连续铸轧熔体流场的物理与几何耦合规律与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸嘴型腔是形成铸轧铝熔体流场温度场的决定因素。形态好的流场和温度场,是生产高质量铸轧板、提高生产效率的必要条件。本文根据铸轧板几何形状结构要求推导了相应的铸嘴流场和温度场应当具备的形态为:板宽方向上流速应几乎相同,考虑到宽展,两个边部流量可略多一些;中、边部的温度差异刚好使得液穴区的最前沿在保证轧制量的波动范围以内,根据轧辊两侧的冷却能力优于中部,所以铸轧板两侧的温度可以略高于中部。
     本文根据现场实验数据,用计算机辅助工程分析软件ANSYS建立了铝铸轧型腔的模型,模拟各种常见的实际应用过的铸嘴型腔形态,进行了流热耦合分析,使用MATLAB软件对提取的数据进行精确后处理,选取前箱及铸嘴的中间平面、铸嘴的出口平面和出口中线位置作为重点分析部位。
     通过分析两次现场实验的单分流块与双分流块铸嘴模型以及历次实验的累积数据,推导出了流场与温度场的量化设计参考指标,首次提出了用速度和温度相乘的tv值作为新的流热耦合评价体系的评价指标,并应用到本论文的所有模型中。
     通过分析空腔铸嘴结构与出口场的关系,揭示了影响出口场状态的几何因素依其影响排序为:在相同尺寸前箱与液面高度的条件下,型腔出口开口度对流场和温度场的影响最大,其次是出口宽度(沿板宽方向度量),再次是进口开口度。
     通过分析四种常见铸嘴型腔中分流块的作用——水滴型、3C型、偃月型和九块型,在常规到快速的三种出板速度下进行运算,结果显示速度越高,由分流块造成的出口速度温度的突变点附近的不均匀趋势也越明显,说明在常规速度下能满足条件的型腔,到了快速时却不合格,是因为常规时本就存在的不均匀状态,只是到了快速时才凸显出来,因此快速铸轧对流场的温度和速度的设计要求应更加严格。
     优化设计针对3C型铸轧机的铸嘴型腔进行,分析表明:3C型腔应有居中布置的分流块,其尾端距离出口位置越远,对出口流场的不均匀程度改善越好,分流块其他几何参数需要进行匹配,才可得到优化结果。
Shaped nozzle cavity is main element to form the fluid and thermal field. Good fluid and thermal field are necessary to produce high quality the aluminium roll casting strip and to improve production efficiency. This issue derivates the best form of fluid and thermal field: the flow speed at outlet of nozzle distributing along the latitude direction of roll casting strip should be almost the same; the temperature of the two sides and the middle of outlet should differ between the two limits of, and temperature of the middle should be a little lower than that of either side.
     According to data of reality experiments, the fluid fields of the front-box and the nozzle cavity of aluminum roll-casting are performed by using coupled fluid-thermal FEM simulation of the FLOTRAN module of the general finite element analysis software, ANSYS. Based on the post-processing function of ANSYS and MATLAB, the advanced result analysis was conducted. The mid-plane, outlet plane and midline of outlet are chosen to be the emphases of analysis.
     This study infers quantified design reference standard for fluid field and thermal field by analyzing the nozzle models of single and double spacers conducted in two on-the-site experiments and data accumulated in past experiments, and further initially claimed that the "tv" value which is resulted from velocity multiple temperature as a new evaluation indicator for the coupled fluid-thermal analysis evaluation system. These indicators have also been used in all models in this study.
     By analyzing nozzles without spacer, we can make sure the effect degree of the geometrical factors constructing the nozzle cavity are: under the same size of front-box and the level of liquid, aperture width of nozzle outlet has the most effect to fluid and thermal field of model, and length of outlet (along the latitude direction) and aperture width of nozzle entrance are the second and third respectively.
     Experiments were conducted using four ordinary kinds of nozzle cavity, such as water-drop-spacer shape, 3C shape, crescent-spacer shape and nine-spacer shape respectively, calculating under three drawing-sheet speeds varied from the low to high. The uneven distribution exists in regular status outstands in higher speed. So it is recommended a stricter requirement to the design of temperature and velocity of fluid field.
     The analysis of furthur optimization design of the nozzle cavity of 3C shape indicated that an improved result would be attained by using middle spacer with it's tip getting farther from outlet, and good match of geometric parameter of spacers.
引文
[1]刘瑞平,罗茹,赵武壮.对我国铸轧铝板带坯料生产发展的看法[J].世界有色金属,2005(6):9-11.
    [2]夏妍琳.铝业景气向产业链下游转移[EB/OL].(2006-08-03)[2006-12-01]http://finance.sina.com.cn/stock/t/20060803/0535835515.shtml.
    [3]谢建新.材料加工新技术与新工艺[M].北京:冶金工业出版社,2004:151-155.
    [4]程杰.铝连铸连轧机列开发和发展动向[EB/OL].(2004-09-23)[2006-12-02]http://www.qy6.com/news/shownews.php?n=391.
    [5]佚名.铝铸轧.[EB/OL].[2006-12-01]http://www.zyzj.cn/chanpin/zhazhi/ys.htm.
    [6]孙斌煜.板带铸轧理论与技术[M].北京:冶金工业出版社,2002:3-18.
    [7]佚名.铝板带双辊连续铸轧工艺技术[EB/OL].(2006-07-23)[2006-12-05]http://www.gzxcl.org/index3.jsp?I_CoteID=1505&&I_ObjectID=9230&&I_Ty peID=0&&I_CoteType=1.
    [8]马锡良.铝带坯连续铸轧生产[M].长沙:中南工业大学出版社,1992:81-83
    [9]周光垌,严宗毅,许世雄,等.流体力学(第二版)上册[M].北京:高等教育出版社,2000:9-11.
    [10]isotropic,sun20,Tableau.有限元法和有限体积法的差别[EB/OL].(2000-10-31)[2006-12-12]http://www.newsmth.net/bbsanc.php?path=%2Fgroups%2F sci.faq%2FFEA%2F7%2FM.1085927288.00.
    [11]ludi.有了解“边界元”的吗[EB/OL].(2003-10-22)[2006-12-12]http://www.newsmth.net/bbsanc.php?path=%2Fgroups%2Fsci.faq%2FFEA%2F7%2FTheo ry%2Fbem%2FM.1078112301.60.
    [12]stujjj.有限元法迅猛发展的原因[EB/OL].(2001-06-09)[2006-12-17]http://www.newsmth.net/bbsanc.php?path=%2Fgroups%2Fsci.faq%2FFEA%2F7%2FTheory%2Foutline%2FM.999696478.A.
    [13]杜万明.铸轧铝板带铸轧区内液穴深度变化规律的探讨[J].轻合金加工技术,1999,27(10):11-14.
    [14]崔小朝,史荣,曾建潮.变形体凝固传热焓式有限元数学模拟与过程仿真[J].系统仿真学报,1997,12(4):29.
    [15]苗雨川,邸洪栓,张晓明,等.双辊薄带钢铸轧过程的流场温度场耦合数值模拟[J].钢铁研究,2000(2):32-35.
    [16]孙斌煜,张洪,孙航临.流函数法在铸轧变形理论分析中的应用[J].中国有色金属学报,1999,9(1):115.
    [17]史荣,崔小朝,孙斌煜.铝带坯连续铸轧凝固过程的数值模拟[J].中国有色金属学报,1996,6(2):98-101.
    [18]崔小朝,王宥宏,刘才,等.拟流函数法分析铝板铸轧过程的流动状态[J].中国有色金属学报,2001,11(2):10-14.
    [19]湛利华,钟 掘,李晓谦,等.连续铸轧流变行为的物理模拟及其应力-应变关系的演变[J].中国有色金属学报,2004,14(12):1995-2002.
    [20]莫亚武.连续铸轧过程中铝的凝固过程数值模拟[D].武汉:武汉大学,2004.
    [21]梁涛.双辊铸轧辊套传热规律及热辊型的数值模拟研究[D].长沙:中南大学机电工程学院,2002.
    [22]刘晓波,毛大恒,邓圭玲,等.铝铸轧铸咀型腔熔体流动水模拟[J].湖南有色金属,2000,16(1):20-22.
    [23]刘晓波,陈利安.铸咀型腔铝熔体流态分析[J].湖南有色金属,2001,17(5):12-14.
    [24]刘晓波.约束型快速流变系统薄层熔体流场与温度场研究[D].中南大学机电工程学院,2001.
    [25]祝明妹.双辊薄带连铸熔池布流系统的数理模拟研究[D].重庆大学,2002.
    [26]唐俊龙,黄明辉,杨安全.基于ANSYS的铸嘴流体耦合场三维有限元仿真分析[J].铸造设备研究,2003(4):23-26.
    [27]唐俊龙.铝合金铸轧铸咀中高温熔体三维流场与温度场的数值仿真研究[D].中南大学机电工程学院,2004.
    [28]Toshio Haga,Shinsuke Suzuki.Roll casting of aluminum alloy strip by melt drag twin roll caster[J].Journal of Materials Processing technology,2001,118:165-168.
    [29]T.Haga,S.Suzuki.A high speed twin roll caster for aluminum alloy strip[J].Journal of Materials Processing technology,2001,113:291-295.
    [30]T.Haga,T.Nishiyama,S.Suzuki.Strip casting of A5182 alloy using a melt drag twin-roll caster[J].Journal of Materials Processing technology,2003,133:103-107.
    [31]S.Kumai,K.Suzuki,Y.Saito,et al.Possibilities of Rapidly Solidified Thin Strips Produced by a Twin Roll Caster for New Alloy Development and High-grade Recycling of Widely-used Conventional Alloys[J].Materials Forum,2004,28:1034-1039.
    [32]佚名.几种新型的双辊薄带高速铸轧机[EB/OL].(2006-03-05)[2006-12-20].http://www.shsm.org.cn/docc/detai12.asp?id=2506.
    [33]Peter Regan,Wojtek Szczypiorski.哈兹列特工艺及其在中国的前景[EB/O L].[2007-4-1].http://www.hazelett.com/news & publications/Aluminum%20Prospects%20in%20China%20(Chinese).pdf
    [34]钟掘.提高铝材质量基础研究的进展[J].轻合金加工技术,2002,30(5):1-10.
    [35]苏鸿英.世界超薄高速铝板铸轧机开发现状及其在我国的未来市场[J].世界有色金属,2000,(9):4-6.
    [36]王延溥.板带材生产原理与工艺[M].北京:冶金工业出版社,1995.
    [37]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2000.
    [38]孙建林.轧制工艺润滑原理、技术与应用[M].北京:冶金工业出版社,2004.
    [39]梁爱生.轧钢生产新技术600问[M].北京:冶金工业出版社,2004.
    [40]Gupta Manish,Sahai Yogeshwar.Mathematical modeling of fluid flow,heat transfer,and solidification in two-roll melt drag thin strip casting of steel[J],ISIJ International,2000,40(2):144-152.
    [41]Miao Yu-chuan,Xu Jian-zhong,Wang Guo-dong,Liu Xiang-hua.Influence of feeding mode on flow and temperature field for twin roll strip casting process[J].Journal of Iron and Steel Research International,2003,10(4):23-7.
    [42]Hilliam Robert,Mattern,Tim-Oliver.Effective lubrication of the steel industry's value chain[J].Steel Times International,2004,28(7):50-54.
    [43]Cornelissen Marc,Boom Rob.Flow Control in the Thin Slab Mould at the Corus Direct Sheet Plant[J].Steel Research International,2003,74(11-12):716-723.
    [44]Yuan Quan,Thomas Brian G.,Vanka S.P.Study of transient flow and particle transport in continuous steel caster molds:Part Ⅰ.Fluid flow:Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science[J].Metall Mat Trans B Process Metall Mat Process Sci,2004,35(4):685-702.
    [45]Ohler Christoph,Odenthal Hans-Jurgen,Pfeifer Herbert.Physical and Numerical Simulation of Fluid Flow and Solidification at the Twin-Roll Strip Casting Process[J].Steel Research International,2003,74(11-12):739-747.
    [46] Kostenko G D, Pelikan O A, Gonchar B S, et al. Centrifugal casting hydrody-namics of bilayer billets[J]. Litejnoe Proizvodstvo, 2003(9): 16-18.
    [47] Kajitani T, Drezet J-M, Rappaz M. Numerical simulation of deformation-induced segregation in continuous casting of steel[J]. Metallu -rgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32(6): 1479-1491.
    [48] Nastac L, Li, B Q. Modeling of single-roll strip casting of Al-1%Mn alloy: correlation of strip thickness, solidification zone length and puddle shape: Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes Symposium, Charlotte, NC, USA, March 14-18 2004: 325-34[C]. Warrendale, PA, USA: TMS, 2004.
    [49] Zhou Z F, Cai G, Wang T F. A simple analytical model for a single roll thin strip casting process[J]. Canadian Metallurgical Quarterly, 1996, 35(1):69-74.
    [50] Z F Zhou, G Cai, T F Wang. A simple analytical model for a single roll thin strip casting process[J]. Canadian Metallurgical Quarterly, 1996, 35(1): 69-74.
    [51] Lamberti G, Titomanlio G, Brucato V. Measurement and modelling of the film casting process 1. Width distribution along draw direction[J]. Chemical Engineering Science, 2001, 56(20): 5749-5761.
    [52] Satoh N, Tomiyama H, Kajiwara T. Viscoelastic simulation of film casting process for a polymer melt[J]. Polymer Engineering and Science, 2001, 41(9): 1564-1579.
    [53] Lamberti G, Titomanlio G, Brucato V. Measurement and modelling of the film casting process 2. Temperature distribution along draw direction[J]. Chemical Engineering Science, 2002, 57(11): 1993-1996.
    [54] Lamberti G, Titomanlio G, Brucato V. Measurement and modelling of the film casting process 1. Width distribution along draw direction[J]. Chemical Engineering Science, 2001, 56(20):5749-5761.
    [55] Marcela A Cruchaga, Diego J Celentano, Roland W. Lewis. Modeling fluid-solid thermomechanical interactions in casting processes [J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2004, 14(2): 167 - 186.
    [56] Saxena Amit, Sahai Yogeshwar. Modeling of fluid flow and heat transfer in twin-roll casting of aluminum alloys Source[J]. Materials Transactions, 2002, 43(2): 206-213.
    [57] Sunden B, Brebbia C A. Heat transfer VII: Advanced computational methods in heat transfer:Seventh International Conference on Advanced Computational Methods in Heat Transfer,Halkidiki,Greece,Apr 22-24,2002,4:513[C].United Kingdom:WIT Press,Southampton,SO40 7AA,2002.
    [58]Saxena A,Sahai Y.Modeling of fluid flow and heat transfer in twin-roll casting of aluminum alloys[J].Materials Transactions,2002,43(2):206-13.
    [59]Saxena Amit,Sahai Yogeshwar.Modeling of fluid flow and heat transfer in twin-roll casting of aluminum alloys[J].Materials Transactions,2002,43(2):206-213
    [60]Huey-Jiuan Lin.Modelling of flow and heat transfer in metal feeding system used in twin roll casting[J].Modelling and Simulation in Materials Science and Engineering,2004,12(2):255-72.
    [61]Saxena A,Sahai Y.Modeling of thermo-mechanical stresses in twin-roll casting of aluminum alloys[J].Materials Transactions,2002,43(2):214-21.
    [62]湛利华.界面接触热阻实验与建模及其在快凝铸轧参数设计中的应用[D].长沙:中南大学,2001.
    [63]湛利华,李晓谦,唐朝阳,等.铝带坯连续铸轧过程热力耦合有限元分析[J].中国机械工程,2005,16(11):979-996
    [64]张云湘.瞬态法接触热阻实验研究及其在快速铸轧工艺参数仿真中的应用[D].长沙:中南大学,2003.
    [65]Saxena Amit,Sahai Yogeshwar.Modeling of thermo-mechanical stresses in twin-roll casting of aluminum alloys[J].Materials Transactions,2002,43(2):214-221.
    [66]Hashim J,Looney L,Hashmi M S J.Particle distribution in cast metal matrix composites-Part Ⅱ[J].Journal of Materials Processing Technology,2002,123(2):258-263.
    [67]Lin Huey-Jiuan.Modelling of flow and heat transfer in metal feeding system used in twin roll casting[J].Modelling and Simulation in Materials Science and Engineering,2004,12(2):255-272.
    [68]Scalise,Joseph F.Continuous cast filtration concepts[J].Wire Journal International,2004,37(4):152-157
    [69]Wilson W R D,Walowit J.An isothermal hydrodynamic theory for strip rolling with front and back tension[J].Inst Mech Eng,1971,184(7):169-172.
    [70]Saxena Amit,Sahai Yogeshwar.Modeling of fluid flow and heat transfer in twin-roll casting of aluminum alloys[J].Materials Transactions,2002, 43(2):206-213.
    [71]Haga T.A high speed twin toll caster for aluminum alloy strip[J].Journal of Materials Processing Technology,2001,113:291-295.
    [72]Kang C G,Kim Y D.Model experiments for the determination of the heat-transfer coefficient and transition thermal analysis in the direct rolling process[J].Journal of Materials Processing Technology,1998,84:210-224.
    [73]Sarioglu Kemal,Thevoz Philippe.TMS Light Metals:Simulation of solidification process used in twin roll casting:Light Metals 2003:Proceedings of the technical sessions presented by the TMS Aluminium Committee at the 132nd TMS Annual Meetings,San Diego,CA,United States,Mar 2-6 2003,747-751[C].United States:Minerals,Metals and Materials Society,2003.
    [74]谭怀亮.材料复合型铸轧辊温度场和热变形的界面元方法及其仿真研究[D].长沙:中南大学机电工程学院,2001.
    [75]Sun Bin-yu,Yuan Shi-jian,Zhang Hong,et al.Establishment of mathematical moment model in twin casting rolling rolls[J].Transactions of the Nonferrous Metals Society of China,2002,12(5):970-3.
    [76]Zaoralek,Michael.Higher precision for high temperature calender rolls Annual Meeting - Technical Section,Canadian Pulp and Paper Association,Preprints:90th Annual meeting - Pulp and Paper Technical Association of Canada (PAPTAC),Preprint,Montreal,Que.,Canada,Jan 27-29 2004,B:219-223[C].Canada:Pulp and Paper Technical Association of Canada,2004.
    [77]胡忠举,梁洁萍,陈宏斌.金属薄带铸轧辊套抗热损伤行为分析[J].湘潭师范学院学报(自然科学版),2004,26(2):1-4.
    [78]孙建林,康永林,张新明.混合润滑扎制入口膜厚模型[J].中国有色金属学报,2001,11(1):18-21.
    [79]Wilson W R D,Walowit J.An isothermal hydrodynamic theory for strip rolling with front and back tension[J],Inst Mech Eng,1971,184(7):169-172
    [80]Hashim J,Looney L,Hashmi M S J.Particle distribution in cast metal matrix composites-Part Ⅱ[J].Journal of Materials Processing Technology,2002,123(2):258-263.
    [81]Sen N,Sau R,Mazumdar S,et al.Physical modelling of liquid feeding for an unequal diameter two roll thin strip caster[J].Canadian Metallurgical Quarterly,1998,37(2):161-166.
    [82]Lamberti G,Titomanlio G,Brucato V.Measurement and modelling of the film casting process 1.Width distribution along draw direction[J].Chemical Engineering Science,2001,56(20):5749-5761.
    [83]Bouchard,Dominique;Hamel,Francois G.;Turcotte,Serge F.;Nadeau,Jean-Paul.Water modeling evaluation of metal delivery in a twin roll strip caster using pool level and residence time distribution measurements[J].ISIJ International,2001,41(12):1465-1472.
    [84]刘晓波,毛大恒,钟 掘.铝铸轧铸嘴分流块对型腔流场影响的研究[J].轻合金加工技术,2000,28(10):18-21.
    [85]Sen N,Sau R,Mazumdar S,et al.Physical modelling of liquid feeding for an unequal diameter two roll thin strip caster[J].Canadian Metallurgical Quarterly,1998,37(2):161-166.
    [86]Bouchard Dominique,Hamel Francois G,Turcotte Serge F,et al.Water modeling evaluation of metal delivery in a twin roll strip caster using pool level and residence time distribution measurements[J].ISIJ International,2001,41(12):1465-1472.
    [87]吴望一.流体力学[M].北京:北京大学出版社,1983.
    [88]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [89]忻孝康,刘儒勋,蒋伯诚.计算流体动力学[M].长沙:国防科技大学出版社,1989.
    [90]休斯 W F,布赖顿 J A.流体动力学[M].北京:科学出版社,2002.
    [91]刘导治.计算流体力学基础[M].北京:北京航空航天大学出版社,1989.
    [92]ANSYS公司.ANSYS 8.1帮助文件[CP/DK].美国:ANSYS公司,2000.
    [93]包科达.热物理学基础[M].北京:高等教育出版社,2001.
    [94]陶文铨.数值传热学[M].西安:西安交通大学出版社,2004.
    [95]陶文铨.计算传热近代进展[M].北京:科学出版社,2000.
    [96]杨强生,浦保荣.高等传热学[M].上海:上海交通大学出版社,2005.
    [97]S V 帕坦卡.传热与流体流动的数值计算[M].北京:科学出版社,1984.
    [98]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [99]H Kardestuncer,有限元法手册[M].北京:科学出版社,1996.
    [100]Vu Linh Nguyen.A nonlinear evaluation of a tubular adhesive scarf joint loaded in tension and in torsion[D].Santa Barbara:University of California Santa Barbara,2000.
    [101]James Sanford Sirkis.A two-dimensional hybrid experimental-numerical technique for elastic-plastic stress analysis[D].Gainesville:University of florida,1988.
    [102]Arvind Suresh Misra.Acoustic,fluid-structure and decoupled seismic analysis of piping systems[D].Toronto:University of Toronto,2003.
    [103]Shamus McNamara.A wide range threshold accelerometer array fabricated by a modified LIGA technique[D].Madison:University of Wisconsin-Madison,2002.
    [104]Pizhong Qiao.Analysis and design optimization of fiber-reinforced plastic (FRP)structural beams[D].Morgantown:West Virginia University,1997.
    [105]Shyam Sunder Ramamurthy.Aspects of switched reluctance motor drive application for electric vehicle propulsion[D].Fayetteville:University of Arkansas,2001.
    [106]Gang Li.Deformation of balanced and unbalanced adhesively bonded single-lap joints[D].Fredericton:University of New Brunswick,2000.
    [107]Zhong Wu.Finite element simulation of rutting on superpave pavements[D].Manhattan:Kansas State University,2001.
    [108]Shi-Je Wu.Design and fabrication of a novel linear oscillating conventional micro air pump[D].Ruston:Louisiana Tech University,2003.
    [109]Tiansheng Zhou.CMOS cantilever microresonator[D].Edmonton:University of Alberta,2000.
    [110]Zekai Ceylan.Minimization of residual stresses in the closure-weld region of the spent nuclear fuel canisters using induction annealing process[D].Las Vegas:University of Nevada,2001.
    [111]Shawn Carrigan.Development of a static carpal load transmission model using the finite element method[D].Kingston:Queen's University,2002.
    [112]张远君.流体力学大全[M].北京:北京航空航天大学出版社,1991.
    [113]康志成.铝连续铸轧铸嘴流场实验研究及理论建模[D].中国长沙:中南大学机电工程学院,2001.
    [114]邱竹贤.铝冶金物理化学[M].中国上海:上海科学技术出版社,1985:59.
    [115]吴铿,潜伟,储少军,等.几种典型冶金熔体本构方程的实验研究[J].中国有色金属学报,1999,9(2),407-412.
    [116]周英,黄明辉,钟掘.网格划分对铸嘴型腔流场有限元分析的影响[J].中南大学学报(自然科学版),2004,35(1),75-79.
    [117]中国标准出版社.2006-变形铝合金材料标准汇编-(上)[M].北京:中国标准出版社,2001.
    [118]周英,黄明辉,钟掘.铝铸轧流场有限元模拟计算方案合理性的探讨[J].中国有色金属学报,2005,15(7):1100-1106.
    [119]Y.Zhou,M.H.Huang,D.H.Mao,T.Liang.3-D Coupled Fluid-Thermal Finite Element Analysis of 3C-Style Nozzle's Fluid Field of Al Roll-Casting[J].Materials Science Forum,2007,546-549:741-744.
    [120]田胜元,萧曰嵘.实验设计与数据处理[M].北京:中国建筑工业出版社,1988.
    [121]李云雁,胡传荣.实验设计与数据处理[M].北京:化学工业出版社,2005:83-98.
    [122]彭成章,刘静.铝带坯双辊铸轧过程瞬态传热数学模型[J].冶金能源,2006,25(6):13-16.
    [123]胡忠举,彭成章.铝薄带超常铸轧辊套热应力仿真分析[J].湖南科技大学学报(自然科学版),2006,21(2):52-54.
    [124]彭成章.双辊铸轧过程铝带坯/辊套温度场数值模拟[J].热加工工艺,2006,35(9):30-32.
    [125]盛春磊,刘静安,朱 英.我国铝及铝合金轧制设备现状与发展趋向[J].铝加工,2005,164(5):18-23.
    [126]邓圭玲,段吉安,钟 掘.双辊铸轧铸嘴内部铝液流动的三维数值仿真[J].中南大学学报(自然科学版),2005,36(4):615-620.
    [127]钟掘.铝合金的超常铸轧制备[J].中国有色金属学报,2004,14(S1):147-153.
    [128]李毅波,李晓谦,陈林,等.入口温度分布对连续铸轧坯表面热带形成的影响[J].计算机辅助工程,2006,15(S1):314-317.
    [129]安锦如.浅析供料嘴内部形状对铸轧板表面质量的影响[J].甘肃冶金,2006,28(3):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700