁迫前期可能主要由气孔限制因素引起,而低温胁迫后期可能主要由非气孔因素引起。钼对冬小麦叶片光合参数的影响存在基因型差异,低温处理前后钼低效品系施钼处理叶片P_n上升幅度和T_r下降幅度均显著高于钼高效品系。
     6.研究了低温胁迫下施钼对冬小麦钼高效品系97003和钼低效品系97014叶片光合作用光响应曲线和CO_2响应曲线参数的影响。结果表明,低温胁迫下施施钼显著提高了2个冬小麦品种叶片最大净光合速率(A_(max))、光饱和点(LSP),表观量子效率(AQY)、CO_2饱和点(CSP)、表观羧化效率(CE)、Rubisco最大羧化效率(V_(cmax))和最大电子传递速率(J_(max)),显著降低冬小麦叶片光补偿点(LCP)、光下呼吸速率(R_(day))和CO_2补偿点(CCP),这可能是施钼提高冬小麦叶片净光合速率的原因。
     7.研究了低温胁迫下施钼对冬小麦叶片光合色素、细胞色素和内囊体膜蛋白质复合体含量的影响。结果表明,低温胁迫下冬小麦叶片施钼提高了冬小麦叶片叶绿素总量、叶绿素a和叶绿素b含量,缺钼导致chla/b比值逐渐升高,说明低温胁迫下缺钼冬小麦叶绿素a向叶绿素b转化受阻;施钼显著提高冬小麦叶片的类胡萝卜素含量,从而降低光抑制,有利于活性氧自由基的清除。低温胁迫前后施钼均显著提高了冬小麦叶片中的细胞色素f、细胞色素b563、光系统Ⅰ和细胞色素b6/f复合体含量,低温胁迫后期施钼显著提高了冬小麦叶片中细胞色素b559和光系统Ⅱ的含量,提高对光能的吸收和电子传递能力。低温胁迫下PSI复合体和细胞色素b6/f复合体对缺钼的反应更为敏感,推测低温下缺钼首先导致光系统Ⅰ和细胞色素b6/f复合体的损伤,进而才导致光系统Ⅱ的损伤。
     8.研究了在低温胁迫下施钼对冬小麦叶片ABA含量、ABA依赖型抗寒基因、CBF/DREB转录因子基因和ABA非依赖型抗寒基因表达的影响。结果表明:随着低温胁迫的延长,2个冬小麦品种叶片ABA依赖型抗寒基因、CBF/DREB转录因子基因、ABA非依赖型基因的mRNA表达量均呈先快速上升后下降的趋势。低温胁迫前后2个冬小麦品种施钼处理ABA含量均显著增加,低温胁迫3h时施钼处理ABA依赖型抗寒基因(Wrab15、Wrab17、Wrab18和Wrabl9)mRNA表达量开始显著增加,推测钼可以通过醛氧化酶(AO)→ABA→bZIP→ABRE→COR基因表达这一途径来调控冬小麦的抗寒力。低温胁迫前缺钼与施钼处理CBF/DREB转录因子基因(TaCBF和Wcbf2-1)和ABA非依赖型基因(WCS120、WCS19、Wcor14和Wcor15)表达量差异均不显著,低温处理3h时,施钼冬小麦CBF/DREB转录因子基因(TaCBF和Wcbf2-1)表达量丌始显著增加,低温处理6h时,施钼处理ABA非依赖型基因(WCS120、WCS19、Wcor14和Wcor15)表达量开始显著增加,推测钼还能通过低温信号→CBF/DREB转录因子→CRT/DRE元件→COR基因表达这一途径来调控冬小麦的抗寒力的形成。
     9.通过双向电泳和质谱技术相结合的方法,研究了低温胁迫下钼对冬小麦叶片蛋白质表达的影响,并应用荧光定量PCR技术对编码差异蛋白质点的基因的mRNA表达量进行了动态分析。结果表明,低温胁迫前,施钼后叶片中的产生特异蛋白质点有2个;缺钼与施钼处理中表达量差异达1.5倍以上的蛋白质点15个;低温胁迫后,施钼处理叶片中的产生特异蛋白质点有3个,缺钼与施钼处理中表达量差异达1.5倍以上的蛋白质点13个。对12个蛋白质点的质谱鉴定结果表明,有5个蛋白质点(spot814、spot1296、spot1297、spot1255和spot1157)的功能与光合作用光反应过程有关,4个蛋白质点(spot918、spot548、spot1386和spot648)的功能与光合作用暗反应过程有关,1个蛋白质点(spot991)的功能与叶绿体基因的转录过程有关,1个蛋白质点(spot1305)功能与蛋白质翻译过程有关,1个蛋白质点(spot1058)在数据库中未找到匹配结果,这说明说明钼营养通过蛋白质表达调控冬小麦光合作用、叶绿体基因转录及蛋白质翻译等生理生化过程,但钼对光合作用的影响更为突出。
     10.结合含钼酶、激素、抗氧化系统、光合特性及内囊体膜组成的分析结果,提出了钼提高冬小麦抗寒力和增强光合作用的生理及分子机制。该机制以含钼酶活性的变化为基础,以植物钼营养对基因表达与蛋白质翻译的调控为核心,明确了叶绿体是缺钼条件下各种生化反应与代谢过程发生改变的关键部位,低温胁迫是各种基因表达及生理过程发生剧烈变化的诱发因素。
Molybdenum is an essential micronutrient for plants. Mo itself seems to gain biological function until it is complexed by Mo-containing enzymes. Based on the reviews of plant molybdenum nutrition and cold resistant mechanism, solution culture and soil culture experiments were conducted to investigate the physiological basis and molecular mechanism of cold resistance enhanced by molybdenum application in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014) through the biochemical methods combined with Real-time PCR, 2-DE and MS. The main results were as following.
     1. The effects of molybdenum on lethal dose-50 temperature(LT_(50)), electrolyte leakage and malondialdehyde(MDA) in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014) were investigated under low temperature stress. The results showed that the lethal dose-50 temperature(LT_(50)) in the leaves of Mo-fertilized treatment in both winter wheat cultivars decreased gradually with the prolongation of low temperature stress, whereas LT_(50) in Mo-deficient treatment decreased first and then increased slightly in both winter wheat cultivars. LT_(50) in Mo-fertilized treatment decreased significantly compared with Mo-deficient treatment in both winter wheat cultivars before and after low temperature stress. The electrolyte leakage and malondialdehyde(MDA) contents in Mo-deficient treatment increased significantly compared with Mo-fertilized treatment in both winter wheat cultivars during the low temperature stress. The increase rates of LT_(50), electrolyte leakage and MDA in Mo-deficient treatment in Mo-inefficient cultivar 97014 were higher than those in Mo-efficient cultivar 97003 under low temperature stress, which indicated that Mo-inefficient cultivar 97014 in response to Mo deficiency was more sensitive than Mo-efficient cultivar 97003.
     2. Liquid nutrient culture experiments were conducted to investigate the effects of molybdenum on Mo-enzymes in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014) under low temperature stress. The results showed that the maximum NR activities(NRA_(max)), actual NRA activities(NRA_(act)) and NRA activation state(%) increased in the roots and leaves of Mo-treated in both winter wheat cultivars under low temperature stress. The activities of aldehyde oxidase(AO) and xanthine dehydrogenase(XDH) increased in the roots and leaves of Mo-treated in both winter wheat cultivars under low temperature stress. The decreased rates in Mo-deficient winter wheat became greater with the prolongation of low temperature stress. Genotypic differences in response to the effects of molybdenum on the Mo-enzymes activities exist between Mo-efficient line 97003 and Mo-inefficient line 97014. The increase rates of Mo-enzymes in 97014 were significantly higher than those of 97003 in Mo-fertilized treatment.
     3. Liquid nutrient culture experiments were conducted to investigate the effects of molybdenum on endogenesis hormone in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014) under low temperature stress. The results showed that the contents of abscisic acid(ABA) and indole-3-acetic acid(IAA) increased in the roots and leaves of Mo-treated winter wheat under low temperature stress. The contents of gibberellin(GA_3) increased significantly, and zeatin(Z) decreased significantly in the roots and leaves of Mo treated winter wheat in the later stage of low temperature stress, whereas no significant difference in the contents of GA_3 and Z was detected between Mo-deficient and Mo treated winter wheat in the earlier stage of low temperature stress. The hormone homeostasis in winter wheat was damaged by the drastic decrease of the ABA/GA in Mo deficient winter wheat under low temperature stress. The increase rates of ABA, IAA and Z contents, the ABA/GA ratio and the decrease rates of GA_3 contents in Mo inefficient cv. 97014 were higher than those in Mo efficient cv. 97003, which indicated that genotypic difference in response to molybdenum on hormone and its homeostasis in Mo efficient cv. 97003 and Mo inefficient cv. 97014.
     4. The effects of molybdenum on antioxidative enzymes in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014) were investigated under low temperature stress. The Results showed that the activities of superoxide dismutase(SOD), catalase(CAT), peroxidase(POD) and ascorbate peroxidase(APX) increased and the production rates of free radicals decreased in Mo-treated winter wheat under low temperature stress. In Mo-treated winter wheat, with the prolongation of low temperature stress, the activities of the four antioxidative enzymes increased at first 2 or 4 days of low temperature stress, and then decreased or dropped drastically. The tendency in the activities of these antioxidative enzymes indicated that a valid cold acclimation experienced in the Mo-treated winter wheat and that molybdenum helped to maintain the higher level of cold resistance under the following durative low temperature stress. Genotypic differences in response of activities of molybdenum on antioxidative enzymes were found in Mo efficient cv. 97003 and Mo inefficient cv. 97014. The decrease rates of the SOD, CAT, POD and APX activities and the accumulative rate of free radicals for-Mo treatment in Mo inefficient cv. 97014 were higher than those in Mo efficient cv. 97003, which maybe one of the reasons why the cold injury happened frequently in Mo inefficient cultivar for the Mo deficient treatment. Molybdenum regulates reactive oxygen species(ROS) metabolism to affect the cold resistance of winter wheat.
     5. Effects of molybdenum(Mo) on several photosynthetic parameters in winter wheat were investigated under low temperature stress in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014). The results indicated that the net photosynthetic rate(P_n) and stomatal limitation(L_s) increased significantly(P<0.05), while stomatal conductance(G_s), intercellular CO_2 concentration(C_i) and transpiration rate(T_r) decreased significantly(P<0.05) in Mo-fertilized treatment of both wheat lines under low temperature stress. From 0 to 6 days of low temperature stress in Mo-fertilized treatment, with the decline of P_n, C, decreased and L_s increased, indicating that stomatal limitation was the main factor to P_n decline. In Mo-deficient treatment, with the decline of P_n, C_i decreased and L_s increased at earlier stage of low temperature stress(0 to 4 days), whereas C_i increased and L_s decreased at later stage(4 to 6 days), implying that the probable main factors to P_n decline were stomatal limitation at earlier stage of low temperature stress, and non-stomatal limitation at later stage. Genotypic differences in response to the effects of molybdenum on the photosynthetic parameters exist between Mo-efficient cv. 97003 and Mo-inefficient cv. 97014. The changing rates of P_n and T_r of 97014 were significantly higher than those of 97003 in Mo-fertilized treatment.
     6. Effects of molybdenum(Mo) on photosynthetic light reaction curve and CO_2 reaction curve in winter wheat were investigated under low temperature stress in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014). The results indicated that the Maximum Net Photosynthetic rate(A_(max)), Light-Saturation Point(LSP), Apparent Quantum Yield(AQY), CO_2 Saturation Point(CSP), Carboxylation Efficiency(CE), Maximum Carboxylation Velocity of Rubisco(V_(cmax)) and Maximum Potential Rate of Electron Transport(J_(max)) increased significantly(P<0.05), while Light-Compensation Point(LCP), Day Respiration Rate(R_(day)) and CO_2 Compensation Point(CCP) decreased significantly(P<0.05) in Mo-fertilized treatment of both wheat lines under low temperature stress.
     7. Effects of molybdenum(Mo) on photosynthetic pigment, cytochrome, and protein complex of thylakoids in winter wheat were investigated under low temperature stress in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014). The results indicated that the total chlorophyll, chlorophyll a, and chlorophyll b increased significantly(P<0.05) in Mo-fertilized treatment, while the chlorophyll a/chlorophyll b decreased significantly(P<0.05) in Mo-deficient treatment in both wheat lines under low temperature stress, implying that the transformation from the chlorophyll a to chlorophyll b was inhibited. The increase of the carotenoid contents in Mo-fertilized treatment decreased the photoinhibition and improved scavenging of reactive oxygen species in winter wheat. The contents of cytochrome f, cytochrome b563, cytochrome b559, PSI and cytochrome b6/f complex increased significantly(P<0.05) in Mo-fertilized treatment from 0 to 6 days of low temperature stress, while the contents of cytochrome b559 and PSII increased significantly(P<0.05) at later stage(4 to 6 days) of low temperature stress, implying that the capacity of light absorption and electron transfer were improved in Mo-fertilized treatment. The response to Mo deficiency in PSI and cytochrome b6/f complex was more sensitive under low temperature stress, implying that PSI and cytochrome b6/f complex were damaged firstly and then PSII was damaged in Mo deficient winter wheat.
     8. The effects of molybdenum on ABA concentration, expression of ABA-dependent COR(cold-regulated) genes, CBF/DREB transcription factors and ABA-independent COR genes in winter wheat(Mo efficient cv. 97003 and Mo inefficient cv. 97014) were investigated under low temperature stress. The results showed that expression of ABA-dependent COR genes, CBF/DREB transcription factors and ABA-independent COR genes increased first and then decreased slightly in the leaves of Mo-deficient and Mo-fertilized treatment in both winter wheat cultivars with the prolongation of low temperature stress. The concentration of ABA in Mo-fertilized treatment in both winter wheat cultivars increased before and after the low temperature stress. Expression of ABA-dependent COR genes(Wrab15, Wrab17, Wrab18 and Wrab19) in Mo-fertilized winter wheat were significantly up-regulated from 3 h of low temperature stress. It suggested that molybdenum regulated the cold resistance of winter wheat from the ABA-dependent signal pathway(AO→ABA→bZIP→ABRE→COR genes). No significant difference existed between Mo-deficient and Mo-fertilized treatment in the expression of CBF/DREB transcription factor genes(TaCBF and Wcbf2-1) and ABA-independent COR genes(WCS120, WCS19, Wcor14 and Wcor15) before low temperature stress. Expression of CBF/DREB transcription factor genes(TaCBF and Wcbf2-1) in Mo-fertilized winter wheat was significantly up-regulated from 3 h of low temperature stress, and expression of ABA-independent COR genes(WCS120, WCS19, Wcor14 and Wcor15) in Mo-fertilized winter wheat was significantly up-regulated from 6 h of low temperature stress. It suggested that molybdenum also regulated the cold resistance of winter wheat from the ABA-independent signal pathway(low temperature signaling→transcription factors→CRT/DRE motif→COR genes).
     9. The effects of molybdenum on protein express in winter wheat under low temperature stress were investigated using 2-DE combined with MS analysis and Expression of mRNA for genes encoded the differential proteins above was analyized by real-time PCR. In total, Fifteen proteins with quantitatively differential expression(>1.5-fold increase or decrease, Student's t-test, p<0.01) between Mo-deficient and Mo-fertilized winter wheat and two specific proteins in Mo-fertilized winter wheat were found before low temperature stress. Similarly, thirteen proteins with quantitatively differential expression(>1.5-fold increase or decrease, Student's t-test, p<0.01) between Mo-deficient and Mo-fertilized winter wheat and three specific proteins to Mo-deficient and Mo-fertilized treatment were found after low temperature stress. Twelve proteins interested were identified by mass spectrometry(MS or MS-MS). Among them five protein spots(spot814, spot1296, spot1297, spot1255 and spot1157) were closely related to light reactions of photosynthesis, four protein spots(spot918, spot548, spotl386 and spot648) closely related to dark reactions of photosynthesis, one spot(spot991) related to the transcription of chloroplast gene, one spot(spot 1305) related to the translation of proteins and one spot(spot 1058) not detected in protein database. The results showed Mo regulated the physiological processes such as photosynthesis, transcription of chloroplast gene and translation of proteins through the protein express, and focused on the regulation of photosynthesis.
     10. Combined with the results of Mo-enzymes, hormones, antioxidative enzymes, photosynthetic parameters and composition of thylakoids, molecular mechanism on how cold resistance and photosynthesis enhanced by molybdenum was put forward. Base on the changes of Mo-enzyme activities, the mechanism focus on the process of gene express and protein translation regulated by molybdenum, and testified that the chloroplast was the key subcellular structures where significant differences in biochemical reactions and metabolism progress existed between Mo-fertilized and Mo-deficient winter wheat. Low temperature stress was the induction factors for Mo-deficient symptom.
引文
1.万耀星,刘雄德,李正艳.土壤有效钼及植物全钼的示波极谱测定.土壤通报,1988,19:43-46
    2.王世珍,蔡庆生.高羊茅根系,叶片和根颈对冷锻炼的响应差异.南京农业大学学报,2002,25:11-15
    3.王若仲,萧浪涛,蔺万煌,曹庸,卜晓英.亚种间杂交稻内源激素的高效液相色谱测定法.色谱,2002,20:148-150
    4.王富荣.植物抗寒指标的种类及其应用.植物生理学通讯,1987,23:49-55
    5.王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,16:55-57
    6.王爱国,罗广华,邵从本.大豆种子超氧化物歧化酶的研究.植物生理学报,1983,9:78-83
    7.王运华,魏文学,谭启玲,杜应琼,许松林.湖北省黄棕壤冬小麦缺钼和施钼研究.土壤肥料,1995,24-28
    8.王静,孙磊,张成军,陈国祥,王萍,施大伟,吕川根,许所扣.杂交稻幼苗期对低温胁迫的生理反应.作物学报,2006a,32:1049-1056
    9.王静,张成军,陈国祥,王萍,施大伟,吕川根.低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响.中国水稻科学,2006b,20:177-182
    10.代玉华,刘训言,孟庆伟,赵世杰.低温弱光处理及恢复期间黄瓜叶片的光抑制与类囊体膜中脂肪酸组成的变化.植物生理学通讯,2004,40:
    11.甘巧巧.施钼对不同钼效率冬小麦钼酶、碳代谢相关酶类及细胞壁组分的影响.[硕士学位论文].武汉:华中农业大学图书馆,2006
    12.田纪春,王学臣.植物的光合作用与光合氮,碳代谢的耦联及调节.生命科学,2001,13:145-147
    13.朱根海,朱培仁.小麦抗冻性的季节变化以及温度对膜锻炼的效应.南京农学院学报,1984.2:9-16
    14.江华,师生波,许大全.冬季小麦叶片光合作用对温度响应方式的变化.植物生理学报,2000,26:69-74
    15.何军贤,曾迺燕,易静,梁厚果.低温对水稻幼苗叶绿体光化学功能及类囊体膜蛋白水平的影响.中国水稻科学,1999,13:99-103
    16.李平,陈贻竹.籼稻的抗冷性与亲本的关系.植物学报,1994.37:544-551
    17.李霞,戴传超,焦德茂.光照条件下低温对水稻籼粳亚种幼苗抗氧化物质含量的影响.植物生理与分子生物学学报,2006,32:345-353
    18.沈漫.常春藤质膜透性和内源激素与抗寒性关系初探.园艺学报,2005,32:141-144
    19.汪斌,李维明.植物激素的信号转导系统研究进展.福建农业大学学报,2001,30:433-438
    20.柳勇,胡承孝,谭启玲.施用钼肥对酸性黄棕壤上冬小麦叶片膜脂肪酸及叶细胞超微结构的影响.植物营养与肥料学报,2004,10:86-90
    21.胡承孝,王运华.钼营养对冬小麦无机氮组分的影响.华中农业大学学报,2001,20:125-129
    22.胡承孝,王运华,李宗堂,何华,谭启玲,杜昌文,魏文学.钼,氮配合施用对冬小麦产量,干物质积累的影响.华中农业大学学报,1999,18:225-228
    23.胡承孝,王运华,魏文学,李宗堂,何华,谭启玲,陈浩.钼在冬小麦植株中的分布研究.华中农业大学学报,2000,19:568-572
    24.胡承孝,王运华,谭启玲,魏文学.钼、氮肥配合施用对冬小麦子粒蛋白质及其氨基酸组成的影响.植物营养与肥料学报,2002,8:224-228
    25.郁继华,舒英杰,吕军芬,张国斌.低温弱光对茄子幼苗光合特性的影响.西北植物学报,2004,24:831-836
    26.梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展.植物生态学报,2004,28:114-125
    27.梁莉,谈锋.四川大头茶低温半致死温度与对低温的适应性.西南师范大学学报:自然科学版.1997,22:463-465
    28.喻敏.冬小麦不同基因型的钼效率及其生理基础.[博士学位论文].武汉:华中农业大学图书馆,2000
    29.喻敏,胡承孝,王运华.冬小麦缺钼反应的基因型筛选.华中农业大学学报,2003,22:360-364
    30.喻敏,胡承孝,王运华.不同钼效率冬小麦品种钼的吸收和分配.中国农业科学,2004,37:1749-1753
    31.喻敏,陈跃进,萧洪东,王惠珍,王芳,孙秀华.硼钼对低温下草坪草海滨雀稗活性氧代谢的影响.作物学报,2005,31:755-759
    32.曾乃燕,何军贤,赵文,梁厚果.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,20:8-14
    33.曾韶西,王以柔,刘鸿先.低温光照下与黄瓜子叶叶绿素降低有关的酶促反应.植物生理学报,1991,17:177-182
    34.曾纪晴,刘鸿先.黄瓜幼苗子叶在低温下的光抑制及其恢复.植物生理学报,1997,23:15-20
    35.董永华,史吉平,李广敏,韩建民,商振清.ABA和6-BA对水分胁迫下小麦幼曲CO_2同化作用的影响.作物学报,1997,23:501-504
    36.熊爱生,彭日荷.植物中氧化还原系统对光合作用的调节.生命的化学,2002,22:472-474
    37.潘杰,简令成.植物寒害和抗寒机制中膜与蛋白质研究的进展.植物学通报,1990,7:1-5
    38.严寒静,谈锋.自然降温过程中栀子叶片脱落酸,赤霉素与低温半致死温度的关系.西南师范大学学报(自然科学版),2001,26:195-199
    39.关义新,戴俊英,林艳.水分胁迫下植物叶片光合的气孔和非气孔限制.植物生理学通讯,1995,31:293-297
    40.刘厚诚,黄红星,孙光闻,陈日远.温光处理对节瓜幼苗光合作用的影响.沈阳农业大学学报,2006,37:386-389
    41.刘祖祺,林定波.ABA/GAs稠控特异蛋白质与柑桔的抗寒性.园艺学报,1993,20:335-340
    42.刘剑波,宋心琦.分子氧,活性氧与生命.大学化学,1994,9:26-33
    43.刘鹏,杨玉爱.土壤中的钼及其植物效应的研究进展 农业环境保护,2001,20:280-282
    44.刘鹏,杨玉爱.钼、硼对大豆光合效率的影响.植物营养与肥料学报,2003,9:456-461
    45.华春,王仁雷.杂交稻汕优63剑叶光合特性的研究.南京师大学报(自然科学版),2001.24:111-115
    46.吴克宁,赵彦锋,吕巧灵,李玲.潮土区灌浆水和施磷对冬小麦光合作用和产量的影响.植物营养与肥料学报,2002,8:428-434
    47.吴明才,肖昌珍.大豆钼素研究.大豆科学,1994,13:245-251
    48.孙谷畴,彭少麟.在高CO_2浓度下四种亚热带幼树光合作用对水分胁迫的响应.生态学报,2001,21:738-746
    49.孙淑斌,李宝珍,胡江,徐国华.水稻低丰度表达基因OsAMT1.3实时荧光定量PCR方法的建立及其应用.中国水稻科学,2006,20:8-12
    50.孙学成,胡承孝,魏文学.钼肥对冬小麦脯氨酸及抗坏血酸含量的影响.三峡大学学报,2001,23:473-476
    51.孙学成,胡承孝,谭启玲,甘巧巧.低温胁迫下钼对冬小麦光合作用特性的影响.作物学报,2006a,32:1418-1422
    52.孙学成,胡承孝,谭启玲,魏文学,王运华.施用钼肥对冬小麦游离氨基酸,可溶性蛋白质和糖含量的影响.华中农业大学学报,2002,21:40-43
    53.孙学成,谭启玲,胡承孝,甘巧巧,易长城.低温胁迫下钼对冬小麦抗氧化酶活性的影响.中国农业科学,2006b,39:952-959
    54.庞静.钼对酸性黄棕壤上冬小麦碳代谢作用机理的研究.[硕士学位论文].武汉:华中农业大学图书馆,1998.
    55.庞静,胡承孝,王运华,魏文学.钼对黄棕壤上冬小麦碳代谢的影响.华中农业大学学报,2001,20:33-35
    56.缪颖,伍炳华.植物激素研究中的遗传学和分子生物学方法.植物生理学通讯,2000,36: 281-288
    57.罗正荣.植物激素与抗寒力的关系.植物生理学通讯,1989,3:1-5
    58.许大全.光合作用气孔限制中的一些问题.植物生理学通讯,1997,33:241-244
    59.许大全.光合作用研究进展:从分子机理到绿色革命.植物生理学报,2001,27:97-108
    60.许智宏,李家洋.中国植物激素研究:过去,现在和未来.植物学通报,2006,23:433-442
    61.赵文恩,韩雅珊.类胡萝卜素清除活性氧自由基的机理.化学通报,1999,4:25-27
    62.赵春江,康书江,王纪华,郭晓维,李鸿祥.植物内源激素与不同基因型小麦抗寒性关系的研究.华北农学报,2000,15:51-54
    63.邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能.植物学通报,2001.18:521-530
    64.陆佩玲,于强.冬小麦光合作用的光响应曲线的拟合.中国农业气象,2001,22:12-14
    65.陈志强,许春辉,陈梦菁,徐黎,王可玢,林世青,匡廷云.低温锻炼对小麦类囊体膜脂膜蛋白的影响.植物学报,1994,36:423-429
    66.陈贻竹,帕特森.低温对植物超氧物歧化酶、过氧化物酶和过氧化氢水平的影响.植物生理学报,1988,44:323-328
    67.鲍士旦.土壤农化分析.北京:中国农业山版社,2002,
    68. Able A J. Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma, 2003, 221 : 137-143
    69. Achuo E A, Priasen E, Hofte M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. PLANT PATHOLOGY, 2006, 55:178
    70. Acock B, Acock M C, Pasternak D. Interactions of CO_2 enrichment and temperature on carbohydrate production and accumulation in muskmelon leaves. Journal of the American Society for Horticultural Science, 1990, 115:525-529
    71. Agarwala S C, Chatterjee C, Nautiyal N. Effect of induced molybdenum deficiency on growth and enzyme activity in sorghum. Tropical,Agriculture, 1988, 65:333-336
    72. Agarwala S C, Chatterjee C, Nautiyal N, Sharma C P. Molybdenum nutrition of isolates of four Aspergillus species. Canadian Journal of Microbiology, 1986, 32:557-561
    73. Agarwala S C, Chatterjee C, Sharma P N, Sharma C P, Nautiyal N. Pollen development in maize plants subjected to molybdenum deficiency. Canadian Journal of Botany, 1979, 57: 1946-1950
    74. Aguey-Zinsou K F, Bernhardt P V, Leimkuhler S. Protein film voltammetry of Rhodobacter capsulatus xanthine dehydrogenase. J Am.Chem.Soc., 2003, 125:15352-15358
    75. Akaba S, Leydecker M T, Moureaux T, Oritani T, Koshiba T. Aldehyde oxidase in wild type and abal mutant leaves of Nicotiana plumbaginifolia. Plant & Cell Physiology, 1998, 39:1281-1286
    76. Anandan S, Morishige D T, Thornber J P. Light-induced biogenesis of light-harvesting complex Ⅰ (LHC Ⅰ) during chloroplast development in barley (hordeum vulgare). Studies using cDNA clones of the 21-and 20-kilodalton LHC Ⅰ apoproteins. Plant physiology, 1993, 101: 227-236
    77. Ananyev G, Renger G, Wacker U, Klimov V. The photoproduction of superoxide radicals and the superoxide dismutase activity of Photosystem Ⅱ. The possible involvement of cytochrome b559. Photosynthesis Research, 1994, 41:327-338
    78. Arbona V, Flors V, Jacas J, Garcia-Agustin P, Gomez-Cadenas A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol, 2003, 44:388-394
    79. Archibald J M, Teh E M, Keeling P J. Novel ubiquitin fusion proteins: ribosomal protein P1 and actin. Journal of molecular biology, 2003, 328:771-778
    80. Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant & Cell Physiology, 2002, 43: 751-758
    81. Arnon D I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant physiology, 1949, 24:1-15
    82. Arora R, Wisniewski M E. Cold acclimation in genetically related (Sibling) deciduous and evergreen peach (Prunus persica[L.] Batsch). Ⅱ. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiology, 1994, 105:95-101
    83. Arora R, Wisniewski M E, Scorza R. Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica[L.] Batsch). Plant Physiology, 1992, 99: 1562-1568
    84. Artus N N, Uemura M, Steponkus P L, Gilmour S J, Lin C, Thomashow M F. Constitutive expression of the cold-regulated Arabidopsis thaliana COR 15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A, 1996, 93: 13404-13409
    85. Asada K. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiology, 2006, 141:391-396
    86. Bachmann M, Shiraishi N, Campbell W H, Yoo B C, Harmon A C, Huber S C. Identification of Ser-543 as the Major Regulatory Phosphorylation Site in Spinach Leaf Nitrate Reductase. The Plant Cell Online, 1996, 8: 505-517
    87. Baek K H, Skinner D Z. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science, 2003, 165: 1221-1227
    88. Bahrman N, Le Gouis J, Negroni L, Amilhat L, Leroy P, Laine A L, Jaminon O. Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics, 2004,4: 709-719
    89. Barber J, Rivas J D L. A Functional Model for the Role of Cytochrome b SUB 559/SUB in the Protection Against Donor and Acceptor Side Photoinhibition. Proceedings of the National Academy of Sciences, 1993,90: 10942-10946
    90. Barlaan E A, Sato H, Mushika J, Yaketa S, Ichii M. Molecular mapping of the cnx2 locus involved in molybdenum cofactor biosynthesis in rice (Oryza sativa L.). Theoretical & Applied Genetics, 2001, 102: 540-544
    91. Barnes J D, Wilson J M. Effects of Hormones on Morphogenesis and Cold Resistance in Berseem Clover(Trifolium alexandrinum L.). Journal of experimental botany, 1986, 37: 1542
    92. Barrientos M, Mbl E, Peruzzo G, Contreras A, Alberdi M. Responses to cold of Chilean wild Solanum species. Environmental & Experimental Botany, 1994, 34: 47-54
    93. Bartolo M E, Carter J V. Microtubules in Mesophyll Cells of Nonacclimated and Cold-Acclimated Spinach 1 Visualization and Responses to Freezing, Low Temperature, and Dehydration. Plant Physiology, 1991,97: 175-181
    94. Bendall D S, Davenport H E, Hill R. (1971). Cytochrome components in chloroplasts of the higher plants, vol. 23, pp. 327-344.
    95. Berleth T, Krogan N T, Scarpella E. Auxin signals ~ turning genes on and turning cells around. Current Opinion in Plant Biology, 2004, 7: 553-563
    96. Berry J, Bjorkman O. Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 1980, 31: 491 -543
    97. Bishopp A, Mahonen A P, Helariutta Y. Signs of change: hormone receptors that regulate plant development. Development, 2006, 133: 1857-1869
    98. Bittner F, Oreb M, Mendel R R. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol. Chem., 2001,276: 40381-40384
    99. Blankenship R E. Molecular Mechanisms of Photosynthesis. London: Blackwell Science, 2002. 25-105
    100. Boardman N K, Anderson J M. (1967). Fractionation of the photochemical systems of photosynthesis. II. Cytochrome and carotenoid contents of particles isolated from spinach chloroplasts, vol. 143, pp. 187-203.
    101. Bolwell G P, Slabas A R, Whitelgge J P. Proteomics: empowering systems biology in plants. Phytochemistry, 2004, 65: 1665-1669
    102. Bonk M, Hoffmann B, Von Lintig J, Schledz M, Al-Babili S, Hobeika E, Kleinig H, Beyer P. Chloroplast import of four carotenoid biosynthetic enzymes in vitro reveals differential fates prior to membrane binding and oligomeric assembly. European journal of biochemistry/FEBS, 1997, 247:942-950
    103. Botrel A, Kaiser W M. Nitrate reductase activation state in barley roots in relation to the energy and carbohydrate status. Planta, 1997, 201:496-501
    104. Bowler C, Montagu M v, Inze D. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology & Plant Molecular Biology, 1992, 43: 83-116
    105. Brodrick S J, Giller K E. Genotypic Difference in Molybdenum Accumulation Affects N2-Fixation in Tropical Phaseolus-Vulgaris L. Journal of Experimental Botany, 1991, 42: 1339-1343
    106. Budhiraja R, Kayyali U S, Karamsetty M, Fogel M, Hill N S, Chalkley R, Finlay G A, Hassonn P M. Estrogen modulates xanthine dehydrogenase/xanthine oxidase activity by a receptor-independent mechanism. Antioxid.Redox.Signal., 2003, 5:705-711
    107. Burbanova R S, Rodchenko O P. Cold resistance of maize root cells at different growth phases. Fiziologiia i Biokhimiia Kul'Turnykh Rastenii, 1987, 19: 142-145
    108. Cammack R, Rao K K, Hall D O. Metalloproteins in the evolution of photosynthesis. Bio Systems, 1981, 14:57-80
    109. Camp W V, Montagu M V, Inze D. H_2O_2 and NO: redox signals in disease resistance. Trends in Plant Science, 1998, 3:330-334
    110. Campalans A, Messeguer R, Goday A, Pages M. Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 1999, 37:327-340
    111. Campbell W H. Nitrate reductase structure,function and regulation:bridging the gap between biochemistry and physiology. Annu.Rev.Plant Physiol Plant Mol.Biol., 1999, 50: 277-303
    112. Campos P S, Quartin V, Ramalho J C, Nunes M A. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol, 2003, 160:283-292
    113. Cannell M G R, Thornley J H M. (1998). Temperature and CO 2 Responses of Leaf and Canopy Photosynthesis: a Clarification using the Non-rectangular Hyperbola Model of Photosynthesis, vol. 82, pp. 883-892.
    114. Capone R, Tiwari B S, Levine A. Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiology and Biochemistry, 2004, 42: 425-428
    115. Castelfranco P A, Zeng X. Regulation of 5-Aminolevulinic Acid Synthesis in Developing Chloroplasts : Ⅳ. An Endogenous Inhibitor from the Thylakoid Membranes. Plant Physiol., 1991, 97:1-6
    116. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo A M, Pecchioni N, Stanca A M. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 2002, 48:649-665
    117. Champigny M L. Integration of photosynthetic carbon and nitrogen metabolism in higher plants. Photosynthesis Research, 1995, 46:117-127
    118. Chatterjee C, Nautiyal N. Molybdenum stress affects viability and vigor of wheat seeds. Journal of Plant Nutrition, 2001, 24: 1377-1386
    119. Chatterjee C, Nautiyal N, Agarwala S C. Metabolic changes in mustard plants associated with molybdenum deficiency. New Phytologist, 1985, 100:511-518
    120. Chel'tsova L P. Change in mitochondrial content in wheat tissues under low-temperature conditions. Biology Bulletin of the Academy of Sciences of the USSR, 1985, 12:62-69
    121. Chel'tsova L P. Effect of long-term low temperature on mitochondriai mass in grain cells. Biology Bulletin of the Academy of Sciences of the USSR, 1989, 15:464-469
    122. Cherniad'ev, Ⅱ, Monakhova O F.[Activity of NA DP-dependent glyceraldehyde-phosphate dehydrogenase and phosphoenolpyruvate carboxylase in wheat leaves under water stress]. Prikladnaia biokhimiia i mikrobiologiia, 2006, 42:353-361
    123. Chinnusamy V, Schumaker K, Zhu J K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 2004, 55: 225-236
    124. Chun J U, Yu X M, Griffith M. Genetic studies of antifreeze proteins and their correlation with winter survival in wheat. Euphytica: Netherlands Journal of Plant Breeding, 1998, 102: 219-226
    125. Churin Y, Adam E, Kozma-Bognar L, Nagy F, Borner T. Characterization of two Myb-like transcription factors binding to CAB promoters in wheat and barley. Plant molecular biology, 2003, 52:447-462
    126. Churin Y, Hess W R, Borner T. Cloning and characterization of three cDNAs encoding chloroplast RNA-binding proteins from barley (Hordeum vuigare L.): differential regulation of expression by light and plastid development. Curr Genet, 1999, 36:173-181
    127. Collatz G J, Berry J A, Farquhar G D, Pierce J. The relationship between the Rubisco reaction mechanism and models of photosynthesis. Plant, Cell and Environment, 1990, 13: 219-225
    128. Cornic G, Fresneau C. Photosynthetic Carbon Reduction and Carbon Oxidation Cycles are the Main Electron Sinks for Photosystem II Activity During a Mild Drought. Annals of Botany, 2002, 89: 887-894
    129. Cox D A. Poinsettia Cultivars Differ in Their Response to Molybdenum Deficiency. Hortscience, 1992, 27: 892-893
    130. Cunningham S, Read J. Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia, 2002, 133: 112-119
    131.Dallaire S, Houde M, Gagne Y, Saini H S, Boileau S, Chevrier N, Sarhan F. ABA and Low Temperature Induce Freezing Tolerance via Distinct Regulatory Pathways in Wheat. Plant and Cell Physiology, 1994,35: 1-9
    132. Danyluk J, Carpentier E, Sarhan F. Identification and characterization of a low temperature regulated gene encoding an actin-binding protein from wheat. FEBS Letters, 1996,389:324-327
    133. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci, 2000, 57: 779-795
    134. Datta D B, Triplett E W, Newcomb E H. Localization of xanthine dehydrogenase in cowpea root nodules: implications for the interaction between cellular compartments during ureide biogenesis. Proc.Natl. Acad.Sci.U S.A, 1991, 88: 4700-4702
    135. De Santis A, Landi P, Genchi G Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiology, 1999, 119:743-754
    136. Demmig-Adams B, Adams W W. Photoprotection and Other Responses of Plants to High Light Stress. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 599-626
    137. Deo C, Kothari M L. Effect of modes and levels of molybdenum application on grain yield protein content and nodulation of chickpea grown on loamy sand soil. Communications in Soil Science & Plant Analysis, 2002, 33: 2905-2915
    138. Draper H H, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol, 1990, 186:421-431
    139. Dreyer M, Van de Venter H A. Differential effect of temperature on mitrochondrial activity in shoots from freshly harvested and moderately aged kernels of maize (Zea mays L.). Plant Growth Regulation, 1992, 11: 267-271
    140. Dunn M A, Goddard N J, Zhang L, Pearee R S, Hughes M A. Low-temperature-responsive barley genes have different control mechanisms. Plant Molecular Biology, 1994, 24:879-888
    141. Duysen M E, Freeman T P, Williams N D, Huckle L L. Chloramphenicol Stimulation of Light Harvesting Chlorophyll Protein Complex Accumulation in a Chlorophyll b Deficient Wheat Mutant. Plant physiology, 1985, 78:531-536
    142. Duysen M E, Freeman T P, Williams N D, Olson L L. Regulation of Excitation Energy in a Wheat Mutant Deficient in Light-Harvesting Pigment Protein Complex. Plant physiology, 1984, 76:561-566
    143. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes & Genetic Systems, 2006, 81:77-91
    144. Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hansch R, Mendel R R. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase: a new player in plant sulfur metabolism. Journal of Biological Chemistry, 2001, 276:46989-46994
    145. Eissenstat D M, Syvertsen J P, Dean T J, Yelenosky G, Johnson J D. Sensitivity of Frost Resistance and Growth in Citrus and Avocado to Chronic Ozone Exposure. New Phytologist, 1991, 118:139-146
    146. El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C. Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. Journal of Experimental Botany, 2006, 57:2455
    147. Equiza M A, Mirave J P, Tognetti J A. Differential inhibition of shoot vs. root growth at low temperature and its relationship with carbohydrate accumulation in different wheat cultivars. Annals of Botany, 1997, 80:657-663
    148. Equiza M A, Tognetti J A. Root growth inhibition by low temperature explains differences in sugar accumulation between spring and winter wheat. Australian Journal of Plant Physiology, 2001, 28:1249-1259
    149. Farquhar G D, Sharkey T D. Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1982, 33:317-345
    150. Farquhar G D, von Caemmerer S, Berry J A. Models of Photosynthesis. Plant physiology, 2001, 125:42-45
    151. Feng Z, Guo A, Feng Z. Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regulation, 2003, 39:277-283
    152. Fischer K, Barbier G G, Hecht H-J, Mendel R R, Campbell W H, Schwarz G. Structural Basis of Eukaryotic Nitrate Reduction: Crystal Structures of the Nitrate Reductase Active Site. Plant Cell, 2005, 17:1167-1179
    153. Flores A, Dorffling K. A comparative study of the effects of abscisic acid and new terpenoid abscisic acid analogues on plant physiological processes. Journal of Plant Growth Regulation, 1990, 9:133-139
    154. Forde B G. The role of long-distance signalling in plant responses to nitrate and other nutrients. J Exp.Bot., 2002, 53:39-43
    155. Fowler D B. Low-temperature tolerance in cereals: model and genetic interpretation. Crop Science, 1999, 39:626-633
    156. Fowler D B, Breton G, Limin A E, Mahfoozi S, Sarhan F. Photoperiod and Temperature Interactions Regulate Low-Temperature-Induced Gene Expression in Barley. Plant Physiology, 2001, 127:1676-1681
    157. Foyer C H, Valadier M-H, Migge A, Becker T W. Drought-Induced Effects on Nitrate Reductase Activity and mRNA and on the Coordination of Nitrogen and Carbon Metabolism in Maize Leaves. Plant Physiol., 1998, 117:283-292
    158. Friso G, Giacomelli L, Ytterberg A J, Peltier J B, Rudella A, Sun Q, Wijk K J. In-Depth Analysis of the Thylakoid Membrane Proteome of Arabidopsis thaliana Chloroplasts: New Proteins, New Functions, and a Plastid Proteome DatabaseOn-line version contains Web-only data. The Plant Cell Online, 2004, 16:478-499
    159. Fujibe T, Saji H, Arakawa K, Yabe N, Takeuchi Y, Yamamoto K T. A methyl viologen-resistant mutant of Arabidopsis, which is allelic to ozone-sensitive rcd1, is tolerant to supplemental ultraviolet-B irradiation. Plant Physiol, 2004, 134:275-285
    160. Gabard J, Pelsy F, Marion-Poll A, Caboche M, Saalbach I, Grafe R, Muller A J. Genetic analysis of nitrate reductase deficient mutants of Nicotiana plumbaginifolia: evidence for six complementation groups among 70 classified molybdenum cofactor deficient mutants. M G G: Molecular & General Genetics, 1988, 213:206-213
    161. Galiba G. In vitro adaptation for drought and cold hardiness in wheat. Plant Breeding Reviews, 1994, 12:115-162
    162. Gana J A, Sutton F, Kenefick D G. cDNA structure and expression patterns of a low-temperature-specific wheat gene tacr7. Plant Molecular Biology, 1997, 34:643-650
    163. Gao J, Kim S R, Chung Y Y, Lee J M, An G. Developmental and environmental regulation of two ribosomal protein genes in tobacco. Plant molecular biology, 1994, 25:761-770
    164. Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu R J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America, 2002,99: 15898-15903
    165. Garstka M, Drozak A, Rosiak M, Venema J H, Kierdaszuk B, Simeonova E, van Hasselt P R, Dobrucki J, Mostowska A. Light-dependent reversal of dark-chilling induced changes in chloroplast structure and arrangement of chlorophyll-protein complexes in bean thylakoid membranes. Biochim Biophys Acta, 2005, 1710: 13-23
    166. Gechev T, Willekens H, Montagu M v, Inze D, Camp W v, Toneva V, Minkov I. Different responses of tobacco antioxidant enzymes to light and chilling stress. Journal of Plant Physiology, 2003, 160: 509-515
    167. Gemma Villora D A M a L R. Potassium Supply Influences Molybdenum,Nitrate, and Nitrate Reductase Activity in Eggplant. Journal of Plant Nutrition, 2003, 26: 659-669
    168. Giglio S. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic acids research, 2003, 31: 136-136
    169. Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M E Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16:433-442
    170. Grunden A M, Shanmugam K T. Molybdate transport and regulation in bacteria. Arch Microbiol, 1997, 168: 345-354
    171. Gupta G, Li Y C. Soybean Response to Carbon-Dioxide and Molybdenum. Communications in Soil Science and Plant Analysis, 1994, 25: 2571-2581
    172. Guy C L, Niemi K J, Brambl R. Altered Gene Expression during Cold Acclimation of Spinach. Proceedings of the National Academy of Sciences, 1985, 82: 3673-3677
    173. Gygi S P, Rist B, Gerber S A, Turecek F, Gelb M H, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol, 1999, 17: 994-999
    174. Haldimann P. Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant, Cell and Environment, 1998, 21: 200-208
    175. Hansch R, Fessel D G, Witt C, Hesberg C, Hoffmann G, Walch-Liu P, Engels C, Kruse J, Rennenberg H, Kaiser W M, Mendel R R. Tobacco plants that lack expression of functional nitrate reductase in roots show changes in growth rates and metabolite accumulation. Journal of Experimental Botany, 2001, 52: 1251-1258
    176. Heazlewood J L, Howell K A, Whclan J, Millar A H. Towards an analysis of the rice mitochondrial proteome. Plant Physiol, 2003, 132: 230-242
    177. Heber U, French C S. Effects of oxygen on the electron transport chain of photosynthesis. Planta, 1968,79:99-112
    178. Heino P, Sandman G, Lang V, Nordin K, Paiva E T. Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. TAG Theoretical and Applied Genetics, 1990, 79: 801-806
    179. Hendrickson L, Forster B, Furbank R T, Chow W S. Processes contributing to photoprotection of grapevine leaves illuminated at low temperature. Physiol Plant, 2004, 121: 272-281
    180. Herbik A, Giritch A, Horstmann C, Becker R, Balzer H J, Baumlein H, Stephan U W. Iron and copper nutrition-dependent changes in protein expression in a tomato wild type and the nicotianamine-free mutant chloronerva. Plant Physiol, 1996, 111: 533-540
    181. Hesberg C, Hansch R, Mendel R R, Bittner F. Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana: differential gene expression and enzyme activities. J Biol.Chem., 2004, 279: 13547-13554
    182. Heuwinkel H, Kirkby E A, Le Bot J, Marschner H. Phosphorus deficiency enhances molybdenum uptake by tomato plants. Journal of Plant Nutrition, 1992, 15: 549-568
    183.Hincha D K, Hofner R, Schwab K B, Heber U, Schmitt J M. Membrane rupture is the common cause of damage to chloroplast membranes in leaves injured by freezing or excessive wilting. Plant Physiology, 1987, 83: 251-253
    184. Hincha D K, Oliver A E, Crowe J H. Lipid Composition Determines the Effects of Arbutin on the Stability of Membranes. Biophysical Journal, 1999, 77: 2024-2034
    185. Hinkovska-Galcheva V, Peeva D, Momchilova-Pankova A, Petkova D, Koumanov K. Phosphatidylcholine and phosphatidylethanolamine derivatives, membrane fluidity and changes in the lipolytic activity of ram spermatozoa plasma membranes during cryoconservation. International Journal of Biochemistry, 1988, 20: 867-871
    186. Hirotsu N, Makino A, Ushio A, Mae T. Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature. Plant Cell Physiol, 2004, 45: 635-644
    187. Hobbie L J. Auxin: Molecular genetic approaches in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36: 91-102
    188. Hodges D M, Andrews C J, Johnson D A, Hamilton R I. Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. Journal of Experimental Botany, 1997,48:1105-1113
    189.Hoff T, Schnorr K M, Meyer C, Caboche M. Isolation of Two Arabidopsis cDNAs Involved in Early Steps of Molybdenum Cofactor Biosynthesis by Functional Complementation of Escherichia coli Mutants. J. Biol. Chem., 1995, 270: 6100-6107
    190. Houtz R L, Stults J T, Mulligan R M, Tolbert N E. Post-translational modifications in the large subunit of ribulose bisphosphate carboxylase/oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86:1855-1859
    191. Hu C, Wang Y, Wei W. Effect of molybdenum applications on concentrations of free amino acids in winter wheat at different growth stages. Journal of Plant Nutrition, 2002, 25: 1487-1499
    192. Huang M, Guo Z. Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biologia Plantarum, 2005, 49: 81-84
    193. Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature. Journal of Experimental Botany, 1996, 47:291
    194. Huner N P A, Krol M, Williams J P, Maissan E. Membrane assembly during acclimation to low temperature: lipid-protein interaction. NATO Asi (Advanced Science Institutes) Series Series G Ecological Sciences, 1989, 19: 267-279
    195. Hnppe H C, Turpin D H. Integration of Carbon and Nitrogen Metabolism in Plant and Algal Cells. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45: 577-607
    196. Ishizuka J. Characteristics of molybdenum absorption and transiocation in soy bean plants Giycine max. Soil Science & Plant Nutrition, 1982, 28: 63-77
    197. Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Sehabenberger O, Thomashow M F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106
    198. Jarvis P. Organellar proteomics: chloroplasts in the spotlight. Curr Biol, 2004, 14:R317-319
    199. Jensen M, Heber U, Oettmeier W. Chloroplast membrane damage during freezing: the lipid phase [Spinach]. Cryobiology, 1981, 18:322-335
    200. Jensen O N, Larsen M R, Roepstorff P. Mass spectrometric identification and microcharacterization of proteins from electrophoretic gels: Strategies and applications. Proteins Structure Function and Genetics, 1998, 33: 74-89
    201. Ji J, Scott M P, Bhattacharyya M K. Light is essential for degradation of ribulose-1,5-bisphosphate carboxylase-oxygenase large subunit during sudden death syndrome development in soybean. Plant biology (Stuttgart, Germany), 2006, 8:597-605
    202. Jia-Ning Y U, Zhang J S, Lun S, Shou-Yi C. Two New Group 3 LEA Genes of Wheat and Their Functional Analysis in Yeast. Journal of Integrative Plant Biology, 2005, 47: 1372-1381
    203. Jian L C, Sun L H, Sun D L. Glycoproteins at the cell surface in cold hardy and cold tender wheat (Triticum aestivum L.). Plant biology, 1987, 5: 59-66
    204. Kugler M, J?nsch L, Kruft V, Schmitz U K, Braun H P. Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). Photosynthesis Research, 1997, 53: 35-44
    205. Kaiser B N, Gridley K L, Brady J N, Phillips T, Tyerman S D. The Role of Molybdenum in Agricultural Plant Production. Annals of Botany, 2005, 96: 745-754
    206. Kaiser W M, Huber S C. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. Journal of experimental botany, 2001, 52: 1981-1989
    207. Katalin B N, Omarov R T, Erdei L, Herman L S. Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Science, 2000,155: 49-58
    208. Kaur N, Gupta A K. Signal transduction pathways under abiotic stresses in plants. Current Science, 2005, 88: 1771-1780
    209. Kaye C, Neven L, Hofig A, Li Q B, Haskell D, Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol, 1998, 116: 1367-1377
    210. Khan M M, Komatsu S. Rice proteomics: recent developments and analysis of nuclear proteins. Phytochemistry, 2004, 65: 1671-1681
    211. Kim S T, Kim S G, Hwang du H, Rang S Y, Kim H J, Lee B H, Lee J J, Kang K Y. Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics, 2004, 4: 3569-3578
    212. Kingston-Smith A H, Harbinson J, Williams J, Foyer C H. Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiology, 1997, 114: 1039-1046
    213. Kisha T J, Taylor G A, Bowman H F, Wiesner L E, Jackson G D, Carlson G R, Bergman J W, Kushnak G D, Stallknecht G F, Stewart V R. Registration of 'Tiber' hard red winter wheat. Crop Science, 1992, 32: 1292-1293
    214. Klein D. Quantification using real-time PCR technology: applications and limitations. Trends Mol Med, 2002, 8: 257-260
    215. Klimov S V. Cold hardening of plants is a result of maintenance of an increased photosynthesis/respiration ratio at low temperature. Izv. Akad. Nauk Ser.Biol, 2003, 57-62
    216. Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis, 1995, 16: 1034-1059
    217. Knight H, Trewavas A J, Knight M R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 1996, 8: 489-503
    218. Kobayashi F, Takumi S, Egawa C, Ishibashi M, Nakamura C. Expression patterns of low temperature responsive genes in a dominant ABA-less-sensitive mutant line of common wheat. Physiologia Plantarum, 2006, 127: 612-623
    219. Kobayashi F, Takumi S, Nakata M, Ohno R, Nakamura T, Nakamura C. Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiologia Plantarum, 2004, 120: 585-594
    220. Kocsy G, Ballmoos P v, Ruegsegger A, Szalai G, Galiba G, Brunold C. Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiology, 2001, 127: 1147-1156
    221. Kocsy G, Ballmoos P v, Suter M, Ruegsegger A, Galli U, Szalai G, Galiba G, Brunold C. Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta, 2000, 211: 528-536
    222. Kocsy G, Brunner M, Ruegsegger A, Stamp P, Brunold C. Glutathione synthesis in maize genotypes with different sensitivities to chilling. Planta, 1996, 198: 365-370
    223. Kokubun N, Ishida H, Makino A, Mae T. The degradation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase into the 44-kDa fragment in the lysates of chloroplasts incubated in darkness. Plant & cell physiology, 2002,43: 1390-1395
    224. Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated shoots of rice (Oryza sativa L.): towards a rice proteome. Electrophoresis, 1999,20:630-636
    225. Kontunen-Soppela S, Lankila J, Lahdesmaki P, Laine K. Response of protein and carbohydrate metabolism of Scots pine seedlings to low temperature. Journal of Plant Physiology, 2002, 159: 175-180
    226. Kuk Y I, Shin J S, Burgos N R, Hwang T E, Han O, Cho B H, Jung S Y, Guh J O. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Science, 2003,43:2109-2117
    227. Kume S, Kobayashi F, Ishibashi M, Ohno R, Nakamura C, Takumi S. Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes & Genetic Systems, 2005, 80: 185-197
    228. Kurihara-Yonemoto S, Handa H. Low temperature effects the processing pattern and RNA editing status of the mitochondrial cox2 transcripts in wheat. Current Genetics, 2001, 40: 203-208
    229. Kwon S I, Anderson A J. Differential production of superoxide dismutase and catalase isozymes during infection of wheat by a Fusarium proliferatum-like fungal isolate. Physiological & Molecular Plant Pathology, 2001, 58: 73-81
    230. Kyoko B, Shigeru I, Gary H, Satoshi H. Photoinhibition of Photosystem I electron transfer activity in isolated Photosystem I preparations with different chlorophyll contents. Photosynthesis Research, 1996,47: 121-130
    231. Lalk I, Dorffling K. Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiologia Plantarum, 1985, 63: 287-292
    232. Lang V, Mantyla E, Welin B, Sundberg B, Palva E T. (1994). Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana.
    233. Learned R M. Molecular and genetic analysis of signal transduction in higher plants. Current Opinion in Cell Biology, 1992, 4: 252-256
    234. Lee B H, Lee H, Xiong L, Zhu J K. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. Plant Cell, 2002,14: 1235-1251
    235. Leegood R C. Handbook of photosynthesis, 2nd edition.. Boca Raton: CRC Press. 2005.
    236. Leipner J, Stamp P, Fracheboud Y. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Planta, 2000, 210: 964-969
    237. Leydecker M T, Moureaux T, Kraepiel Y, Schnorr K, Caboche M. Molybdenum cofactor mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiology, 1995, 107: 1427-1431
    238. Li W, Wang Z, Mi G, Han X, Zhang F. Molybdenum deficiency in winter wheat seedlings as enhanced by freezing temperature. Journal of Plant Nutrition, 2001, 24: 1195-1203
    239. Li X, Gong Y, Wang Y, Wu S, Cai Y, He P, Lu Z, Ying W, Zhang Y, Jiao L, He H, Zhang Z, He F, Zhao X, Qian X. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Proteomics, 2005, 5: 3423-3441
    240. Li Y C, Gupta G Physiological-Changes in Soybean Treated with Ozone and Molybdenum. Communications in Soil Science and Plant Analysis, 1995, 26: 1649-1658
    241. Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol, 1987, 148: 382
    242. Limin A E, Danyluk J, Chauvin L P, Fowler D B, Sarhan F. Chromosome mapping of low-temperature induced Wcsl20 family genes and regulation of cold-tolerance expression in wheat. Molecular Genetics and Genomics, 1997, 253: 720-727
    243. Lin C, Guo W W, Everson E, Thomashow M F. Cold acclimation in Arabidopsis and wheat. A response associated with expression of related genes encoding 'boiling stable' polypeptides. Plant Physiology, 1990,94: 1078-1083
    244. Lin C, Thomashow M F. DNA Sequence Analysis of a Complementary DNA for Cold-Regulated Arabidopsis Gene cor15 and Characterization of the COR 15 Polypeptide 1. Plant Physiology, 1992, 99: 519-525
    245. Ling V, Palva E T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology, 1992,20:951-962
    246. Llamas A, Kalakoutskii K L. Molybdenum cofactor amounts in Chlamydomonas reinhardtii depend on the Nit5 gene function related to molybdate transport. Plant Cell Environ, 2000, 23: 1247-1255
    247. Longstaff M, Raines C A, McMorrow E M, Bradbeer J W, Dyer T A. Wheat phosphoglycerate kinase: evidence for recombination between the genes for the chloroplastic and cytosolic enzymes. Nucleic acids research, 1989,17:6569-6580
    248. Lopez-Huertas E, Corpas'F J, Sandalio L M, Del Rio L A. Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J, 1999, 337 ( Pt 3): 531-536
    249. Magnuson A, Rova M, Mamedov F, Fredriksson P O, Styring S. The role of cytochrome b 559 and tyrosine D in protection against photoinhibition during in vivo photoactivation of Photosystem II. Biochimica et Biophysica Acta (BBA)/Bioenergetics, 1999, 1411: 180-191
    250. Maldonado C A, Zunga G E, Corcuera L J, Alberdi M. Effect of water stress on frost resistance of oat leaves. Environmental & Experimental Botany, 1997, 38: 99-107
    251. Mann C C. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283: 314-316
    252. Martin S, Saco D, Alvarez M. Nitrogen metabolism in Nicotiana rustica L. grown with molybdenum. II. Flowering stage. Communications in Soil Science & Plant Analysis, 1995, 26: 1733-1747
    253. Marttila S, Tenhola T, Mikkonen A. A barley (Hordeum vulgare L.) LEA3 protein, HVA1, is abundant in protein storage vacuoles. Planta, 1996,199: 602-611
    254. Matsuda H, Butler W L. Restoration of high-potential cytochrome b-559 in photosystem II particles in liposomes. Biochimica et biophysica acta, 1983, 725: 320-324
    255. Mayfield J A, Fiebig A, Johnstone S E, Preuss D. Gene families from the Arabidopsis thaliana pollen coat proteome. Science, 2001, 292:2482-2485
    256. McLeod J G, Campbell C A, Dyck F B, Vera C L. Optimum seedling date for winter wheat in southwestern Saskatchewan. Agronomy Journal, 1992, 84: 86-90
    257. McMurtrie R E, Wang Y P. Mathematical models of the photosynthetic response of tree stands to rising CO_2 concentrations and temperatures. Plant, cell and environment, 1993, 16: 1-13
    258. Mendel R R. Molybdenum cofactor of higher plants: biosynthesis and molecular biology. Planta, 1997, 203: 399-405
    259. Mendel R R, Bittner F. Cell biology of molybdenum. Biochimica et biophysica acta, 2006, 1763:621-635
    260. Mendel R R, Hansch R. Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 2002, 53: 1689-1698
    261. Mercado J A, Reid M S, Valpuesta V, Quesada M A. Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature. Australian Journal of Plant Physiology, 1997,24: 759-767
    262. Mhlanga M M, Malmberg L. Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods, 2001, 25: 463-471
    263. Milborrow B V. The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany, 2001, 52: 1145-1164
    264. Mitchell D E, Madore M A. Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.). II. Low temperature effects. Plant Physiology, 1992, 99: 966-971
    265. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002, 7: 405-410
    266. Mizuno T. Plant response regulators implicated in signal transduction and circadian rhythm. Curr. Opin. Plant Biol, 2004, 7: 499-505
    267. Modi A T. Wheat seed quality in response to molybdenum and phosphorus. Journal of Plant Nutrition, 2002, 25: 2409-2419
    268. Modi A T, Cairns A L P. Molybdenum deficiency in wheat results in lower dormancy levels via reduced ABA. Seed Science Research, 1994, 4: 329-333
    269. Mohandas S. Effect of presowing seed treatment with molybdenum and cobalt on growth, nitrogen and yield in bean (Phaseolus vulgarius L.). Plant & Soil, 1985, 86: 283-285
    270. Mohapatra S S, Poole R J, Dhindsa R S. Cold acclimation, freezing resistance and protein synthesis in alfalfa (Medicago sativa L. cv. Saranac). Journal of Experimental Botany, 1987, 38: 1697-1703
    271.Moller S G, Chua N H. Interactions and intersections of plant signaling pathways. Journal of Molecular Biology, 1999,293: 219-234
    272. Monroy A F, Dhindsa R S. Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees C. Plant Cell, 1995, 7: 321-331
    273. Moon B Y, Higashi S I, Gombos Z, Murata N. Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92:6219-6223
    274. Moons A, Prinsen E, Bauw G, Van Montagu M. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell, 1997,9: 2243-2259
    275. Mullet J E, Burke J J, Arntzen C J. Chlorophyll Proteins of Photosystem I. Plant physiology, 1980, 65: 814-822
    276. Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992,356: 710-713
    277. Murayama S, Handa H. Isolation and characterization of cDNAs encoding mitochondrial uncoupling proteins in wheat: wheat UCP genes are not regulated by low temperature. Molecular & General Genetics: MGG, 2000, 264: 112-118
    278. Murelli C, Rizza F, Marinone Albini F, Dulio A, Terzi V, Cattivelli L. Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiologia Plantarum, 1995,94:87-93
    279. Myers D A, Thomas R B, DeLucia E H. Photosynthetic responses of loblolly pine (Pinus taeda) needles to experimental reduction in sink demand. Tree Physiology, 1999,19: 235-242
    280. Naidu S L, Long S P. Potential mechanisms of low-temperature tolerance of C(4) photosynthesis in Miscanthus x giganteus: an in vivo analysis. Planta, 2004, 220: 145-155
    281. Naidu S L, Moose S P, Al-Shoaibi A K, Raines C A, Long S P. Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol, 2003. 132: 1688-1697
    282. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 1981, 22: 867-880
    283. Ndong C, Danyluk J, Huner N P A, Sarhan F. Survey of gene expression in winter rye during changes in growth temperature, irradiance or excitation pressure. Plant Molecular Biology, 2001,45:691-703
    284. Nie G Y, Baker N R. Modifications to Thylakoid Composition during Development of Maize Leaves at Low Growth Temperatures 1. Plant physiology, 1991,95: 184-191
    285.Nirmala Nautiyal and Chitralekha C. Molybdenum Stress-Induced Changes in Growth and Yield of Chickpea. Journal of Plant Nutrition, 2004,27: 173-181
    286. Nordin K, Heino P, Palva E T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Molecular Biology, 1991, 16: 1061-1071
    287. O'Connor G A, Granato T C, Basta N T. Bioavailability of biosolids molybdenum to soybean grain. Journal of Environmental Quality, 2001,30: 1653-1658
    288. O'Kane D, Gill V, Boyd P, Burdon R. Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta, 1996, 198:371-377
    289. Oliver D H, Thompson R E, Griffin C A, Eshleman J R. (2000). Use of Single Nucleotide Polymorphisms (SNP) and Real-Time Polymerase Chain Reaction for Bone Marrow Engraftment Analysis: ASIP.
    290. Orendi G, Zimmermann P, Baar C, Zentgraf U. Loss of stress-induced expression of catalase3 during leaf senescence in Arabidopsis thaliana is restricted to oxidative stress. Plant Sci, 2001, 161: 301-314
    291. Ori N, Eshed Y, Pinto P, Paran I, Zamir D, Fluhr R. TAO1, a representative of the molybdenum cofactor containing hydroxylases from tomato. Journal of Biological Chemistry, 1997,272: 1019-1025
    292. Ouellet F, Vazquez-Tello A, Sarhan F. The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett, 1998, 423: 324-328
    293. Pandey A, Mann M. Proteomics to study genes and genomes. Nature, 2000, 405: 837-846
    294. Pandurangam V, Sharma-Natu P, Sreekanth B, Ghildiyal M C. Photosynthetic acclimation to elevated CO_2 in relation to Rubisco gene expression in three C3 species. Indian journal of experimental biology, 2006, 44: 408-415
    295. Parry G, Ward S, Cernac A, Dharmasiri S, Estelle M. The arabidopsis suppressor of auxin resistance proteins are nucleoporins with an important role in hormone signaling and development. The Plant Cell Online, 2006, 18: 1590
    296. Peltier J B, Emanuelsson O, Kalume D E, Ytterberg J, Friso G, Rudella A, Liberles D A, Soderberg L, Roepstorff P, von Heijne G, van Wijk K J. Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell, 2002, 14:211-236
    297. Peltier J B, Friso G, Kalume D E, Roepstorff P, Nilsson F, Adamska I, van Wijk K J. Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. Plant Cell, 2000, 12: 319-341
    298. Perras M, Sarhan F. Synthesis of freezing tolerance proteins in leaves, crown, and roots during cold acclimation of wheat. Plant Physiology, 1989, 89: 577-585
    299. Peschek G A, Schmetterer G. Evidence for plastoquinol-cytochrome f/b-563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. Biochemical and biophysical research communications, 1982, 108: 1188-1195
    300. Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids research, 2001, 29: e45
    301. Pfaffl M W, Horgan G W, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic acids research, 2002, 30: e36
    302. Phillips J R, Dunn M A, Hughes M A. mRNA stability and localisation of the low-temperature-responsive barley gene family blt14. Plant Molecular Biology, 1997, 33: 1013-1023
    303. Pieard P, Bourgoin-Greneche M, Zivy M. Potential of two-dimensional electrophoresis in routine identification of closely related durum wheat lines. Electrophoresis, 1997, 18: 174-181
    304. Pieha D H. Chilling injury, respiration, and sugar changes in sweet potatoes stored at low temperature. Journal of the American Society for Horticultural Science, 1987, 112:497-502
    305. Pietila M, Lahdesmaki P, Pakonen T, Laine K, Saari E, Havas P. Effect of nitrogenous air pollutants on changes in protein spectra with the onset of winter in the leaves and shoots of the bilberry (Vaccinium myrtillus L.). Environmental Pollution, 1990, 66: 103-116
    306. Popova A V, Velitehkova M Y. Effect of Membrane Lipid Order on the Degree of Freezing Damage of Thylakoid Membranes. Cryoletters, 2004, 25:255-264
    307. Prasad T K. Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant Journal, 1996, 10:1017-1026
    308. Prasad T K. Role of Catalase in Inducing Chilling Tolerance in Pre-Emergent Maize Seedlings. Plant Physiol, 1997, 114: 1369-1376
    309. Prime T A, Sherrier D J, Mahon P, Packman L C, Dupree P. A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis, 2000, 21: 3488-3499
    310. Pritchard M K, Hew C S, Wang H. Low-temperature storage effects on sugar content, respiration and quality of anthurium flowers. Journal of Horticultural Science, 1991, 66: 209-214
    311. Qi R, Lang-Lai X. Degradation of Ribulose-1, 5-Bisphosphate Carboxylase/Oxygenase in Wheat Leaves During Dark-induced Senescence. Acta Botanica Sinica, 2004, 46:137-141
    312. Rajashekar C, Gusta L V, Burke M J. Membrane structural transitions: Probable relation to frost damage in hardy herbaceous species. Low temperature stress in crop plant: The role of the membrane. Academic Press, London, New York, 1979, 255-274
    313.Ramakers C, Ruijter J M, Deprez R H, Moorman A F. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett, 2003, 339: 62-66
    314.Ranjeva R, Thuleau P, Schroeder J I. Signal transduction and calcium channels in higher plants. Current Opinion in Biotechnology, 1993, 4: 172-176
    315. Reverberi M, Picardo M, Ricelli A, Camera E, Fanelli C, Fabbri A A. Oxidative stress, growth factor production and budding in potato tubers during cold storage. Free radical research, 2001, 35: 833-841
    316. Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379: 633-646
    317. Rietveld P L, Wilkinson C, Franssen H M, Balk P A, van der Plas L H, Weisbeek P J, Douwe de Boer A. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin. Journal of experimental botany, 2000, 51: 587-594
    318. Rikin A, Waldman M, Richmond A E, Dovrat A. Hormonal Regulation of Morphogenesis and Cold-resistance: I. Modifications By Abscisic Acid And By Gibberellic Acid In Alfalfa(Medicago Sativa L.) Seedlings. Journal of experimental botany, 1975, 26: 175
    319. Rogers W J, Bezard G, Deshayes A, Meyer I, Petiard V, Marraccini P. (1999). Biochemical and molecular characterization and expression of the 11S-type storage protein from Coffea arabica endosperm, vol. 37, pp. 261-272: Elsevier Science.
    320. Rosentel J K, Healy F, Maupin-Furlow J A, Lee J H, Shanmugam K T. Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli. J Bacteriol, 1995, 177: 4857-4864
    321. Rosinger C H, Wilson J M, Kerr M W. Changes in the soluble protein and free amino acid content of chill-sensitive and chill-resistant plants during chilling and hardening treatments. Journal of Experimental Botany, 1984,35: 1460-1471
    322. Sagi M, Flubr R, Lips S H. Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol, 1999, 120: 571-578
    323. Sagi M, Lips H S. The levels of nitrate reductase and MoCo in annual ryegrass as affected by nitrate and ammonium nutrition. Plant Science, 1998, 135: 17-24
    324. Sagi M, Scazzoccbio C, Fluhr R. The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. The Plant Journal: for Cell & Molecular Biology, 2002, 31:305-317
    325. Salekdeh G H, Siopongco J, Wade L J, Ghareyazie B, Bennett J. Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2002,2: 1131-1145
    326. Sasaki H, Ichimura K, Imada S, Yamaki S. Sucrose synthase and sucrose phosphate synthase, but not acid invertase, are regulated by cold acclimation and deacclimation in cabbage seedlings. Journal of Plant Physiology, 2001, 158: 847-852
    327. Sasanuma T. Characterization of the rbcS multigene family in wheat: subfamily classification, determination of chromosomal location and evolutionary analysis. Mol Genet Genomics, 2001, 265: 161-171
    328. Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J. Exp. Bot.,2001,52: 145-151
    329. Sattler U, Calsou P, Boiteux S, Salles B. Detection of oxidative base DNA damage by a new biochemical assay. Arch.Biochem.Biophys., 2000, 376: 26-33
    330. Sauer P, Frebortova J, Sebela M, Galuszka P, Jacobsen S, Pec P, Frebort I. Xanthine dehydrogenase of pea seedlings: a member of the plant molybdenum oxidoreductase family. Plant Physiology and Biochemistry, 2002, 40: 393-400
    331. Scheel D. Resistance response physiology and signal transduction. Current Opinion in Plant Biology, 1998,1:305-310
    332. Schroder W P, Kieselbach T. Update on chloroplast proteomics. Photosynthesis Research, 2003,78: 181-193
    333. Schwarz G, Mendel R R. Molybdenum cofactor biosynthesis and molybdenum enzymes. Annual Review of Plant Biology, 2006, 57: 623-647
    334. Schwarz G, Schulze J, Bittner F, Eilers T, Kuper J, Bollmann G, Nerlich A, Brinkmann H, Mendel R R. The molybdenum cofactor biosynthetic protein Cnx1 complements molybdate-repairable mutants, transfers molybdenum to the metal binding pterin, and is associated with the cytoskeleton. Plant Cell, 2000, 12: 2455-2471
    335. Sekimoto H, Seo M, Dohmae N, Takio K, Kamiya Y, Koshiba T. Cloning and molecular characterization of plant aldehyde oxidase. J Biol.Chem., 1997, 272: 15280-15285
    336. Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, Liotenberg S, Marion-Poll A, Caboche M, Kamiya Y, Koshiba T. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant & Cell Physiology, 1998,39:433-442
    337. Sell S, Hehl R. Functional dissection of a small anaerobically induced bZIP transcription factor from tomato. European Journal of Biochemistry, 2004, 271: 4534-4544
    338. Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci., 2002,7:41-48
    339. Shao N, Vallon O, Dent R, Niyogi K K, Beck C F. Defects in the cytochrome b6/f complex prevent light-induced expression of nuclear genes involved in chlorophyll biosynthesis. Plant physiology, 2006, 141: 1128-1137
    340. Sharma P, Sharma N, Deswal R. The molecular biology of the low-temperature response in plants. BioEssays, 2005, 27: 1048-1059
    341. Shen S, Sharma A, Komatsu S. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull, 2003, 26:129-136
    342. Shevchenko A, Wilm M, Vorm O, Mann M. Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Protein Sci, 1995, 3: 2435-2446
    343. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S. Organ-Specific Expression of Brassinosteroid-Biosynthetic Genes and Distribution of Endogenous Brassinosteroids in Arabidopsis. Plant Physiology, 2003, 131: 287-297
    344. Shindo Y, Kuribara H, Matsuoka T, Futo S, Sawada C, Shono J, Akiyama H, Goda Y, Toyoda M, Hino A. Validation of real-time PCR analyses for line-specific quantitation of genetically modified maize and soybean using new reference molecules. J AOAC Int, 2002, 85: 1119-1126
    345. Shuvalov V A. Composition and function of cytochrome b559 in reaction centers of photosystem II of green plants. Journal of Bioenergetics and Biomembranes, 1994, 26: 619-626
    346. Sims J L, Leggett J E, Pal U R. Molybdenum and sulfur interaction effects on growth, yield, and selected chemical constituents of burley tobacco Includes detrimental effects. Agronomy Journal, 1979,71:75-78
    347. Skelton R L, Yu Q, Srinivasan R, Manshardt R, Moore P H, Ming R. Tissue differential expression of lycopene beta-cyclase gene in papaya. Cell research, 2006, 16: 731-739
    348. Skriver K, Mundy J. Gene Expression in Response to Abscisic Acid and Osmotic Stress. The Plant Cell Online, 1990, 2: 503-512
    349. Smith G C, Hass L F. Wheat germ phosphoglycerate mutase: purification, polymorphism, and inhibition. Biochemical and biophysical research communications, 1985, 131: 743-749
    350. Stefanowska M, Kuras M, Kacperska A. Low temperature-induced modifications in cell ultrastructure and localization of phenolics in winter oilseed rape (Brassica napus L. var. oleifera L.) leaves. Annals of Botany, 2002, 90: 637-645
    351. Steponkus P L. Role of the Plasma Membrane in Freezing Injury and Cold Acclimation. Annual Review of Plant Physiology, 1984, 35: 543-584
    352. Stoimenova M, Hansch R, Mendel R, Gimmler H, Kaiser W M. The role of nitrate reduction in the anoxic metabolism of roots. I. Characterization of root morphology and normoxic metabolism of wild type tobacco and a transformant lacking root nitrate reductase. Plant & Soil, 2003, 253:145-153
    353. Streb P, Aubert S, Gout E, Bligny R. Reversibility of cold- and light-stress tolerance and accompanying changes of metabolite and antioxidant levels in the two high mountain plant species Soldanella alpina and Ranunculus glacialis. Journal of Experimental Botany, 2003, 54:405-418
    354. Sub H J, Kim C S, Jung J. Cytochrome b6/f complex as an indigenous photodynamic generator of singlet oxygen in thylakoid membranes. Photochemistry and photobiology, 2000, 71:103-109
    355. Takezawa D, Minami A. Caimodulin-binding proteins in bryophytes: identification of abscisic acid-, cold-, and osmotic stress-induced genes encoding novel membrane-bound transporter-like proteins. Biochem Biophys Res Commun, 2004, 317:428-436
    356. Takumi S, Koike A, Nakata M, Kume S, Ohno R, Nakamura C. Cold-specific and light-stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcorl 5 encoding a chloroplast-targeted protein. Journal of Experimental Botany, 2003, 54:2265-2274
    357. Talts P, Parnik T, Gardestrom P, Keerberg O. Respiratory acclimation in Arabidopsis thaliana leaves at low temperature. J. Plant Physiol, 2004, 161:573-579
    358. Tao D L, Oquist G, Wingsle G. Active oxygen scavengers during cold acclimation of Scots pine seedlings in relation to freezing tolerance. Cryobiology, 1998, 37:38-45
    359. Taylor N J, Cowan A K. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado. J Plant Res., 2004a, 117: 121-130
    360. Taylor N J, Cowan A K. Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in 'Hass' avocado. Journal of Plant Research, 2004b, 117:121-130
    361. Tetlow I J, Davies E J, Vardy K A, Bowsher C G, Burrell M M, Emes M J. Subcellular localization of ADPglucose pyrophosphorylase in developing wheat endosperm and analysis of the properties of a plastidial isofonn. Journal of experimental botany, 2003, 54:715-725
    362. Thomashow M F. Role of cold-responsive genes in plant freezing tolerance. Plant Physiol, 1998, 118:1-8
    363. Tsonev T, Velikova V, Georgieva K, Hyde P F, Jones H G, Low Temperature Enhances Photosynthetic Down-regulation in French Bean (Phaseolus vulgaris L.) Plants. Annals of Botany, 2003, 91: 343-352
    364. Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C. New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes & Genetic Systems, 2000, 75: 179-188
    365. Tsugita A, Kawakami T, Uchiyama Y, Kamo M, Miyatake N, Nozu Y. Separation and characterization of rice proteins. Electrophoresis, 1994, 15: 708-720
    366. Tsvetanov S, Ohno R, Tsuda K, Takumi S, Mori N, Atanassov A, Nakamura C. A cold-responsive wheat (Triticum aestivum L.) gene wcorl4 identified in a winter-hardy cultivarMironovska 808'. Genes & Genetic Systems, 2000, 75: 49-57
    367. Tweedie J W, Segel I H. Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi. Biochim Biophys Acta, 1970, 196: 95-106
    368. Uemura M, Steponkus P L. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiology, 1994, 104: 479-496
    369. Vaitilingom M, Pijnenburg H, Gendre F, Brignon P. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods. J Agric Food Chem, 1999,47: 5261-5266
    370. Van Lijsebettens M, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M. An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. The EMBO journal, 1994, 13: 3378-3388
    371. Veljovic-Jovanovic S, Milovanovic L, Oniki T, Takahama U. Inhibition of catalase by sulfite and oxidation of sulfite by H2O2 cooperating with ascorbic acid. Free Radic.Res., 1999,31 Suppl: S51-S57
    372. Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu J K. Techniques For Molecular Analysis Methods And Concepts In Quantifying Resistance To Drought, Salt And Freezing, Abiotic Stresses That Affect Plant Water Status. The Plant Journal, 2006, 45: 523
    373. Vieira R F, Salgado L T, Ferreira A C D. Performance of common bean using seeds harvested from plants fertilized with high rates of molybdenum. Journal of Plant Nutrition, 2005, 28: 363-377
    374. Vierling E, Kimpel J A. Plant responses to environmental stress. Current Opinion in Biotechnology, 1992,3: 164-170
    375. Vijayan P, Browse J. Photoinhibition in Mutants of Arabidopsis Deficient in Thylakoid Unsaturation. Plant Physiology, 2002, 129: 876-885
    376. Viswanathan C. Molecular genetic analysis of cold-regulated gene transcription. Philosophical Transactions: Biological Sciences, 2002, 357: 877-886
    377. Vogel G Plant science: auxin begins to give up its secrets. Science, 2006,313: 1230-1231
    378. Vunkova-Radeva R, Yaneva I, Strumin P. Mo-containing enzymes responses to low temperature stress of winter wheat grown on acid soil. Bulgarian Journal of Plant Physiology, 2003, 14: 382-383
    379. Wanner LA, Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant Physiology, 1999, 120:391-399
    380. Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell and Environment, 2003, 26: 1515-1523
    381. Wasinger V C, Cordwell S J, Cerpa-Poljak A, Yan J X, Gooley A A, Wilkins M R, Duncan M W, Harris R, Williams K L, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16: 1090-1094
    382. Watanabe A, Nakazono M, Tsutsumi N, Hirai A. AtUCP2: a novel isoform of the mitochondrial uncoupling protein of Arabidopsis thaliana. Plant & Cell Physiology, 1999,40: 1160-1166
    383. Watanabe K, Kito M, Ueno S, Mitsuda H. Relationships of membrane phospholipids to freezing resistance of cultured green Lavandula vera cells. Agricultural & Biological Chemistry, 1986, 50: 1791-1796
    384. Wege H, Chui M S, Le H T, Tran J M, Zern M A. SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activity. Nucleic acids research,2003,31:3-6
    385.Weiser C J. Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science, 1970, 169: 1269
    386. Welti R, Li W, Sang Y, Biesiada H, Zhou H E, Rajashekar C B, Williams T D, Wang X. Profiling membrane lipids in plant stress responses. Role of phospholipase D(alpha) in freezing-induced lipid changes in Arabidopsis. Journal of Biological Chemistry, 2002, 277: 31994-32002
    387. Willey D L, Gray J C. Synthesis and assembly of the cytochrome bf complex in higher plants. Photosynthesis Research, 1988, 17: 125-144
    388. Willms I, Malkin R, Chain R K. Quinone interactions with the chloroplast cytochrome b6-f complex. Archives of biochemistry and biophysics, 1988, 263: 36-44
    389. Witt W, Mauk C S, Yelenosky G, Bausher M G, Mayer R T. The physiology of cold hardiness in Citrus genotypes. Effect of cold-hardening temperatures and plant growth regulators on glycoprotein and isoenzyme profiles. Angewandte Botanik, 1988, 62: 311-323
    390. Wolfraim L A, Langis R, Tyson H, Dhindsa R S. cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol, 1993, 101: 1275-1282
    391. Wu G, Wilen R W, Robertson A J, Gusta L V. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiol, 1999, 120: 513-520
    392. Xiong L, Ishitani M, Lee H, Zhu J K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell, 2001, 13: 2063-2083
    393. Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165-183
    394. Xu C C, Li L, Kuang T. The inhibited xanthophyll cycle is responsible for the increase in sensitivity to low temperature photoinhibition in rice leaves fed with glutathione. Photosynthesis Research, 2000, 65: 107-114
    395. Xu D, Duan X, Wang B, Hong B, Ho T H D, Wu R. (1996). Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice: Am Soc Plant Biol.
    396. Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Molecular Genetics and Genomics, 1993, 236: 331-340
    397. Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K. Nitrate Reductase is Responsible for Elicitin-induced Nitric Oxide Production in Nicotiana benthamiana. Plant Cell Physiol, 2006, 47: 726-735
    398. Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS letters, 2000, 468: 89-92
    399. Yamori W, Noguchi K O, Terashima I. Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment, 2005, 28: 536-547
    400. Yaneva I, Mack G, VunkovaRadeva R, Tischner R. Changes in nitrate reductase activity and the protective effect of molybdenum during cold stress in winter wheat grown on acid soil. Journal of Plant Physiology, 1996, 149: 211 -216
    401. Yaneva I A, Baydanova V D, Vunkova-Radeva R V. Nitrate reductase activation state in leaves of molybdenum-deficient winter wheat. Journal of Plant Physiology, 2000, 157: 495-501
    402. Yaneva I A, Hoffmann G W, Tischner R. Nitrate reductase from winter wheat leaves is activated at low temperature via protein dephosphorylation. Physiol Plant, 2002, 114: 65-72
    403. Yang J, Stern D B. The spinach chloroplast endoribonuclease CSP41 cleaves the 3'-untranslated region of petD mRNA primarily within its terminal stem-loop structure. The Journal of biological chemistry, 1997,272: 12874-12880
    404. Yang Z, Midmore D J. A Model for the Circadian Oscillations in Expression and Activity of Nitrate Reductase in Higher Plants. Ann Bot, 2005,96: 1019-1026
    405. Yates J R. Mass spectrometry and the age of the proteome. J Mass Spectrom, 1998, 33: 1-19
    406. Yesbergenova Z, GuoHua Y, Oron E, Softer D, Fluhr R, Sagi M. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant Journal, 2005, 42: 862-876
    407. Yokoi S, Higashi S I, Kishitani S, Murata N, Toriyama K. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis of rice. Molecular Breeding: New Strategies in Plant Improvement, 1998,4:269-275
    408. Yu M, Hu C X, Wang Y H. Influences of seed molybdenum and molybdenum application on nitrate reductase activity, shoot dry matter, and grain yields of winter wheat cultivars. Journal of Plant Nutrition, 1999,22: 1433-1441
    409. Yu M, Hu C X, Wang Y H. Molybdenum efficiency in winter wheat cultivars as related to molybdenum uptake and distribution.' Plant and Soil, 2002,245: 287-293
    410. Zakhurul-I, Vernichenko-IV, Obukhovskaya-LV, Osipova-LV. Influence of nitrogen, molybdenum, and zinc on the drought resistance of spring wheat. Russian Agricultural Sciences, 2000, 1-5
    411. Zhang J, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant & Cell Physiology, 1994, 35: 785-791
    412. Zhang S W, Miao F, Wang C F. Low temperature wheat germplasm and its leaf photosynthetic traits and structure characteristics. Progress in Natural Science, 2004, 14: 483-488
    413. Zhou B L, Arakawa K, Fujikawa S, Yoshida S. Cold-induced alterations in plasma membrane proteins that are specifically related to the development of freezing tolerance in cold-hardy winter wheat. Plant & Cell Physiology, 1994, 35: 175-182
    414. Zhu B, Chen T H H, Li P H. Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta, 1996, 198: 70-77
    415. Zhu Y G, Smith S E. Seed phosphorus (P) content affects growth, and P uptake of wheat plants and their association with arbuscular mycorrhizal (AM) fungi. Plant & Soil, 2001, 231: 105-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700