挤压成形弹—塑性接触磨损微观机理及磨损控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤压技术具有“高效、优质、低消耗”的优点,在技术上和经济上都有很高的实用价值。已广泛应用于机械、仪表、电器、轻工、宇航、船舶、军工等工业部门,已成为金属塑性成形技术中不可缺少的重要加工手段之一。
     但挤压工作状态复杂,模具寿命低,制约了挤压技术的应用和发展。随着新材料和新产品的开发,对挤压模具寿命提出了更高要求。模具寿命是一个综合性的技术问题,在挤压成形过程中,磨损是影响模具寿命的决定性因素,尤其在高温成形过程中,模具因磨损而失效的情况超过70%。模具的磨损不是材料的固有特性,与工况条件、模具材料、坯料材料、表面形貌、接触方式、润滑方式等多种复杂因素有关。模具的磨损是一个热(温度)-力(摩擦力)-化学介质(润滑剂)多因素相互耦合作用下的非线性动力学问题,涉及到塑性力学、摩擦学、金属学、化学、热力学等多门学科的交叉知识,至今未形成统一的理论体系。因此研究挤压模具的磨损机理及其控制方法,对提高挤压模具寿命,丰富和发展塑性加工摩擦学具有重要理论意义和现实意义。
     本文从挤压模具磨损的微观机理出发,探索摩擦力的形成机制和磨损计算方法,分析微凸体的瞬时摩擦温升,开展模具型腔等磨损优化设计和磨损控制方法研究,以全面提高挤压模具的寿命。具体研究工作如下:
     1.首先基于Hertz接触理论,引入塑性方程,建立微观粗糙表面弹塑性接触模型,利用粘着摩擦理论分析摩擦力形成机制,研究挤压过程中微观粗糙表面几何形貌对摩擦系数的影响;然后将Hertz弹性接触理论和热传导的基本理论相结合,研究两粗糙表面相对滑动过程中摩擦引起的微凸体瞬时温升分布情况。
     2.采用热力耦合有限元法计算由坯料塑性变形和坯料与模具间的摩擦引起模具型腔表面的本体温升,并与人工神经网络相结合,用有限元模拟软件分析的数据作为学习样本训练所建立的神经网络模型,以此模型预测挤压模具型腔表面的本体温升,以提高温升计算速度,为模具温升模型的建立奠定基础。
     3.将有限元分析、神经网络和遗传算法相结合,应用于挤压模具型腔优化设计。采用B样条函数插值描述凹模型腔轮廓形状,用有限元数值模拟获得型腔表面节点的应力场、速度场和温度场,基于修正Archard磨损模型计算型腔磨损深度,以此作为样本训练BP神经网络,建立模具型腔控制点与磨损深度之间的映射关系,再以等磨损为目标,采用序列二次规划法和遗传算法优化模具型腔轮廓形状。
     4.采用比拟实验研究在模具钢表面磁控溅射和离子镀TiN系列涂层的摩擦磨损性能,利用扫描电镜和三维形貌仪检测添加稀土元素Y对涂层耐磨性能的改进效果,并探讨其机理。
Extrusion technology has the advantages of high efficiency, good quality and low-energy consuming, which has high practical value in the aspect of technology and economy. Extrusion technology has been widely used in machinery, instruments, electrical apparatus, light industry, aerospace, ship, military industry, and other industrial sectors, which has become one of the indispensable means of processing in metal forming field.
     However, working conditions are complicated in extrusion forming process and die service life is short, which constrain the application and development of extrusion technology. With the development of new materials and products, higher demands are proposed for die service life. Die service life is a comprehensive technology problem. And wear is the predominant factor which affects the die service life, especially at high temperature the failure is caused by wear in over 70% cases during extrusion forming process. Die wear is not the natural characteristic of material, but related to working conditions, die and workpiece material, surface monograph, contact type, lubrication mode and other complicated factors. Die wear is a nonlinear dynamic problem of multi-factor coupling, which involves thermal (temperature) - force (friction) - Chemical (lubricant). The wear is related to plasticity, tribology, metallography, chemistry, thermodynamics and other subjects of cross-knowledge, and has not formed a unified theoretical system. Therefore, the research of wear mechanism and wear control method for extrusion die have important theoretical and practical significance for improving the die service life, enriching and developing the tribology of plastic processing.
     In the aspect of the micro-mechanism of die wear, friction mechanism and calculation method of wear were explored, and the transient friction temperature rise of asperity was analyzed. Wear optimum design of extrusion die cavity and wear control method were researched to improve die service life. Specific research work is as follows:
     1. Based on Hertz contact theory, the model of microscopic elastic-plastic contact was established and friction mechanism was analyzed by adhesive friction theory. Effects of geometrical monograph of microcosmic rough surface on friction coefficient were researched. Then, combining the elastic contact Hertz theory and the fundamental theory of thermal conduction, the transient temperature rise distribution on asperity, which was caused by friction during relative movement between two rough surfaces, was calculated.
     2. Body temperature rise on die cavity surface caused by plastic deformation of workpiece and friction between die and workpiece was calculated by finite element method (FEM). Combining artificial neural network, the established neural network was trained with the simulation results as learning samples. The model was used to predict the body temperature rise of die cavity surface and improve the calculation speed of temperature rise, which lays the foundation for the establishment of temperature rise model of die cavity surface.
     3. Finite-element method, BP Neural Network and genetic algorithms were combined together to optimize extrusion die cavity. The method of B-spline function interpolation had been used to describe extrusion die cavity profile. The temperature, pressure and velocity field of nodes on the cavity surfaces were gained by FEM simulation. Wearing depths of extrusion die profile were calculated by modified Archard theory. The results were used as samples to train BP neural network, so that nonlinear mapping relation between reference point of die profile and wearing depth was established. In order to obtain uniform wearing depth, sequential quadratic programming and genetic algorithms were applied to optimize cavity profile of the extrusion die.
     4. Friction and wear properties of die surfaces, which were treated by magnetron sputtering and ion coating TiN, were studied by analogy experiment. The improving effect and mechanism of the wear resistance of coating by the adding rare earth element Y were investigated by scanning electron microscope (SEM) and 3-D topography instrument.
引文
[1]张发致.模具先进制造技术[M].北京:机械工业出版社.2003.
    [2]王都.加快模具工业发展fJl.计算机辅助设计与制造,2002(3):3-4.
    [3]郑涌.模具行业现状及其发展趋势『J1.科技信息,2007(4):64-65.
    [4]周永泰.中国模具工业的现状与发展[J].电加工与模具,2005,(S1):8-12.
    [5]周永泰.自主创新“上水平”[J].现代制造,2005,(8):36-37.
    [6]秦珂.从模具工业发展看模具加工设备市场[J].现代制造,2006,(5):66-69.
    [7]周永泰.中国模具工业的现状与发展[J].航空制造技术,2007,(12):37-39.
    [8]2007年中国模具进出口情况分析http://www.diemouldchina.com/cn/news-show.aso?C id=67
    [9]邹济林.表面强化技术在模具型腔的应用[J].模具工业,2001,5:44-47.
    [10]洪深泽.挤压工艺及模具设计[M].北京:机械工业出版社,1996:1-7.
    [11]贾俐俐.挤压工艺及模具[M].北京:机械工业出版社,2004.
    [12]杨长顺.冷挤压模具设计IM].北京:国防工业出版社,1994.
    [13]模具实用技术丛书编委会编.模具材料与使用寿命IMl.北京:机械工业出版社,2000.
    [14]刘静安.轻合金挤压工具与模具(下册)[M].北京:冶金工业出版社,1990.
    [15]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [16]齐毓霖.摩擦与磨损[M].北京:高等教育出版社,1986:59-61.
    [17]高彩桥,刘家浚.材料的粘着磨损与疲劳磨损[M].北京:机械工业出版社,1989.
    [18]周劲南.摩擦学原理『M1.武汉:武汉水运工程学院,1993.
    [19]克拉盖尔斯基.摩擦磨损计算原理[M].北京:机械工业出版社,1982.
    [20]茹铮,余望等.塑性加工摩擦学[M].北京:科学出版社,1992:9-10.
    [21]万胜狄.金属塑性成形原理[M].北京:机械工业出版社,1995.
    [22]M.Bakhshi-Jooybari.A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process[J].Journal of Materials Processing Technology,125-126,2002:369-374.
    [23]J.EArchard.Contact and rubbing of flat surfaces[J].Journal of Applied Physics,1953,24:981-988.
    [24]汪一麟译.摩擦磨损计算原理[M].北京:机械工业出版社,1980.
    [25]Nam P.Sub.The delamination theory of wear[J].Wear,1973,25(1):111-124.
    [26]邵荷生,曲敬信,许小棣等.摩擦与磨损[M].北京:煤炭工业出版社,1992:142-148.
    [27]R.S.Lee and J.L.Jou.Application of numerical simulation for wear analysis of warm forging die [J].Journal of Materials Processing Technology,2003,140(1-3):43-48.
    [28]J.D.Fletcher,Y.H.Li,J.H.Beynon.Influence of surface conditions in hot forming determined by ring upsetting:a numerical and experimental investigation[J].Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,1998,212(6):453-465.
    [29]E.Doege,H.Nagele,U.Schliephake.Aspects of wear prediction in precision forging[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1994,208032):111-119.
    [30]J.H.Beynon.Tribology of hot metal forming[J].Tribology International,1998,31(1-3):73-77.
    [31]R.G.Snape,S.E.Clift,A.N.Bramley.Sensitivity of finite element analysis of forging to input parameters[J].Journal of Materials Processing Technology,1998,82(1-3):21-26.
    [32]P.H.Hansen.Analysis of wear distribution in forging dies[C].Denmark:Technical University of Denmark,1990.
    [33]E.Fdder,K.Mahjoub Wear prediction of hot working die.First ESAFORM Conference on Material Forming.1998,93-94.
    [34]U.Stahlberg,J.Hallstrom.A comparison between two wear models[J].Journal of Materials Processing Technology,1999,87(1-3):223-229.
    [35]Telliskivi Tand.Simulation of wear in a rolling-sliding contact by asemi-winkler model and the Arehard's wear law[J].Wear,2004,256(7-8):817-831.
    [36]M.Eriksen.The influence of die geometry on tool wear in deep drawing[J].Wear,1997,207(1-2):10-15.
    [37]J.H.Kang,I.W.Park,J.S.Jae and et al.A study on a die wear model considering thermal softening:(Ⅰ)ConstruCtion of the wear model[J].Journal of Materials Processing Technology,1999,96(1-3):53-58.
    [38]J.P.Tu,X.H.Jie,Z.Y.Mao and et al.The effect of temperature on the unlubricated sliding wear of 5 CrNiMo steel against 40 MnB steel in the range 400-600"C[J].Tribology International,1998,31(7):347-353.
    [39]H.So.The mechanism of oxidationa[J].Wear,1985,184:161-167.
    [40]Olivier Brucelle and G6rard Bernhart.Methodology for service life increase of hot forging tools [J].Journal of Materials Processing Technology,1999,87(1-3):237-246.
    [41]Dae-Cheol Ko,Dong-Hwan Kim and Byung-Min Kim.Finite element analysis for the wear of Ti-N coated punch in the piercing process[J].Wear,2002,252(11-12):859-869.
    [42]Thomas Bjork,Richard Westergard and Sture Hogrnark.Wear of surface treated dies for aluminium extrusion a ease study[J].Wear,2001,249(3-4):316-323.
    [43]国家自然科学基金委员会工程与材料科学部[C].“十一五”机械学科重点资助领域建议文集,北京:机械:机械工业出版社,2004.
    [44]Meng Yong-Gang,Wen Shi-Zhu and S.Hiroyuki.A finite dement approach to plasto-hydrodynamie lubrication in cold forging[J].Wear,1993,160(1):163-170.
    [45]F.T.Barwell.Advances in friction and wear mechanisms[J].Tfibology International,1984,17(6):299-307.
    [46]D.J.Whitehouse.Surface topography and quality and its relevance to wear[M].Fundament of Tfibolgy,Edited by Suh N P,Bristol:Institute of Physics Pub,1987:17-52.
    [47]Soren Andersson,Anders Soierberg,and Ulf Olofsson.A random wear model for the interaction between a rough and a smooth surface[J].2008,264(9-10):763-769.
    [48]M.A.Masen,M.B.deRooij.Abrasive wear between rough surfaces in deep drawing[J].Wear,2004,256(6):639-646.
    [49]Jiaren Jiang,R.D.AmelI.The effect of substrate surface roughness on the wear of DLC coatings [J].Wear,2000,239(1):1-9.
    [50]U.Dulias,L.Fang,K.H.Zum Gahr.Effect of surface roughness of self-mated alumina on friction and wear in isooetane-lubdcated reciprocating sliding contact[J].Wear,2002,252(3-4):351-358.
    [51]Tug(?)rulO"zel,Yig(?)it Karpat.Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J].International Journal of Machine Tools and Manufacture,2005,45(4-5):467-479.
    [52]葛世荣等.摩擦学复杂系统及其问题的量化研究方法[J].摩擦学学报,2002,22(5):405-408.
    [53]G.Y.Zhou,M.C.Leu and D.Blackmore.Fractal geometry model for wear prediction[J].Wear,1993,170(1):1-14.
    [54]Klimczak T,et al.Analysis of real contact area and change of surface texture on deep drawn steel sheets[J].Wear,1994,179(1-2):129-135.
    [55]Pfestorf M,Engel U and Geiger M.Three-dimensional characterization of surfaces for sheet metal forming[J].Wear,1998,216(2):244-250.
    [56]Yong Ao,Q.J.Wang and P.Chen.Simulating the worn surface in a wear process[J].Wear,252,2002(1-2):37-47.
    [57]Ge Shirong,Chen Gouan.Fraetal prediction models of sliding wear during the rtmning-in process[J].Wear,1999,231(2):249-255.
    [58]Priit Poira,Soren Andersson.Finite element analysis wear simulation of a conical spinning contact considering surface topography[J].Wear,1999,224(1):13-21.
    [59]Hiroyuki Saiki,Yasuo Marumo.Influence of the roughness geometry of tool surface and the flow stress of coated solid lubricants on tribo-conditions in cold forging[J].Journal of Materials Processing Tech,2003,140(1-3):25-29.
    [60]S.Schreck,K.H.Zum Gahr.Laser-assisted structuring of ceramic and steel surfaces for improving tfibological properties[J].Applied Surface Science,2005,247(1-4):616-622.
    [61]方建成,王续跃,周锦进.电火花加工表面形貌与摩擦磨损fJl.电加工与模具,1995,5:25-27.
    [62]费斌,蒋庄德.工程粗糙表面粘着磨损的分形学研究[J].摩擦学学报。1999,19(1):78-82.
    [63]刘峰璧,谢友柏.二体磨损过程预测模型[J].西安交通大学学报,1998,32(2):20-23.
    [64]王勖成.有限元法[M].北京:清华大学出版社,2003.
    [65]赵志业.金属塑性加工力学[M].北京:冶金工业出版社,2003.
    [66]俞汉清、陈金德.金属塑性成形原理理[M].北京:机械工业出版社,2007.
    [67]李尚健.金属塑性成形过程模拟[M].北京:机械工业出版社,2002.
    [68]荣先成.有限元法fM]..成都:西南交通大学出版社,2007.
    [69]R.D.Cook.Concepts and Application of Finite Element Analysis[J].Finite Elements in Aanlysis and vivration,1983,87(4):657-658.
    [70]M.J.Turner.Stiffness and Deflection Analysis of Complex Structures[J].Journal of Aero Science,1956,23(9):18-25.
    [71]R.W.Clogh.The Finite Element Method in Plane Stress Analysis.Proc.2nd Conference on Electronic Computation[M].American Society of Civil Engineers,1960:345-352.
    [72]Y.K.Cheung and O.C.Zinkiewicz.Plates and tanks on elastic foundations-an application of finite element method[J].International Journal of Solids and Structures,1965,1(4):451-461.
    [73]P.P.Lynn and A.P.Boresi.Kinds of convergence and improved convergence of conforming finite element solutions in plate bending[J].Nuclear Engineering and Design,1970,11(2):159-176.
    [74]Fumio Kikuchi and Yoshio Ando.A new variational functional for the finite-element method and its application to plate and shell problems[J].Nuclear Engineering and Design,1972,21(1):95-113.
    [75]Nguyen Dang Hung.Duality in the analysis of shells by the finite element method[J].International Journal of Solids and Structures,1971,7(3):281-299.
    [76]Marcelo Epstein and H.Peter Huttelmaier.A finite element formulation for multilayered and thick plates[J].Computers & Structures,1983,16(5):645-650.
    [77]S.J.Kim and J.T.Oden.Finite element analysis of a class of problems in finite elastoplasticity based on the thermodynamical theory of materials of type N[J].Computer Methods in Applied Mechanics and Engineering,1985,53(3):277-302.
    [78]Marek Mazurkiewicz and Wieslaw Ostachowicz.Theory of finite element method for elastic contact problems of solid bodies[J].Computers & Structures,1983,17(1):51-59.
    [79]He Liu,Zhaohui Yang and Michael S.Gaulke.Structural identification and finite element modeling of a 14-story office building using recorded data[J].Engineering Structures,2005,27(3):463-473.
    [80]J.LM.Fernandes,P,A.F.Martins.All-hexahedral remeshing for the finite element analysis of metal forming processes[J].Finite Elements in Analysis and Design,2007,43(8):666-679.
    [81]J.K.Farooqi and M.A.Sheikh.Finite element modelling of thermal transport in ceramic matrix composites[J].Computational Materials Science,2006,37(3):361-373.
    [82]M.P.Rodriguez and N.YA.Shammas.Finite element simulation of thermal fatigue in multilayer structures:thermal and mechanical approach[J].Microelectronics Reliability,2001,41(4):517-523.
    [83]Ivelin Ivanov and Ala Tabiei.Collapsible shell finite element for composite materials[J].Finite Elements in Analysis and Design,2003,39(4):343-354.
    [84]Xu-dong LIU,Xiao-dong YANG,and et al.Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold[J].Journal of Iron and Steel Research,2007,14(3):7-13.
    [85]Jianxin Gao,Wei Xu,Zuquan Ding.3D finite element mesh generation of complicated tooth model based on CT slices[J].Computer Methods and Programs in Biomedicine,2006,82(2):97-205.
    [86]S.Kobayashi,S.I.Oh,T.Altan.Metal Forming and the Finite-ElementOxford:Oxford University Press,1989.
    [87]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [88]孔祥谦,王传傅.有限元法在传热学中的应用[M].北京:科学出版社,1986.
    [89]J.T.Oden,D.R.Bhandari and et al.A new approach to the finite-element formulation and solution of a class of problems in coupled thermoelastoviscoplasticity of crystalline solids[J].Nuclear Engineering and Design,1973,24(3):420-430.
    [90]O.C.Zienkiewicz,P.C.Jain and et al.Flow of solids during forming and extrusion:Some aspects of numerical solutions[J].International Journal of Solids and Structures,1978,14(1):15-38.
    [91]N.Rebelo and S.Kobayashi.A coupled analysis of viscoplastic deformation and heat transfer-Ⅰ:Theoretical considerations[J].International Journal of Mechanical Sciences,1980,22(11):699-705.
    [92]N.Rebelo and S.Kobayashi.A coupled analysis of viscoplastic deformation and heat transfer-Ⅱ:Aiplalications[J].International Journal of Mechanical Sciences,1980,22(11):707-718.
    [93]刘建生.金属塑性成形热刚粘塑性复合分析[D].哈尔滨:哈尔滨工业大学,1985.
    [94]孙捷先,郭会光,刘建生.金属塑性加工的传热与变形的复合分析[C].中国机械工程学会锻压学会第四届学术年会论文集.北京,北京机械工业出版社,1987:55-58.
    [95]罗子健,卢义强.塑性加工过程的变形和传热耦合分析方法的实验验证[J].西北工业大学学报,1987,7(4):413-422.
    [96]章争荣,肖小亭.圆柱体扭压成形的热力耦合分析[J].塑性工程学报,1998,5(4):72-77.
    [97]李晓谦,李毅波.基于MARC平台的连续铸轧热力耦合分析[J].中国机械工程,2006,17(9):915-918.
    [98]朱国明,康永林,陈伟等.H型钢多道次可逆开坯轧制过程的二维热力耦合仿真分析[J].中国机械工程,2007,18(14):1747-1751.
    [99]陈林,李晓谦.板带热轧三维有限元热力耦合仿真分析[J].机械设计与制造,2007,(9):106-108
    [100]A.F.M.Arif,A.K.Sheikh and et al.A study of die failure mechanisms in aluminum extrusion[J].Journal of Materials Processing Technology,2003,134(3):318-328.
    [101]K.S.Pradip.Thermodynamics and tribology in aluminum extrusion[J].Wear,1998,218(2):179-190.
    [102]T.Chanda,J.Zhou and J.Duszezyk.FEM analysis of aluminium extrusion through square and round dies[J].Materials & Design,2000,21(4):323-335.
    [103]Zhong Hu,Lihua Zhu,Benyi Wang and et al.Computer simulation of the deep extrusion of a thin-walled cup using the thermo-mechanically coupled elasto-plastic FEM[J].Journal of Materials Processing Technology,2000,102(1-3):128-137.
    [104]熊勇刚,李军辉,王桥医等.快速超薄铸轧机铸轧辊变形热力耦合模型[J].中南工业大学学报(自然科学版),2002,33(4):412-414.
    [105]肖祥麟.摩擦学导论[M].上海:同济大学出版社,1990.
    [106]张嗣伟.基础摩擦学[M].东营:石油大学出版社,2001.
    [107]江亲瑜,李宝良,孙晓云.凸轮机构磨损数值仿真软件研制[J].润滑与密封,2000(4):2-4.
    [108]李宝良,江亲瑜.凸轮机构系统磨损及可靠性寿命的数值仿真[J].摩擦学学报,2004,24(6):550-554.
    [109]左玉梅,王守尊.基于Maflab/Simulink的内燃机凸轮挺柱磨损数值计算的仿真研究[J].海军工程大学学报,,2005,17(2):75-78.
    [110]何荣国,江亲瑜,姚一富.渐开线斜齿圆柱齿轮磨损的数值仿真[J].润滑与密封,,2007,32(3):88-91.
    [111]B.Painter,R.Shivpuri and T.Altan.Prediction of die wear during hot-extrusion of engine valves [J].Journal of Materials Processing Technology,1996,59(1-2):132-143.
    [112]Germ-An Lee and Yong-Taek Im.Finite-element investigation of the wear and elastic deformation of dies in metal forming[J].Journal of Materials Processing Technology,1999,89-90:123-127.
    [113]D.H.Kim,H.C.Lee,B.M.Kim and et al.Estimation of die service life against plastic deformation and wear during hot forging processes[J].Journal of Materials Processing Technology,2005,166(3):372-380.
    [114]彭必友,殷国富,傅建等.铝型材挤出速度对模具磨损程度的影响[J].中国有色金属学报,2007,17(9):1453-1459.
    [115]周杰,赵军,安治国.热挤压模磨损规律及磨损对模具寿命的影响[J].中国机械工程,2007,18(17):2112-2115.
    [116]A.A.Yevtushenko and E.G.Ivanyk.Stochastic contact model of rough frictional heating surfaces in mixed friction condition[J].Wear,1995,188(1-2):49-55.
    [117]张培耘,戴勇,华希俊等.国内模具工业技术现状与发展趋势[J].机械设计与制造工程,2000,29(6):1-2.
    [118]吴丽萍,施发中.有关模具先进制造技术集成的探讨[J].锻压技术,2000,(6):54-56.
    [119]张旭海,蒋建清.塑料模具的表面强化技术[J].机械制造与自动化,2003,(5):4-7.
    [120]曲庆文,邵淑玲.模具设计中的摩擦学问题研究[J].润滑与密封,2004,(2):66-68.
    [121]夏卿坤,胡冠昱.提高冷冲模具使用寿命的途径『J1.长沙大学学报,2004,18(4):29-31.
    [122]Si,Ho-Mun,Cho,Chongdu,Kwahk,Si-Young.A hybrid method for casting process simulation by combining FDM and FEM with an efficient data conversion algorithm[J].Journal of Materials Processing Technology,2003,133(3):322-321.
    [123]J.Zhou,L.Li,J.Duszczyk.3D FEM simulation of the whole cycle of aluminium extrusion throughout the transient state and the steady state using the updated Lagrangian approach[J].Journal of Materials Processing Technolog,2003,134(3):383-397.
    [124]S.M.Byon,S.M.Hwang.FEM-based process optimal design in steady-state metal forming considering strain-hardening[J].Computers and Structures,2001,79(14):1363-1375.
    [125]W.Annicchiarico,M.Cerrolaza.Structural shape optimization 3D finite-element models based on genetic algorithms and geometric modeling[J].Finite Elements in Analysis and Design,2001,37(5):403415.
    [126]S.Roy,S.Ghosh,R.Shivpuri.New approach to optimal design of multi-stage metal forming processes with micro genetic algorithms[J].International Journal of Machine Tools &Manufacture,1997,37(1):29-44.
    [127]倪正顺,帅词俊,钟掘.基于热力耦合的热挤压模具结构参数优化设计[J].中国机械工程,2004,15(9):757-760.
    [128]吴向红,赵国群,栾贻国等.铝材长方形空心管挤压过程数值模拟与模具结构优化设计[J].机床与液压,2006,(11):20-27.
    [129]邹琳.基于遗传算法的挤压模具多目标优化设计与研究[D].武汉:华中科技大学,2004.
    [130]N.H.Kim,C.G.Kang,B.M.Kim.Die design optimization for axisymmetric hot extrusion of metal matrix composites.International Journal of Mechanical Sciences,2001,43(6):1507-1520.
    [131]Zou Lin,Xia Juchen,Wang Xinyun and et al.Optimization of die prof'de for improving die life in the hot extrusion process[J].Journal of Materials Processing Technology,2003,142(3):659-664.
    [132]王智祥,林立杰.表面强化新技术在模具制造领域中的应用与进展[J].模具工业,2004(7):52-56.
    [133]曹光明.H13钢模具的表面强化技术[J].模具技术,2004(4):59-62.
    [134]付青峰,罗军明,周酷.H13钢激光热处理组织与性能研究[J].江西科学,2004,22(4):244-245.
    [135]李永良,林文廉.(Si,N)离子注入H13钢注入层微观结构和摩擦学性能研究[J].真空电子技术,1997,(5):16-20.
    [136]李永良,李维超,周固等.C+Ti双离子注入H13钢抗腐蚀结构的分析[J].核技术,2001,24(1):33-38.
    [137]张通和,吴瑜光.离子束表面工程技术与应用[M].北京:机械工业出版社,2005.
    [138]张蓉,伍利群.离子注入技术在模具表面强化上的应用[J].轻工机械,2003,(4):62-64.
    [139]潘应君,吴新杰,张细菊等.H13模具钢离子渗氮层的组织与性能[J].金属热处理,2003,28(5):39-42.
    [140]谭云柱.锻造模具钢H13的热处理及氮碳共渗[J].哈尔滨轴承,2007,28(1):7-10.
    [141]曹光明.H13热作模具钢的表面热处理[J].特殊钢,2005,26(1):34-37.
    [142]张照军,张鬲君.铝型材热挤压模窄缝硫碳氮共渗[J].金属热处理,2002,27(4):37-39.
    [143]揭晓华,董小红,黄拿灿等.H13钢碳、氮、氧、硫、硼五元共渗层的性能研究[J].金属热处理,2002,27(7):21-23.
    [144]Kim Gwang-Seok,Lee Sang-Yul,Lee Sang-Yong,and et al.Duplex treatment for improvement of the die performance[J].Materials Science Forum,2003,426-432(3):2617-2622.
    [145]李金桂.表面强化技术与模具寿命[J].中国表面工程,2002,(1):2-7.
    [146]周庆刚,白新德,徐健等.CrN/Cr镀膜改性的H13钢摩擦学性能[J].清华大学学报(自然科学版),2003,43(6):762-765.
    [147]S.Gulizia,M.Z.Jahodi and E.D.Doyle.Performance evaluation of PVD coatings for high pressure die casting[J].Surface and Coatings Technology,2001.140(3):200-205.
    [148]马胜利,马大衍,王昕等.脉冲直流等离子体辅助化学气相沉积TiN和TiCN涂层摩擦磨损特性研究[J].摩擦学学报,2003,23(3):179-182.
    [149]C.T.Guo.Amorphous hydrogenated carbon coatings on microrouters by ECR-CVD system[J].Surface and Coatings Technology,2007,201(16-17):7122-7129.
    [150]P.Eh.Hovsepian,Q.Luo,G.Robinson.TiAINNN superlattice structured PVD coatings:A new alternative in machining of alurninium alloys for aerospace and automotive components[J].Surface and Coatings Technology,2006,201(1-2):256-272.
    [151]马胜利,徐可为,乔万奇.气相沉积制备硬质薄膜技术与应用评述[J].真空科学与技术,2002,22(6):438-443.
    [152]P Karvankova,M G J Veprek-heijman,O Zinulka,and et al.Superhard nc-TiN/α-BN and nc-TiN/α-TiBx/α-BN coatings prepared by plasma CVD and PVD:a comparative study of their properties[J].Surface and Coatings Technology,2003,163-164:149-156.
    [153]M.Braic,M.Balaceanu,V.Braie,and et al.Synthesis and characterization of TiN,TiAIN and TiN/ TiA/N biocompatible coatings[J].Surface and Coatings Technology,2005,200(1-4):1014-1017.
    [154]黄瑶,王雷刚,聂爱琴.摩擦学涂层技术在模具减摩抗磨中的应用[J].机械工程师,2004,(1):55-58.
    [155]刘春玲,张连耀.冷挤压模具寿命探讨[J].河北建筑科技学院学报,2004,21(4):83-85.
    [156]王德文.提高模具寿命应用技术实例[M].北京:机械工业出版社,2004:40-48.
    [157]苗瑜,刘方友.影响挤压模具寿命的因素浅析[J].轻合金加工技术,2000,28(10):34-36.
    [158]L.Cser,M.Geiger,K.Lange and et al.Tool life and tool quality in bulk metal forming[J].Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,1993,207(B4):223-239.
    [159]M.Tercelj,I.Perus and R.Turk.Suitability of CAE neural networks and FEM for prediction of wear on die radii in hot forging[J].Tribology International,2003,36(8):573-583.
    [160]汪选国,严新平,李涛生.磨损数值仿真技术的研究进展[J].摩擦学学报,2004,24(2):188-192.
    [161]F.Lebon.Contact problems with friction:models and simulations[J].Simulation Modelling Practice and Theory,2003,11(5-6):449-463.
    [162]Tze-Chi Hsu,Chien-Chin Huang.The friction modeling of different tribological interfaces in extrusion process[J].Journal of Materials Processing Technology,2003,140(1-3):49-53.
    [163]A.Ma"a"tta",P.Vuoristo and T.Ma"ntyla.Friction and adhesion of stainless steel strip against tool steels in unlubrieated sliding with high contact load[J].Tribology International,2001,34(11):779-786.
    [164]B.H.Lee,Y.T.Keum and R.H.Wagoner.Modeling of the friction caused by lubrication and surface roughness in sheet metal forming[J].Journal of Materials Processing Technology,2002,130-131:60-63.
    [165]S.Zhang,P.D.Hodgson,M.J.Cardew-Hall,and et al.A finite element simulation of micro-mechanical frictional behaviour in metal forming[J].Journal of Materials Processing Technology,2003,134(1):81-91.
    [166]李建明.磨损金属学[M].北京:冶金工业出版社,1990.
    [167]B.布尚著,葛世荣译.摩擦学导论[M].北京:机械工业出版社,2007.
    [168]F.P.Bowden,K.E.Ridler.The temperature of lubricated surfaces[J].Proc.R.Soc.Lond,1936,154A:640-656.
    [169]H.Block.Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating condiction[J].Proc general discussion on lubrication and lubricants,Inst mech engrs London,1938,2:222-235.
    [170]J.F.Archard.The temperature of rubbing surfaces[J].Wear,1959,2(6):138-455.
    [171]G.G.Ling,S.L.Pu.Probable interface temperatures of solids in sliding contact[J].Wear,1964,7(1):23-24.
    [172]F.Ling.On temperature transients at sliding interface[J].ASME Journal of LubricationTechnology,1969,7:397-405.
    [173]J.R.Barber.The conduction of heat from sliding solids[J].International Journal of Heat and Mass Transfer,1970,13(5):857-869.
    [174]B.Gecim,W.O.Winer.Transient Temperatures in the Vicinity of an Asperity Contact[J].ASME Journal of Tribology,1985,107:333-342.
    [175]A.Yevtushenko,E.Ivanyk.Effect of the rough surface on the transient frictional temperature and thermal stresses near a single contact area[J].Wear,1996,197(1-2):160-168.
    [176]沈心敏.摩擦学基础[M].北京:北京航空航天大学出版社,1991.
    [177]杨伯森.高速切削技术及其应用[M].北京:机械工业出版社,2002.
    [178]周旭光.特种加工技术[M].西安:西安电子科技大学出版社,2004.
    [179]李云程.模具制造工艺学[M].北京:机械工业出版社,2005.
    [180]卢存伟.电火花加工工艺学[M].北京:国防工业出版社,1988.
    [181]曹凤国.电火花加工技术[M].北京:化学工业出版社,2005.
    [182]李兆东.型腔模具主要加工方法浅析[J].CMET.锻压装备与制造技术,2005,(4):112-115.
    [183]殷燕芳,陈艳山.电火花加工技术在模具制造中的应用[J].轻工机械,2007,25(4):64-66.
    [184]J.A.Greenwood,J.B.P.Williamson.Contact of nominally flat surfaces[J].Proc.Roy.Soc.London,1966,295:300-319.
    [185]K.L.Johnson,J.A.Greenwood and S.Y.Poon.A simple theory of asperity contact in elastohydro-dynamic lubrication[J].Wear,1972,19(1):91-108.
    [186]A.W.Bush,R.D.Gibson and G.P.Keogh.The limit of elastic deformation in the contact of rough surfaces[J].Mechanics Research Communications,1976,40(3):399-403.
    [187]E.J.Abbott and EA.Firestone.Specifying Surface Quality-a method based on accurate measurment and comparison[J].Mechanical Engineering,1933,55:569-572.
    [188]J.Pullen,J.B.P.Williamson.On the plastic contact of rough surfaces[J].Proceedings of the Royal Society of London,1972,327(1569):159-173.
    [189]W.R.Chang,I.Etsion and D.B.Bogy.An elastic plastic model for the contact of rough surfaces [J].ASME J.Tribology,109(2):257-263.
    [190]John I.MeCool.Comparison of models for the contact of rough surfaces[J].Wear,1986,107(1):37-60.
    [191]L.Kogut,I.Etsion.Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat[J].Journal of Applied Mechanics,2002,69(5):657-662.
    [192]A.Yevtushenko,E.Ivanyk.Determination of heat and thermal distortion in braking systems[J].Wear,1995,185(1-2):159-165.
    [193]I.A.Rudzit,Microgeometry and contact interaction of surfaces[M].Zinatis,Riga 1975.
    [194]葛世荣,朱华等.摩擦学的分形[M].北京:机械工业出版社,2005:204-212.
    [195]Murat Taburdagitan and Metin Akkok.Determination of surface temperature rise with thermo-elastie analysis of spur gears[J].Wear,2006,261(5-6):656-665
    [196]A.Yevtushenko,E.Ivanyk.Effect of the rough surface of the transient frictional temperature and thermal stresses near a single contact area[J].Wear,1996,197(1-2):160-168
    [197]Patrice Chantrenne,Martin Raynaud.Study of a macroscopic sliding contact thermal model from microscopic models[J].International Journal of Thermal Sciences,2001,40(7):603-621
    [198]G.Liu,Q.Wang and Y.Ao.Convenient formulas for modeling three-dimensional thermo-mechanical asperity contacts[J].Tdbology International,2002,35(7):411-423
    [199]詹艳然.二维板成形过程的弹塑性有限元模拟[D].南京:南京航空航天大学,1999,12-13.
    [200]汪凌云,刘静安.计算金属成形力学及应用[M].重庆:重庆大学出版社,1991,240-246.
    [201]陈志英.6063铝管挤压成形过程的热力耦合数值模拟[D].太原:太原理工大学硕士论文2004,21-22.
    [202]孔详谦.有限单元法在传热学的应用[M].北京:科技出版社,1986.
    [203]彭颖红,阮雪榆.金属成形过程中热力耦合分析技术的研究.塑性工程学报[J].1994,1(2):3-10.
    [204]蒋宗礼.人工神经网络导论[MI.北京:高等教育出版社,2001:7-12.
    [205]高隽.人工神经网络原理及仿真实例[M].北京机械工业出版社,2003.
    [206]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.
    [207]张乃尧,阎平凡.神经网络于模糊控制[M].北京:清华大学出版社,1998.
    [208]楼顺天,施阳.基于MATLAB的系统分析与设计[MI.西安:西安电子科技大学出版社,2000.
    [209]韩立群.人工神经网络理论、设计及应用[M].北京:化工工业出版社,2002.
    [210]N.H.Kim,C.G.Kang,B.M.Kim.Die design optimization for axisymmetric hot extrusion of metal matrix composites[J].International Journal of Mechanical Sciences,2001,43(6):1507-1520.
    [211]S.K.Lee,D.C.Ko,B.M.Kim.Optimal die profile design for uniform microstructure in hot extruded product[J].International Journal of Machine Tools and Manufacture,2000,40(10):1457-1478.
    [212]徐淑波,赵国群,马新武等.圆形挤压件等通道弯角挤压过程三维数值模拟与参数分析[J]..中国机械工程,2005,16(4):368-373.
    [213]Leigang WANG,Xianping SUN,Yao HUANG.Uniform wearing optimum design of extrusion die profile[J].Key Engineering Materials,2007,353-358:2695-2698.
    [214]孙宪萍,王雷刚,黄瑶等.基于遗传算法的挤压模具型腔形状的优化设计.江苏大学学报,2006,27(6):513-515.
    [215]K.H.哈比希.材料的磨损与硬度[M].北京:机械工业出版社,1987.
    [216]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:32-64.
    [217]飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计[M].北京:电子工业出版社,2003.
    [218]王英、段道华等.正向热挤压凹模优化设计方法的研究[J].中国机械工程,1997,8(4):49-52.
    [219]王英、段道华等.气门热挤压模具的优化设计与数值模拟[J].塑性工程学报,1998,5(1):3-11.
    [220]刘大勇,黄拿灿.稀土铈对热作模具钢TiN系离子镀涂层性能的改进[J].材料保护,2004,37(8):32-34.
    [221]徐向荣,黄拿灿,杨少敏.稀土表面改性在改善高温抗氧化和耐蚀性方面的应用[J].热处理技术与装备,2006,27(3):8-12.
    [222]姜雪峰,刘清才,王海波等.多弧离子镀技术及其应用[J].重庆大学学报,2006,29(10):55-57.
    [223]周志华,傅明喜,黄兴民等.磁控溅射工艺参数对不锈钢薄膜结合性能的影响[J].材料保护,2004,37(11):27-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700