岩石粘弹性质的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衰减、波速及其频散和加卸载响应比与岩石的粘弹性密切相关,本文从以上几个方面研究岩石的粘弹性质。
     关于衰减的研究很多,主要集中在地震波、超声波频率内,与之相比,对于作用周期较长、有一定应力(应变)振幅的循环衰减研究较少。本文对衰减的研究侧重于不同初应力水平(即振幅的基线)下衰减与应力振幅及作用周期之间的关系;在此基础上为了获得更宽频域内的衰减,在一定的初应力下,进行了一系列蠕变实验和超声波实验,并将两者结果进行对比分析。由于两者应力振幅都为零,前面加压过程都一样,消除了应力振幅对衰减的影响,两者结果只与应力作用时间有关而具有可比性,而作用时间与蠕变(应变)量对应,将衰减与蠕变时间关系转化为衰减与蠕变量关系后,发现二者线性相关,将蠕变的衰减向小应变(小蠕变量)方向进行了外推,发现蠕变衰减的外延值跟超声波下测得的衰减很接近,再联合已有的0.1-1MHz下Q值近似常量的规律,说明衰减-蠕变量相关性在小应变方向也适用。将蠕变的衰减向大蠕变量方向外推可以找到蠕变破裂时蠕变量对应的衰减,一旦向破裂蠕变量方向外推被实验验证,根据破裂时蠕变量来估算蠕变时间,这样就得到同一块样品蠕变破裂对应的最低频率到MHz相当宽频域内衰减关系。
     具体而言,为了找出衰减同初应力水平、应力加载振幅及作用周期之间的关系,对大庆油田砂岩,分别在不同的初应力水平下,进行了一系列地震学中感兴趣的应变范围内的等振幅变周期、等周期变振幅、三角波单轴压缩试验,找出了衰减与三者关系,并用线性粘弹理论、内时理论、P-M模型给予了解释,利用已有的实验结果计算了内时理论模型参数a,用实验规律对未知应力振幅和作用周期下衰减值进行了预测并和实验值进行了对比,预测值和实验值符合很好。
     为了获得长周期下衰减,对大庆砂岩、郯庐断裂带合肥段紫蓬山干燥砂岩,在扣除应力振幅对衰减影响的基础上,在一定的初应力水平下进行时间为1小时、2小时、4小时、12小时、1天、2天、3天的蠕变实验,发现衰减随蠕变时间增大而增大。并将用应力应变曲线法计算出长时间较大应变量下的衰减对比了相同初应力水平下超声波频率470KHz、700KHz下测得的衰减。实验结果显示蠕变实验衰减要大于超声波衰减,两者最小相差40%左右,两种不同方法的差异可能与应变量有关。将蠕变衰减与周期的关系转化为衰减与蠕变量关系后发现二者线性相关系数95%以上,以此为据,将衰减向小蠕变量方向外推,发现蠕变衰减外推后的结果和超声波衰减很接近,将应变量考虑进去后两种方法的结果是比较符合的,同时也从应变角度说明了为什么在0.1-1MHz内衰减几乎不变。地下岩石长时间处于一定应力作用状态因此蠕变作用下衰减比其他方法测得的结果更接近于地层条件下岩石衰减。
     波速测量的研究也很多,通常强调的是实验的结果和规律性,而实验条件对结果造成的影响讨论较少,不同的测量条件会对实验结果造成偏差,即使同一块样品同一个人在不同的测量条件下获取的波速值也可能不同,研究各种因素对波速影响对规范测量条件获取准确波速是必要的。
     为了总结出测量条件对波速的影响,对上百块不同尺寸、不同衰减、空气干燥的样品(砂岩、大理岩、花岗岩、铁、铝、有机玻璃)用不同频率的换能器进行了波速测量,定量地得出样品长度、换能器频率、放大器倍数、耦合强度和耦合剂对波速的影响,揭示了尺寸和本征衰减对频散的影响,其中关于稳定波速所需的样品长度比现有推荐长度要小,说明推荐标准还有放宽可能。尝试了频散法测衰减得到了与频谱振幅比法相一致的结果,修正了岩体完整性系数,降低了不同频率完整性系数平均差。
     加卸载响应比理论对岩石破裂实验数据处理已取得很好效果,但对蠕变破裂过程的响应比的变化研究较少。为了从响应比的角度来研究整个蠕变破裂过程,本文通过逐级加载的蠕变实验获得了大理岩蠕变破裂全过程曲线,并进行了分解,计算了蠕变破裂过程中杨氏模量、蠕变量、蠕变速率等参数的加卸载响应比,讨论了蠕变各阶段响应比的变化。发现与已有的孕震破裂过程中响应比一致;杨氏模量随应力的响应曲线异于典型本构曲线,可能与岩石的弱化和稳态蠕变向加速蠕变过渡有关。
Attenuation, velocity and its dispersion, Load/Unload response ratio are closely related to the rock's viscoelastic properties. From the three acpects, this paper studied the viscoelastic properties of the rock.
     Many studies on the attenuation has been done-mainly concentrated in the frequencies of seismic wave, compared with this, the researches of attenuation under a longer period driven by a certain cycle of stress (strain) amplitude were less. This paper focused on the relationship among the attenuation, the stress amplitude and cycle time under different initial stress levels (the baseline of the amplitude).On this basis, in order to obtain the attenuation in a wider frequency domain, under unchanged initial stress, a series of creep and ultrasonic tests were performed, then the results were compared with. As the two stress amplitudes were zero with the same pressing process, the effect from stress amplitude on the attenuation was eliminated. Both results were only concerned with the keeping time and could be comparable. Because of testing time corresponding to the amount of creep, after changing the relationship between attenuation and creep time into the relationship between attenuation and the amount of creep, the attenuation was extrapolated in the smaller strain (small amount of creep) direction, it was found that the attenuation value of zero creep was close to the attenuation measured by ultrasonic. Combining the existing constant-Q under 0.1~1MHz, the correlation between the attenuation frequency relationship and attenuation-strain was suitable. The creep attenuation was extrapolated in the bigger strain direction, the attenuation of creep rupture could be found and the creep time could been estimated according to the amount of rupture creep, once the correctness of extrapolating in the direction of creep rupture was tested by experiments, then the attenuation for one sample within the lowest frequency to MHz could be obtained.
     Specifically, to find out the relationship between attenuation and the initial stress, amplitude and cycle time of the stress, a series of uniaxial stress cycling tests performed in triangle waveform loading with equivalent amplitude but different cycle time or equivalent frequency but different amplitude under different initial stress levels were conducted on dry Taching sandstones and sandstones from the Zipeng mountain of the Tan-Lu fault zone using MTS testing machine. And then, the relationships among Q, the initial stress level, the strain (or stress) amplitude and the frequency were obtained. With the help of Endochronic theory, linear viscoelastic theory and P-M model theory, I gave a suitable reason for the results.Using the experimental results I calculated the parameter of Endochronic theory, and the attenuation of unknown stress amplitude and frequency were well predicted compared with experimental values.
     In order to obtain attenuation under a long period, according to the results, except the effe(?) of stress amplitude on the attenuation, the attenuations from the different creep time which respectively continued 1 hour,2 hours,4 hours,12 hours,1 day,2 days and 3 days under certain initial stress level were jointly considered with the results from the ultrasonic frequencies 470KHz,700KHz. The results showed that the attenuation of creep was higher than that of ultrasonic, the smallest difference between them was about 40%, which might be related to the strain of different methods. After changing the relationship between attenuation and creep time into the relationship between attenuation and strain, the linear correlation coefficient was above 95%. The result of creep attenuation extrapolated in the smaller strain (small amount of creep) direction was very close to the ultrasonic attenuation. Taking the strain into account, the results of two methods were in line with. At the same time, from the point of strain, why the attenuation in 0.1~1MHz almost was unchanged could be explained. The rock underground in a certain state of stress for a long time, the results of attenuation measured by creep is closer to the attenuation of layer rock than other methods.
     Many studies also have been done on velocity, but often emphasized the experimental results and the regularity, the discussion of the influence from experimental conditions on the results was less. For different measurement conditions would result in deviation of experimental results, even the velocity values from the same sample by the same person might be different, because of different measurement conditions. So it was necessary to study the impact of various factors on the velocity for standardizing the measurement conditions.
     Transducers with different frequencies (550KHz,50KHz) were used to measured the velocities of nearly a hundred samples(sandstone, marble, steel, aluminum, plexiglass) with different lengths to quantitatively understand the effects of the length of the samples, the transducer's frequency, signal amplification, coupling agents, coupling strength on the testing results. The results revealed the effects of sample sizes, intrinsic attenuation on the velocity dispersion. The length caused stable velocity was smaller than the recommended length, which meant the recommended standards could be relaxed.Base on the results, I measured the attenuation by the dispersion method and corrected the coefficient of rock mass integrity tested by seismograph and acoustic instrument.
     Load/Unload response ratio(LURR) theory has been achieved well in processing the rock fracture data, but the study on the change of LURR of the whole creep rupture process was relatively lack. In order to study the whole process of creep rupture in the point view of LURR, experiments on the granite sample at uniaxial stress were performed by using grade loading method to obtain the creep curves at grade loading process and creep fracture curve. After decomposing the creep fracture curve, the Young modulus, creep value and creep rate during the fracture process were analyzed by Load/Unload response ratio method. It was found that the law of the load/unload response ratio's variation in the fracture were consistent with that during the rupture process of earthquake, and the response curve of the Young modulus changing with the stress was different from the typical constitutive curve, which was probably because of the weakening of the rock and the transition from the steady creep to the accelerating creep.
引文
白桦,李鲲鹏.1999.基于时频分析的地层吸收补偿[J].石油地球物理勘探:34(6):642-648.
    包雪阳,施行觉.2005.岩石模量与应变振幅关系的实验研究及理论解释[J].中国地震:21(4),508-518
    包雪阳,施行觉.2004.岩石非线性弹性的实验研究及其P-M模型的理论解释[J].岩石力学与工程学报:23(20),3397-3404
    曹树刚,边金,李鹏.2002.岩石蠕变本构关系及其改进的西原正夫模型[J].岩石力学与工程学报:21(5):632-634.
    陈卫忠,朱维申,李术才.1999.节理岩体断裂损伤耦合的流变模型及其应用[J].水利学报:12:33-37
    陈颙.1988.地壳岩石的力学性能——理论基础与实验方法[M].北京:地震出版社
    陈颙,黄庭芳.2001.岩石物理学[M].北京:北京大学出版社
    陈颙,黄庭芳,刘恩儒2009.岩石物理学[M].合肥:中国科学技术大学出版社,
    邓荣贵,周德培,张倬元,等.2001.一种新的岩石流变模型[J].岩石力学与工程学报:20(6):780-784.
    丁志坤,吕爱钟.2004.岩石黏弹性非定常蠕变方程的参数辨识[J].岩士力学:25(增1):37-40.
    高龙生.1975.中国大陆岩石标本在高压下的弹性波波速研究[J].地球物理学报:29(2):56-68
    郭启良,王成虎,张彦山,2009.汶川大震发震断裂带临震前的地壳深部绝对应力异常分析,国际地震动态:No.4,27-28
    郭自强.1982.固体中的波[M].北京:地震出版社,243-244
    胡家富,胡毅力,夏静瑜,陈赞,赵宏,杨海燕.2008.0140缅甸弧及邻区的壳幔S波速度结构与动力学过程[J].地球物理学报:51(1):140-148.
    胡文寿,张显志.2001.论工程岩体完整性的评价方法[J].西安工程学院学报:23(3):51-52.
    黄忠贤,胥颐,郝天珧等.2009.中国东部海域岩石圈结构面波层析成像[J].地球物理学报:52(3):653-662
    李爱兵,马丽云.1994.频率、温度对砂岩的横波速度和值的影响[J].地球物理学报:37(5):653-658
    林静怀,杨森林.2007.利用零偏移VSP资料估计介质品质因子方法研究[J].地球物理学报50(4):1198-1209.
    林尤元,颜挚.2006.Kv法在判定岩体完整性中的应用[J].华南地震:26(2):83
    刘保国.1997.岩体黏弹、黏塑性本构模型辨识及工程应用[博士学位论文][D].上海:同济大学,
    刘斌,POPP,T.2000沉积岩中波速、衰减及渗透率随压力的变化[J].石油地球物理勘探:35(1):129-135
    刘斌,H.Ken,T.Popp.1998不同围压下孔隙度不同的干燥及水饱和岩样中的纵横波速度及衰减[J].地球物理学报:41(4):537-546
    刘丽娟,闫桂京,陈建文.2005.流体对地震波速度的影响[J].海洋地质动态.:21(9):8-12
    刘明军,李松林,方盛明,等.2008.利用地震波速研究青藏高原东北缘地壳组成及其动力学[J].地球物理学报:51(2):412-430.
    刘巍.2002.高温高压下几种岩石的弹性纵波速度及其动力学特征[D].北京:中国地震局地质研究所
    刘洋,刘财,杨宝俊,王典,王建民,王兆湖.2008.松辽盆地北部纵波速度区域特征分析及深层油气问题[J].地球物理学进展:23(3):785-792.
    刘志斌,郝召兵,伍向阳.2008.深水钻探面临的挑战浅水流灾害问题[J].地球物理学进展:23(2):.552-558.
    刘祝萍,吴小薇,楚泽涵.1994.岩石声学参数等会实验测量及研究[J].地球物理学报.:37(5):659-666
    卢琳,闫桂京,陈建文.2005.地层温度和压力对地震速度的影响[J].海洋地质动态:21(9):13-16
    吕爱钟,丁志坤,焦春茂,李金兰.2008.岩石非定常蠕变模型辨识[J]岩石力学与工程学报:27(1):16-21
    吕培苓 吴开统 焦远碧,1991.岩石蠕变过程中声发射活动的实验研究[J],地震学报:13(1),104-112
    罗桂纯,葛洪魁,王宝善,胡平,陈颙.2008.利用相关检测进行地震波速变化精确测量研究进展[J].地球物理学进展:23(1):56-62.
    马胜利,马瑾.2003.我国实验岩石力学与构造物理学研究的若干新进展[J].地震学报:25(5):528-534
    马丽云,赵建华,戴飒,孙达江.1990.单轴压缩下大理岩的Q值与频率关系的研究[J].地球物理学报:33(6):689-693
    马昭军,刘洋.地震波衰减反演综述[J].地球物理学进展,2005,20(4):1074-1082
    沈联蒂,史謌.1994.岩性、含油气性、有效覆盖压力对纵、横波速度的影响[J].地球物理学报.:37(3):391-399
    施行觉,许和明等.1995.油储条件下岩石的波速特性及变化规律[J].石油地球物理勘探:30(3):386-391
    施行觉,徐果明,靳平,卢振刚,刘文忠.1995.岩石的含水饱和度对纵、横波速及衰减影响 的实验研究[J].地球物理学报:38(增1):281-287
    施行觉,徐果明等.1995.岩石定好含水饱和度对纵、横波速度及衰减影响的实验研究[J].地球物理学报:38(增刊1):281-286
    施行觉等,1995岩石初动隐伏效应对波速测量影响[J].地球物理学报:38卷,增刊1,310-315.
    施行觉,胡亚轩,孙道远.2003.非线性弹性模量对波速影响的实验研究.地震研究:26(1):1-5
    施行觉,李成波,2009. Adnan Aydin,地球介质在低应力水平时的非定常参数粘弹模型[J],地球物理学报:52(1),50-56,
    施行觉,温丹,包雪阳等.2006.岩石蠕变实验在地球介质粘弹性参数计算中的应用[J].中国科学(D):36(3):219-224
    施行觉等,1994.模拟引力潮作用下的岩石破裂特征——加卸载响应比理论的实验研究之一[J],地球物理学报:37(5),633-638
    史謌,沈文咯,杨东全.2003.岩石弹性波速度和饱和度、孔隙流体分布的关系[J].地球物理学报:46(1):138-142
    孙安辉,赵大鹏,池田伦治,陈颙,山田朗,陈棋福,大野裕记,西坂直树.2008.西南日本地地壳P、S波速度结构与地震活动的关系[J].地球物理学进展:23(4):1013-1022.
    孙道远,温丹,施行觉.2004.岩石非弹性特性的内时理论模型.实验力学:19(3):292-300
    孙钧,侯学渊.1991.地下结构[M].北京:科学出版社
    孙钧.1999.岩土材料流变及其工程应用[M].北京:中国建筑T业出版社
    孙钧.2007.岩石流变力学及其工程应用研究的若干进展.岩石力学与工程学报:26(6):1081-1106
    王大兴,辛可锋等.2006.地层条件下砂岩含水饱和度对波速及衰减影响[J].地球物理学报.49(3):908-914
    温丹,施行觉.2004.结合内时理论研究岩石衰减与应变振幅的关系.实验力学:19(1):19-23
    席道瑛,陈韩,张涛.1995.砂岩的变形各向异性.岩石力学与工程学报:14(1):49-58
    席道瑛,刘爱文,刘卫.1995.低频条件下饱和流体砂岩的衰减研究.地震学报:17(4):477-481
    席道瑛,王春雨,田象燕.2001.滞回曲线对应力振幅和频率的响应.物探化探计算技术.23(2):121-124
    席道瑛,程经,易良坤,张斌.1997.饱和多孔岩石应力波的衰减特性.地震学报:19(5):457-461
    徐平,夏熙伦.1996.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报:18(4):63-67
    徐平,王宝善,张尉,林建民,陈颙.2006.利用互相关函数求地震波衰减[J].地球物理学报:46(6):1739-1744
    徐卫亚,杨圣奇,褚卫江.2006.岩石非线性粘弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报:25(3):433-447
    徐彦,苏有锦,秦嘉政.Q值研究动态.地震研究,2004,27(4):385-389
    许昭永,赵晋明,杨润海,2002.负坡段加卸载响应比的物理意义及预测效能[J]地震学报,24(1),42-49
    杨春和,陈锋,曾义金.2002.盐岩蠕变损伤关系研究[J].岩石力学与工程学报:21(11):1602-1604
    杨峰,黄金莉,杨挺.2010.应用远震有限频率层析成像反演首都圈上地幔速度结构[J].地球物理学报:53(8):1806-1816
    杨恒,白武明.2000.岩石圈流变实验研究的进展[J]地球物理学进展:15(2):79-89
    杨林德.1996.岩土工程问题的反演理论及工程实践[M].北京:科学出版社
    尹祥初,1986.固体力学[M].北京:地震出版社,
    尹祥础,张浪平,张晖辉,2008.加卸载响应比20年及其展望[J].国际地震动态,笫4期(总第352期)1-17
    尹祥础,张浪平,张永仙,2009.汶川8级地震前加卸载响应比的大尺度异常[J],地震:29(1)53-59,
    余怀忠尹祥础夏蒙棼,2003.加卸载响应比(LURR)理论的实验研究[J].中国地震:19(1)58-66
    于湘伟,陈运泰,张怀.2010.京津唐地区地壳三维P波速度结构与地震活动性分析[J].地球物理学报:53(8):1817-1828
    袁勇,孙钧.1993.岩体本构模型反演辨识理论及其工程应用[J].岩石力学与工程学报:12(3):232-239.
    张贵科,徐卫亚.2006.适用于节理岩体德新型黏弹塑性模型研究[J].岩石力学与工程学报25(增1):2894-2901.
    张海银,李长文.1995.纵波特性与岩石含水饱和度关系的实验研究[J].测井技术:19(1):6-10
    张向东,李永靖,张树光等.2004.软岩蠕变理论及其工程应用[J].岩石力学与工程学报23(10):1635-1639.
    张学忠,王龙,张代钧等.1999.攀钢朱矿东山头边坡辉长岩流变特性试验研究[J].重庆大学学报:22(5):99-103.
    赵明阶,许蓉.2000.岩石损伤特性与强度的超声波速研究[J].岩土工程学报:22(2):720-722
    赵志丹,谢鸿森,周文戈等..2001.大别山地区岩石高温高压弹性波速及其对岩石圈组成和壳幔循环的限制[J].自然科学进展:11(1):52-57
    钟森,白尤军.1994.岩石物性测试及参数分析和应用[J],石油地球物理勘探.:29(2):56-68周惠兰,1990.地球内部物理,北京,地震出版社,218-238
    周文戈,谢鸿森等.2002.0.7~1.8GPa岛室温~1120 C条件下,石英相变的弹性参数[J].自然科学进展:12(8):866-869
    Aki, Keiiti. Quantitative seismology volume I [M]. W.H.FREEMAN AND COMPANY,1980
    Al-Sinawi. S..1968. An investieation of body wave velocities, attenuation on elastir parameters of rocks subjected to pressure at room temperature:Ph.D. thesis St. Louis University
    Anstey N A. Velocity in thin section[M]. First Break,1991,9(10):449~457
    Arindam B, Adnan A. Evaluation of Ultrasonic Testing in Rock Material Characterization[J], Geotechnical Testing Journal,2006, Vol.29, No.2:1-9
    Azra N.,Tutuncu, Augosto L., Podio, Alvin R. Gregory, et al. Nonlinear viscoelastic behavior of sedimentary, Part Ⅰ:Effect of frequency and strain, amplitude. Geophysis,1998.63:184-194
    Batzle M.C地震频率的衰减和速度弥散[C].北京:石油工业出版社,1996.299-302
    Blair D P. A direct comparison between vibrational resonance and pulse transmission data for assessment of seismic attenuation in rock[J]. Geophysics,1990,55:51~60.
    Batzle M.L.Seismic properties of pore fluids[J].Geophysics.1992(57)
    Birch, F., and Banctoft, D.,1938, Elasticity and internal friction in a long column of granite:Bull. SSA, v.28,p.243-254.
    Birch F.1960. The velocity of compressional waves in rocks to 10kb, Part 1[J]. J. Geophys. Res.,64:1083-1102
    Birch F.1961. The velocity of compressional waves in rocks to 10kb [J]. J. Geophys. Res.,66: 2199-2224
    Born, W. T.,1941, Attenuation constant of earth materials:Geophysics, v.6, p.132-148.
    Boukharowv.G.N., Chanda,M.W., Boukgrov,N.G.,1995.The three processes of brittle crystalline rock creep, Int. J. Mech. Min Sci. and Geomech.,32(4),325~335
    Bourbie T, Coussy O, Zinzner B. Acoustic of porous media[M]. Houston:Gulf Publishing, 1987.
    Carcione, J. M.,2001,Wave fields in real media:Wave propagation in anisotropic, anelastic and porous media:Pergamon Press, Inc.
    Carmeliet J., Van Den Abeele K.E.A. Application of the Preisach-Mayergoyz space mod el to analyze moisture efects on the nonlinear elastic response of rock. Geophys Rev. let,2002, 29(7):1-4
    Cerveny and Psencik_2006_.2006, Energy flux in viscoelastic anisotropic media:Geophysical Journal International,166,1299-1317.
    ——2008,Weakly inhomogeneous plane waves in anisotropic weakly dissipative media:Geophysical Journal International,172,663-
    Chen X Z and Yin X C. Application of LURR Theory to the Earthquake Prediction for Reservoir-Induced Earthquakes. Earthquake Research in China。1995,11:361-367
    Christensen N.I.Shear-wave velocities in metamorphic rocks at pressures to 10 kbar[J].J Geophys Res.1966,71:3549-3556
    Christensen N.I..Comperssional wave velocities in possible mental rocks to pressures of30 kbar[J].J Geophys Res.1974,79:407-412
    Christensen N I, Wepfer W W.1989. Laboratory techniques for determining seismic velocities and attenuation, with applications to the continental lithosphere[M]//Pakiser L C, Mooney W D. Geophysical framework of the continental United States, GSA Memoir 172. Boulder: Geological Society of America,19-102
    Christensen N.I.Shear-wave velocities in metamorphic rocks at pressures to 10 kbar[J].J Geophys Res.1966,71:3549-3556
    Christensen N.I..Comperssional wave velocities in possible mental rocks to pressures of30 kbar[J].J Geophys Res.1974,79:407-412
    Collins. F., and Lee, C. C..1956, Seismic wave attenuation characterisncs from pulse experiments: Geophysics.v.21, p.16-40.
    Cristescu N D. A general constitutive equation for transient and stationary creep of rock salt[J]. Int J Rock Mech Min Sci Geomech Abstr,1993,30(2):125—140.
    Cristescu N D. A procedure to determine nonassociated constitutive equations for geomaterials[J]. Int J of Plast,1994,10(2):103~131
    Dunn, K. J.,1987. Sample boundary effect in acoustic attenuation of fluid-saturated porous cylinders:J. Acoust. Sot. Am.,81,1259-1266.
    Erring W.M, Jardetzky W.S.,Press F. Elastic Waves in Layered Media. New York:McGraw Hill Book Co.1957,87
    Gardner, G. H. F., Wyllie, M. R. J., and Droschak, D. M.,1964; Effects of pressure and fluid saturation on the attenuation of elastic waves in sands:J. Petrol. Tech.,v.16, p.189-198.
    GIODA G, SAKURAI S Back analysis procedures for the interpretation of field measurements in geomechanics[J]. Int. J. for Num.and Ana. Meth.in Geomech.,1987, 11f61:555—583 Gebrande H,Kern H, Rummel F. Elastisity and inelasticity[M]. New York:Springer-Verlag,1982 Gordon, R. B.. and Davis, L. A.,1968, Velocity and attenuation of seismic waves In imperfectly elastic rock:J.Geophys. Res.. v.73, p.3917-3935.
    Gregory R.A.Fluid saturation effects on dynamic elastic properties of sedimentary rocks[J].Geophysics.1976,41:895-921
    Guyer R.A.,McCall K.R., Boitnot G.N. Quantitative implementation of Preisach-Mayergoyz space to find static and dynamic elastic moduli in rock. Jounal of Geophysical Research,1997, 102:5281-5293
    Guyer R.A., Johnson P.A. Nonlinear mesoscopic elasticity:evidence for a new class of materials. Physics Today,1999,30:30~36
    Han D H, Nur A, Morgan D. Effects of porosity and clay content on wave velocities in sandstones[J].Geophysics,1986,51:2093~2107
    Hearst J R, Nelson P H, Paillet F L. Well logging for physical properties[M].2nd edition, Chichester:John Wiley,2000
    Huffman A R, Castagna J P. The petrophysical basis for shallow-water flow prediction using multi-component seismic data[J]. The Leading Edge, September,2001:1030-1036.
    ISRM,1978,Suggested Method for Determining Sound Velocity[R], Int.J.RockMech.Min.Sci. Geomech,15(2):53~58.
    Jackson, D. D.,1969, Grain boundary relaxation and the attenuation of seismic waves:Ph.D. thesis, M.I.T.
    Jiang T. The Analysis of landslide in terms of Load/Unload Response Ratio. PhD Thesis, Institute of Geology, Chinese Seismological Bureau(in Chinese),2004
    Johnson'P.A, Rasdolosaon P.N. J. Nonlinear-elasticity and stress-induced anisotropy in rock. J.Geophys Res.,1996,101(B2):3113-3124
    Jones T D.Pore fluids and frequency-dependent wave propagation[J].Geophysics,1986,51, 1939-1953.
    JURINA L, MAIER G, PODOLAK K On model identification problem in rock mechanics[C] //Proc. Symp. on the Geotechnics of Structurally Complex Formations Capri. [s. n.], 1977:287—295.
    Kjartansson, E. Constant-Q wave propagation and attenuation[J]. J. Geophys. Res.,1979,84: 4737-4738.
    Krebes, E. S., and L. H. T. Le,1994, Inhomogeneous plane waves and cylindrical lwaves in anisotropic anelastic media:Journal of Geophysical Research,99, no. B12,23,899-23,919.
    Kuster, G. T., and ToksBz, M. N.,1974, Velocity and attenuation of seismic waves in two-phase media:PartⅡ-Experimental results:Geophysics, v.39, p.607-618.
    Klima, K., Vanek,.I., and Pros, Z.,1964, The attenuation of longitudinal waves in diabase and graywacke under pressure up to 4 kilobars:Studia geoph ct Geod.v.8,p.247-254.
    Li Yong-sheng, Xia Cai-chu. Time-dependent tests on intact rocks in uniaxial compression. International journal of Rock Mechanics and Mining Sciences,2000,37:467-475
    L.evykin. A. I..1965, Longitudinal and transverse wave absorption and velocity in rock specimens at multilateral pressures up to 4000 km/cm:USSR Geophys. Ser.(Engl. tram].). v. I, Physics of the Solid Earth, p,94-98.
    Lucet, N., Rasolofosaon, N. J. P., and Zinszner, B.,1991, Sonic properties of rocks under confining pressure using the resonant bar technique:J. Acoust. Sot. Am.,89,98-990.
    Mavko G. D, Jizba. Estimating grain-scale effects on velocity dispersion in rocks[J].Geophysics, 1991,56:1931-1940.
    Mavko G, Mukerji T, Dvorkin J. The rock physics handbook:tools for seismic analysis in Porous Media[M]. Cambridge:Cambridge University Press,1998
    McCall K.R., Guyer R.A. Equation of state and wave propagation in hysteretic nonlinear elastic materials. J.G. R,1994,99(B12),23887~23897
    McCall K.R., Guyer R.A. A new theoretical paradigm to describe hysteresis:discrete memory and nonlinear elastic wave propagation in rock. Nonlinear Processes in Geophysics,1996,(3):89~ 101
    Michael S. King. The development of rock physics in seismology exploration. Geophysics,2005 7(6):3-8
    Mora P, Y WANG, C YIN, et al. Simulation of IJOad-unload Re. sponse Ratio and.Critical. Sensitivity in the Lattice Solid Model. Pure Appl. Geophys.,2002,159:2525-2536
    Murnhv. W. F..1982. Effects of partial water saturation on attenuation in Massilon sandstone and Vycor porous glass:J. Acoust. Sot. Am.,71.14581468.
    Murphy F.W.Effects of partial water saturation on attenuation in sandstone[J].J.Acoust.Soc Am.1982,71:1458-1468
    Murphy W.R.Modulus decomposition of compressional and velocities in sand bodies[J].Geophysics.1993(58):227-239
    Nur A., Wang Z.Seismic and acoustic velocities in reservoir rocks[J].Geophysics.l989
    Obert, L., Windes, S. L., and Duvall, W.l..1946, Standardized tests for determining the physical properties of mine rock:U.S. But-. Mines, R. I.3891
    Paffenholz, J., and Burkhardt, H.,1989, Absorption and modulus measurements in the seismic frequency and strain range on partially saturated sedimentary rocks:J. Geophys. Res.,94,9493 ~9507
    Peselnick, L., and Zietz, I.,1959, Internal friction of fine erained limestones at ultrasonifrequencies:Geophysics,24. p.285-296.
    Popp H.Thermal dehydration reactions characterized by combined measurements of electrical conductivity and elastic wave velocities[J].Earth Planet Sci.Lett.1993,120:
    Prasad M. Acoustic measurements in unconsolidated sands at low effective pressure and overpressure detection[J]. Geophysics,2002,67:405~412
    Schon J H. Physical properties of rocks:Fundamentals and principles of petrophysics[M]. Oxford: Pergamon Press,1996
    Singn B.The behaviors of rocks under pressure investigations using ultrasonic [J].1996,201:719724
    Simmons G.Velocity of shear waves in rocks to kbar[J].J Geophys Res.1964,69:1123-1130
    ShiXJ, Xu H, Wan Y, et al. The Rock Fracture under Simulated Tide Force-Laboratory Study on the Loading and Unloading Response Ratio(LURR)Theory. ACTA GEOPHYSICA SINICA,1994,37:631-636
    Shi Xing-Jue, Li Cheng-Bo, Adnan Aydin, Huang Jian-Hua, Zhao Chuang. Viscoelastic model with variable parameters for earth media. Chinese Journal of Geophysics,2009,52(1):33~39
    Shin K., Okubo S., Fukui K. et al.2005. Variation in strength and creep life of six Japanese rocks.International journal of Rock Mechanics and Mining Sciences,,42:251~26
    Spencer, J. W.,1981, Stress relaxations at low frequencies in fluid saturated rocks:attenuation and modulus dispersion:J. Geophys.Res.,86,1803~1812.
    Spetzler, H., and Anderson, D. L.,1968, The effect of temperature and partial melting on velocity and attenuation in a simple binary system:J. Geophys. Res., v.73,p.6051-6060
    Tang X M.A waveform inversion technique for measuring elastic wave attenuation using cylindrical bars[J]. Geophysics,1992,57:854~859
    Toksoz, M N, Johnston, D H, and Timur A. Attenuation of seismic waves in dry and saturated rocks:I. Laboratory measurements [J]. Geophysics,1979,20:53~67.
    Timur A.Temperature dependence of compressional and shear wave velocities in rocks[J].Geophysics.1977(42):950-976
    Tittmann, B. R., Housely, R. M., Alers. G. A., and Cirlin,E. H.,1974, Internal friction in rocks and its relationship to volatilea on the moon:Geochim et Coamochim.Acta, Supp.5, p.2913-2918.
    Tutuncu A.N.,Podio A.L,Gegory A R.Nonlinear viscoelastic behavior of sedimentary rocks[J].Geophysics.1998,63(1):184-194
    Valanis K.C. Fundamental consequences of a new intrinsic time measure plasticity as a limit of the endochronic theory. Archs Mech,1980,32(2):171~191
    Van Den Abeele K.E.A., Carmeliet J., Johnson P. A. Influence of water saturation on the nonlinear elastic mesoscopic response in earth materials and the implications to the mechanism of nonlinearity. Jounal of Geophysical Research,2002,107(B6):4~11
    Wang Y C, Yin X C and Wang H T. The Simulation of Rock Experiment on Load/Unload Response for Earthquake Prediction. Earthquake Research in China,1998,14(2):126-130
    WangY C, YinX C and Wang H T. Numerical Simulation on Unload Response Ratio(LURR)Theory. ACTA Gephysica Sinica,1999.42:669-676
    Wang Y C, Yin X C, Ke F J, et al. Simulation of Rock Failure and Earthquake Process on Mesoscopic Scale, Pure Appl. Geophys.,2000,157:1905-1928
    Wang Y C, Mora P, nC, et al. Statistical Testes of Load-Unload Response Ratio Signals by lattice Solid Model:Implication to Tidal Triggering and Earthquake Prediction. Pure Appl. Geophys 2004,161:1829-1839
    Wang Y C. Simulation of earthquake process and studies on predictability. Post-Doctor Report. Institute of Mechanics, CAS,2000(in Chinese)
    Watson, T. H., and Wuenschel, P. C.,1973, An experimental study of attenuation in fluid saturated porous media, compressional waves and interfacial waves Presented at the 43 rd Annual International SEG Meeting,October 22 in Mexico City.
    Walsh, J. B., Brace, W. F., and Wawersik, W. R.,1970,Attenuation of stress waves in Ceder City quartz diorite:Air Force Weapons Lab. Tech. rep. AFWL-TR-70-8.-Theory and modeling of constant-Q P-and S-waves using fractional time derivatives JM Carcione-Geophysics,2009
    Weidner D.J.1987. Elastic properties of rocks and minerals[M]//Sammis C G, Henyey T L. Methods of experimental physics, Volume 24,Geophysics, Part A, Laboratory measurements. San Diego:Academic Press,1-30
    Winkler, K., and Nur, A.,1979,. The effects of pore fluid and frictional sliding onseismic attenuation, Ph.D. thesis, Stanford Univ.
    Winkler K., Nur A., Gladwin M. Friction and seismic attenuation in rocks. Nature,1979, 277:528-531
    Winkler, K., and Nur, A.,1982, Seismic attenuation:Effects of pore fluids and frictional sliding: Geophysics,47,1~15.
    Winkler, K W. Estimates of velocity dispersion between seismic and ultrasonic frequencies[J].Geophysics,1986 51,183-189.
    Wyllie M R J, Gregory A R, Gardner L W. Elastic wave velocities in heterogeneous and porous media[J].Geophysics,1956,21(129):41~70
    Xia M F, Wei Y J, Ke F J andBai Y L. Critical sensitivity and trans-scale fluctuations in catastrophe rupture. Pure Appl. Geophys.,2002,159(10):2491-2509
    Xu H. Day S. M. and Minster J B. Model for nonlinear wave propagation derived from rock hysteresis measurement. J. Geophys. Res.,1998,103:29915~29926
    Xu H.,Day S.M. and Minster J. B. Hysteresis and two-dimensional nonlinear wave propagation in Berea Sandstone. J. Geophys. Res.2000,105(B3):6163~6175.
    Xu Q and Huang R Q. Investigation on precursor of slope instability in term of LURR. Chinese Journal of Geological Disasters,1995,6(2)(in Chinese)
    Yin X C, Chen X Z, Song Z P and Yin C. The Load-Unload Response Ratio Theory and its Application to Earthquake Prediction. Journal of Earthquake Prediction Research,1994,3: 325-333
    Yin X C, Chen X Z, Song Z P, Yin C. A New Approach to Earthquake Prediction:The Lcad /Unload Response Ratio(LURR)Theory. Pure Appl. Geophys,1995,145:701-715
    Yin X C, Wang Y C, Peng K Y et al. Development of a New Approach to Earthquake Prediction-Load/unload Response Ratio(LURR)Theory. Pure Appl. Geophys.,2000,157: 2365-2383
    Yin X C, Zhang H H, Yu H Z, et al. Prediction of seismic tendency of Chinese mainland in 2004 in terms of LURR. In book"The research on seismic ten. dency of China in 2005, 282-285. (edited by Center for Analysis and Prediction, CSB), Seismological Press, Beijing, 2004(in Chinese)
    Yin X C, Yu H Z, Kukshenko V, et al. Load—Unload Response ratio(LURR), Accelerating Energy release(AER)and State Vector evolution as precursors to failure of rock specimens. Pure Appl. Geophys,2004,161:No.11~12,2405—2416
    Y Yu H Z. Experimental research on precursors of brittle heterogeneous media and earth. quake prediction methods. PhD Thesis, Institute of Mechanics。CAS,20o4(in Chinese)
    Zhang H H. Prediction of Catastrophic failure in Heterogeneous Brittle Media—Study and practice of Load/Unload Response Ratio(LURR). PhD thesis, Graduate School, CAS,2006
    Zhang X H, XuxH, Xia M F, et al. Critical sensitivity in driven nonlin-ear threshold systems. Pure Appl. Geophys.,2004,161:1931.1944
    Zhu, Y., and I. Tsvankin,2006, Plane-wave propagation in attenuative transversely isotropic media:Geophysics,71, no.2, T17-T30.
    ——,2007, Plane-wave attenuation anisotropy in orthorhombic media:Geophysics,72, no.1, D9-D19.
    ——2000, A model for seismic velocity and attenuation in petroleum source rocks:Geophysics, 65,1080-1092

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700