钢纤维喷射混凝土力学特性及其在隧道单层衬砌中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射混凝土技术,已成为地下工程和岩土工程支护中最有效的支护手段之一,它不仅可以作为初期支护确保隧道施工过程中的安全,也可以与其它支护构件或配合或单独地作为结构物的永久支护,维护结构物的长期稳定和安全使用。近年来,为了适应不同的围岩条件和施工方法,出现了许多新型的喷混凝土,如高强度喷混凝土、纤维喷混凝土、聚酯喷混凝土等,其中钢纤维喷射混凝土,因工程力学性能在很多方面都优于普通喷射混凝土,越来越受到工程界的重视,并在隧道及地下工程的衬砌支护中得以应用,但一直以来对其力学特性及隧道单层衬砌相关问题的研究还不够深入。本文结合国家自然科学基金重点项目(50334060)和国家自然科学基金创新群体基金(50621403),在前人研究的基础上,通过理论分析、试验研究、数值模拟和现场测试等方法,对钢纤维喷射混凝土的力学特性及其在隧道单层衬砌中的应用进行了较为系统和深入的研究。主要研究工作及成果如下:
     ①研究了钢纤维对混凝土的增强机理。根据钢纤维喷混凝土应力-应变曲线实验的基本特性,将钢纤维喷混凝土的破坏演化过程分成四个相互联系又各具特点的阶段;通过对钢纤维喷混凝土梁的抗弯机理分析,推导出了裂后弯矩与极限弯矩的关系表达式;并从复合材料力学和断裂力学的观点阐述了钢纤维对混凝土的增强、增韧作用。
     ②研究了钢纤维喷混凝土的抗压强度、抗拉强度、早期强度、粘结强度以及抗渗性能等基本力学特性,掌握了不同类别钢纤维喷混凝土的力学性能与掺量关系,确定了纤维的合理掺量,并提出了适合于隧道单层衬砌的钢纤维喷射混凝土力学特性控制指标。
     ③通过钢纤维喷混凝土的荷载-挠度试验,对其弯曲韧性进行了计算分析,研究了弯曲韧性指标随纤维掺量的变化规律,结合试验结果,对钢纤维喷混凝土韧性指标的相关性进行了探讨;根据立方体切片实验,分析了钢纤维在喷射混凝土中的分布规律,并将实验结果与理论计算进行对比,得到了纤维在喷射混凝土中服从球面上的Fisher分布。
     ④从分析单层衬砌的支护对象入手,对隧道喷混凝土单层衬砌的力学机理进行了研究。单层衬砌在荷载经历过程中表现出两种不同的力学传递:一种是从影响支护应力状态的围岩向外部传递,另一种是应力内部的传递;喷混凝土支护的受力机理分为两类:局部受力和整体受力;对锚杆在喷混凝土单层衬砌中的支护作用进行了分析。
     ⑤通过对隧道围岩稳定性的影响因素分析,从突变理论入手,研究了隧道单层衬砌顶部复合结构的稳定性。采用平直梁简化力学模型,建立了隧道单层衬砌支护-围岩复合体拱顶失稳的尖点突变模型,导出了其失稳的充要力学条件判据和系统失稳时拱顶变形突跳量及能量释放的表达式,讨论了受力状况变化对拱顶复合结构稳定性的影响。
     ⑥采用有限元法对钢纤维喷射混凝土单层衬砌进行了数值模拟,分析了隧道围岩-支护结构体系的位移场、应力场、塑性区以及支护内力的分布规律和变化特性,探讨了不同围岩级别下隧道开挖后的围岩稳定性,获得了钢纤维喷射混凝土单层衬砌的合理喷层厚度,并基于现场监测成果对隧道单层衬砌支护结构进行了稳定性评价。
     ⑦以摩天岭隧道通风斜井为依托工程,按照挪威隧道工法的原理和技术要求,从施工工艺、结构设计、关键技术、经济性及防排水等方面系统地研究了湿喷钢纤维混凝土在隧道单层衬砌中的应用,初步形成具有质量检验及评定标准的隧道单层衬砌施工技术。
The shotcrete technology has become one of the most effective means of supporting in underground engineering and geotechnical engineering; it not only can be the initial period supports which insures construction security of tunnel, but also take the structure permanent supports and protections along with supports and protections component, and maintain structure long-term stability and safety handling. In recent years, in order to adapt to the different surrounding rock condition and construction method, it appears many new kinds of shotcrete, such as high strength shotcrete, fiber shotcrete, and polyester high strength shotcrete, and so on. Speaking of the engineering mechanics performance, the steel fiber reinforced shotcrete has surpasseed ordinary shotcrete in many aspects, thus it is given more and more attention by engineering area, which is applied widely in tunnels and underground engineering, but its mechanical characteristics and related issues have been always falling behind application. Combined with the key project of the National Natural Science Foundation and National Natural Sciences Foundation Innovation Community Fund, on the basis of previous research, the mechanical characteristics of steel fiber reinforced shotcrete and action mechanism of single layer tunnel lining is systemic and thoroughly researched by theory analysis, experimental test, numerical simulation and field test. The main works and achievement of thesis can be drawn as follows:
     (1) The reinforced mechanism of steel fiber reinforced concrete is studied. According to the leading features of stress-strain curve, the growing of damage in steel fiber reinforced concrete is subdivided into four stages with mutual connections and characteristic stage. According to flexural mechanism analysis of steel fiber reinforced shotcrete beam, relations expression between moment capacity and cracking moment is obtained. The reinforcing and toughening mechanism of steel fiber to contrete is set forth in details from the point of view of composite material mechanics and fracture mechanics.
     (2) The compression strength, tensile strength, initial strength, cohesional strength and impermeability properties of steel fiber reinforced shotcrete are key researched; among basic mechanical experiments, the relationship between mechanical properties and content of different steel fiber reinforced shotcrete is grasped; a reasonable content of fiber is determined, and the mechanical proper guideposts of shotcrete used for single layer lining are presented.
     (3) With load and deflection test of steel fiber reinforced shotcrete, its flexural toughness is calculated and analyzed, the change pattern of curving toughness index along with the fiber contents is studied, combined with test results, the relevance of toughness index of steel fiber reinforced shotcrete is discussed. Through cube slice experiment, the distribution of steel fiber in shotcrete is obtained, and experimental results and theoretical calculation is comparative analyzed, slice test of steel fiber reinforced shotcrete proves steel fiber obeys Fisher distribution of spherical surface among shotcrete.
     (4) Starting with analysis of support object of single layer lining, the mechanical mechanism mechanism of single layer tunnel lining is studied; it shows two different mechanical transfer mechanisms in the load course: one is rock stress transfers to the outside, and the other is the internal stress transfers. Supporting mechanism of shotcrete is divided into two categories: the part stress and the whole one. And the mechanism of anchors for single layer tunnel lining by shotcrete is analyzed too.
     (5) By analyzing the impact factors of stability of tunnel surrounding rock, based on cusp catastrophe theory, the stability of composite structure from top of single layer tunnel lining is studied. Adopted simplified mechanical model of straight beam, the catastrophe model of vault complex of single layer tunnel lining and surrounding rock is set up, and necessary and sufficient conditions for instability and vault deformation at system instability as well as expression which energy releases are obtained, and thesis discusses the influence between vault complex stability and changing force on structure.
     (6) Using finite element method, the stability of single layer tunnel lining by steel fiber reinforced shotcrete is numerical simulation analyzed; the surrounding of tunnel rock and support system structure, displacement field, stress field, plastic zone as well as internal forces changes of support characteristics are obtained; the stability of different surrounding rock grade of tunnel excavation is studied, and reasonable spray layer thickness of single layer tunnel lining by steel fiber reinforced shotcrete is obtained. Simultaneity, the supporting effect of single layer lining by steel fiber reinforced shotcrete is also analyzed and evaluated by in-situ monitoring results.
     (7) With a project of inclined shaft of Motianling tunnel, based on the principles and technical demands of New Austrian Tunneling Method, the application of single layer tunnel lining by steel fiber reinforced shotcrete with wet-mix method is studied systematically by construction technology, structural design, key technology, economic analysis and waterproof and drainage, and a set of quality inspection and evaluation standards of construction technology for single layer tunnel lining is initial formed.
引文
[1] Rose D. Steel fibre reinforced shotcrete for tunnlels linings[J].Tunnels and Tunnelling, 1986,18(5):39-44.
    [2]王红喜,陈友治,丁庆军.喷射混凝土的现状与发展[J].岩土工程技术,2004,18(1):51-54.
    [3]程良奎.喷射混凝土(一)—喷射混凝土的最新发展与施工工艺[J].工艺建筑,1986,(1):49-56.
    [4]马宝祥.湿式混凝土喷射机的发展及应用[J].河北建筑科技学院学报,2000,17(3):49-51.
    [5]程良奎,杨志银.喷射混凝土与土钉墙[M].北京:中国建筑工业出版社,1998.
    [6]张向东,张树光,李永靖.喷射混凝土技术的发展与应用[J].煤,2000,10(1):19-21.
    [7]谢兴保.现代喷射混凝土技术原理及特性分析[J].武汉水利电力大学学报,1994,27(6): 658-665.
    [8] Poad M E., Serbousek M O. The Engineering Characteristics of Shotcrete[J].North American Rapid Excavation and Tunneling Conference,1972,(6):573-591.
    [9]邹崇富.钢纤维增强混凝土在隧道工程中的应用[J].隧道工程,1981,(1):23-30.
    [10]宋宏伟,鹿守敏,周容章.大松动圈软岩巷道支护一潘三等矿井软岩支护改革[J].建井技术, 1994,(6):19-21.
    [11]韩志军.钢纤维喷射混凝土支护软岩巷道[J].煤炭利学技术,1993,21(12):34-36.
    [12]陈晓东.钢纤维喷射混凝土在隧洞加固处理中的应用[J].现代隧逝技术,2002,39(1):61-64.
    [13]刘风坤.湿喷混凝土工艺在金川矿区的应用[J].中国矿山工程,2008,37(6):5-7,49.
    [14]奚立平.纤维喷射混凝土加固大坝及其配合比试验[J].中国农村水利水电,2006,(12):88-91.
    [15]邹崇富.用钢纤维喷混凝土加固裂损隧道混凝土的试验[J].隧道工程,1983,(1):55-58.
    [16]郭生智,谢爱花.喷射钢纤维混凝土在桐柏电站输水工程中的应用[J].浙江水利科技,2003,(3):37-38.
    [17]陈晓东.盘道岭隧洞险段工程加固措施及效果[J].人民黄河,1999,(11):37-40.
    [18]陈运意.钢纤维混凝土地面施工工法[J].施工技术,1996,(5):37-38.
    [19]弓季宗.梁体外预加应力喷补钢纤维混凝土的试验及分析[J].铁路标准设计,1995,(3):20-24.
    [20]文田伟译.纤维混凝土在隧道衬砌方面的应用[J].隧道译丛,1977,(5):49-53.
    [21]张志强译.纤维筋喷混凝土[J].隧道译丛,1979,(5):72-74.
    [22] Kernchel H. Fibre Reinforced[M].Akademisk Forlag, Copenhagen,1964.
    [23]蔡四维.复合材料结构力学[M].北京:人民交通出版社,1987.
    [24]林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学出版社,2002.
    [25] Kelly A., Davies G J. The Principle of the Fiber Reinforcen of Metals[J]. Met. Rev., 1965, 10(1):23-30.
    [26] Cox H L. The elasticity and strength of paper and other fibrous materials[J]. J.Appl. Phys.,1952,3-13.
    [27]黄士元译.混凝土科学[M].北京:中国建筑工业出版社,1986.
    [28]赵渠林.复合材料[M].北京:国防工业出版社,1979.
    [29] Romualdi J P., Batson G B. Mechanics of Crackarrest in Concrete[J]. Proc.ASCE,1963, 89(6):147-168.
    [30] Romualdi J P., Mandel J A.. Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Length of Wire Reinforcement[J].ACI Journal, Proceeding, 1964,(6):567-673.
    [31] Swamy R N., Mangat P S. The Mechanics of fiber reinforcement of cement matrices[J]. Fiber reinforcement concrete, American concrete institute, 1974,1-36.
    [32] Kobayashi K., Cho R. Mechanics of Concrete with Randomly Oriented Short Steel Fiber[C]. Proc.of the 2nd Int. Conf. On the Mechanical Behaviour of Materials, Baston,1976,1938-1942.
    [33] Shah S P., Rangan B B. Fiber Reinforced Concrete Properties[J]. ACI Journal, Proc.1971, 68(2):126-135.
    [34] Johnson C D., Coleman R A. Strength and Deformation of Steel Fiber Reinforced Mortar in Uniaxial Tension[C]. Fiber Reinforced Concrete, American Concrete Institute,1974,177-207.
    [35]邹崇富译.纤维补强混凝土[M].北京:中国铁道出版,1985.
    [36]关丽秋.钢纤维混凝土结构[M].大连:大连理工大学出版社,1984.
    [37]关丽秋,赵国藩.钢纤维混凝土在单向拉伸时的增强机理与破坏形态分析[J].水利学报, 1986,(9):23-28.
    [38]安玉杰,赵国藩,黄承逵.纤维水泥增强机理的研究[J].水利学报,1991,(10):55-59.
    [39]罗章,李夕兵,凌同华.钢纤维混凝土的增强机理与断裂力学模型研究[J].矿业研究与开发, 2003,23(3):18-22.
    [40]杨庆生.复合材料细观结构力学设计[M].北京:中国铁道出版社,2000.
    [41] Rosen B W. Mechanics of composite strengthening[M]. American society for metals, metals park,1965.
    [42] Kely A. Stress transfer mechanism[J].J. Mech .phys solids,1965,(13):329-331.
    [43] Zweben L. Velocity impact damage in graphite fiber reinforced epoxy Laminates[J]. Polymer Composites,1981,2(1):36-44.
    [44] Chua P S., Piggott M R. The Glass Fiber Polymer Interface Theoretical Consideration for Single Fiber Pullout Tests[J]. Composites Sci. and Tech.,1985,(22):33-42.
    [45]程庆国.钢纤维混凝土理论及应用[M].北京:中国铁道出版,1999.
    [46] Ding Y N. Compressive stress-strain relationship of steel fibre reinforced concrete at early age[J]. Cement and Concrete Research, 2000,(30):1573-1579.
    [47] Jeng F S., Ming L., Lin S C. Yuan.Performance of toughness indices for steel fiber reinforced shotcrete[J]. Tunnelling and Underground Space Technology,2002,(17):69-82.
    [48] Choi O C., Lee C. Flexural performance of ring-type steel fiber reinforced concrete[J].Cement and Concrete Research, 2003,(33):841-849.
    [49] Tan K H., Mithun K S. Ten-Year Study on Steel Fiber Reinforced Concrete Beams Under Sustained Loads[J]. ACI Structural Journal, 2005,(3):472-480.
    [50] Haktanir T., Kamuran A. A comparative experimental investigation of reinforced concrete and steel fibre concrete pipes under three-edge-bearing test[J]. Construction and Building Materials, 2007,(21):1702-1708.
    [51] Ding Y N., Wolfgang K. Comparative study of steel fibre reinforced concrete and steel mesh-reinforced concrete at early ages in panel tests[J]. Cement and Concrete Research, 1999,(29):1827-1834.
    [52] Nataraja M C., Dhang N., Gupta A P. Stress-strain curves for steel fiber reinforced concrete under compression [J]. Cement & concrete Composites,1999,(21):383-390.
    [53] Barragan B E., Ravindra G., Miguel A. Uniaxial tension test for steel fibre reinforced concrete a parametric study[J]. Cement & Concrete Composites, 2003,(25):767-775.
    [54] Banthia N., Sappakittipakorn M. Toughness enhancement in steel fiber reinforced concrete through fiber hybridization[J]. Cement and Concrete Research, 2007,(5):5-13.
    [55] Spadea C., Bencardino F. Behavior of Fiber Reinforced Concrete Beams under Cyclic Loading[J]. Structural Engineering, 1997,123(5):660-669.
    [56]丁琳.隧洞衬砌中湿喷钢纤维混凝土的应用[J].岩土力学,1996,17(1):36-40.
    [57]掬杨,樊承谋.循环载荷作用下钢纤维混凝土的损伤及演化行为的定量描述[J].工程力学, 1998,15(1):94-104.
    [58]姚嵘.纤维掺合料对高强增塑喷射混凝土塑性的影响[J].煤炭工程,2002,(6):32-34.
    [59]高尔新,李元生,薛玉,等.喷射混凝土钢纤维分布特性分析[J].岩土工程学报,2002,24(3): 202-203.
    [60]张亚梅,孙伟,王亚丽,等.硅灰和钢纤维对喷射混凝土性能的影响研究[J].混凝土与水泥制品,2002,(23):33-35.
    [61]秦鸿根,刘斯凤,孙伟,等.钢纤维掺量和类型对混凝土性能的影响[J].建筑材料学报,2003, 6(4):634-638.
    [62]何化南,黄承逵.钢纤维自应力混凝土受拉应力-应变全曲线试验研究[J].大连理工大学学报,2004,44(5):710-713.
    [63]朱永全,刘勇,刘志春,等.聚丙烯纤维网喷射混凝土性能和衬砌试验[J].岩石力学与工程学报,2004,23(19):3376-3380.
    [64]史世雍,马金荣.隧道钢纤维喷射混凝土强度试验研究[J].山西建筑,2004,30(2):55-56.
    [65]高丹盈,朱海堂,汤寄予.纤维高强混凝土抗剪强度的试验研究[J].建筑科学,2004,20(5): 69-73.
    [66]焦楚杰,孙伟.钢纤维混凝土抗冲击试验研究[J].中山学报(自然科学版),2005,44(6):41-44.
    [67]林龙镔.钢纤维混凝土隧道的耐久性能研究[J].工业建筑,2006,36,(12):5-8.
    [68]范新,章克凌,王明洋,等.钢纤维喷射混凝土支护抗常规爆炸震塌能力研究[J].岩石力学与工程学报,2006,25(7):1437-1442.
    [69]杨萌,黄承逵.钢纤维高强混凝土轴拉性能试验研究[J].土木工程学报,2006,9(3):55-61.
    [70]李九苏.支护工程钢纤维喷射混凝土试验研究[J].人民黄河,2006,28(6):56-60.
    [71]刘红燕,李志业,裴适龄.应用能量守恒原理设计钢纤维喷射混凝土衬砌厚度的方法[J].岩石力学与工程学报,2006,25(2):423-431.
    [72]祝文化,李元章.纤维混凝土动态压缩力学性能的实验研究[J].武汉理工大学学报,2007, 29(2):62-64.
    [73]马桂军,夏岩昆.寒区钢纤维混凝土力学性能的研究及应用[J].黑龙江交通科技,2007, (6):32-34.
    [74]韩玉芳,谢士宏,吕臣敬.喷射钢纤维混凝土的工程特性及在隧道工程中的应用[J].石家庄铁道学院学报(自然科学版),2007,20(3):99-101,105.
    [75]彭刚.钢纤维混凝土动态压缩性能及全曲线模型研究[J].工程力学,2009,26(2):142-147.
    [76] Marc V. Tunnelling the World[M]. Belgium,1991.
    [77] Chang C T., Liu H S. The current and prospective applications of steel fiber reinforced concrete/shotcrete in Taiwan[C]. Third International Symposium on Sprayed Concrete Modern Use of Wet Mix Sprayed Concretef or Underground Support,Gol,Norway,26-29,1999.
    [78]挪威隧道施工法[J].秦岭隧道科技信息,1999,(12):205-219.
    [79] Melbye T, Knut F. Sprayed Concrete for Rock Support[M]. MBT International Underground Construction Group,2000.
    [80]吴成三.尽快消灭喷单层混凝土衬砌中的困难问题[J].铁道建设技术,1998,(4):5-5.
    [81]吕明.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4220-4225.
    [82] Kuitenbrouwer L. The use of Steel Fibre Shotcrete on Major European Under ground Projects[R].Third Intenrational Symposium on Sprayed Concrete-Modern Use of Wet Mix Sprayed Concretef orUnderground Support,Gol,Norway September 503-506,1999.
    [83] Morgan D R., Askill N M. Rocky Mountain Tunnels Lined with Steel Fiber Reinforced Shotcrete[J]. Concrete Intenrational,1984,(12):33-38.
    [84] Franzen T. Shotcrete for Underground Support: a State-of-the-art Report with Focus on Steel fibre Reinforcement[J]. Tunnelling and Underground Space Technology,1992,381-391.
    [85]在瑞士地下工程中使用钢纤维混凝土[J].秦岭隧道科技信息,1999,(12):193-195.
    [86]何复生.万军回隧道钢纤维喷射混凝土质量监控[J].工程科技,2001,(1):36-40.
    [87]何晓春.一种隧道新型衬砌的施工及体会[J].铁道建筑,2003,(4):23-25.
    [88]卢良浩.钢纤维混凝土工程应用三例[A].南京:全国第四届纤维水泥与纤维混凝土学术会议论文集[C],1992.
    [89]汪伏祥,张杰,张可诚.湿喷混凝土在秦岭隧道的应用[J].现代隧道技术,2001,38(5):28-31.
    [90]田兴柏,黄德志.普通钢纤维混凝土在乐善村二号隧道中的应用[J].铁道建筑技术,1999 (3):21-24.
    [91]贺少辉,马万权,曹德胜,等.隧道湿喷纤维高性能混凝土单层永久衬砌研究[J].岩石力学与工程学报,2004,23(20):3509-3514.
    [92]吴建福,代丰.隧道喷射钢纤维混凝土永久支护技术[J].路基工程,2008,(5):185-187.
    [93]杨国柱,张金荣,张俊国,等.西合线西南段隧道工程[A].成都:隧道和地下工程第十届科技动态报告会报告文集[C],2000.
    [94]梁国臣.西康铁路高蝙沟隧道湿喷钢纤维混凝土施工[J].施工技术,2001,30(5):23,39.
    [95]付卫新.模筑钢纤维混凝土在磨沟岭隧道中的应用[J].隧道建设,2003,23(2):39-41,51.
    [96]张祉道.家竹箐隧道施工中支护大变形的整治[J].现代隧道技术,1997,(1):7-16.
    [97]周峰,郭小红.大别山隧道斜井单层衬砌的试验研究[J].中外公路,2008,28(6):167-172.
    [98]张先锋,周书明.喷锚永久支护在青岛地铁中的应用[A].成都:隧道和地下工程第十届科技动态报告会报告文集[C], 2000.
    [99]高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994.
    [100]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [101]胡元芳.隧道工程钢纤维喷混凝土支护力学原理[D].铁道部科学研究院,2002.
    [102] Robert M J. Mechanics of Composite Materials[M].Scripta Book Company,1976.
    [103]赵国藩,黄承逵.纤维混凝土的研究与应用[M].大连:大连理工大学出版社,1992.
    [104]黄承逵.纤维混凝土结构[M].北京:机械工业出版,2004.
    [105]金丰年,刘黎,张丽萍,等.深钻地武器的发展及其侵彻[J].解放军理工大学学报(自然科学版),2002,3(2):34-40.
    [106]贾普荣,矫桂琼,刘达.纤维增强韧性基体界面力学行为[J].固体力学,2001,(4):351-355.
    [107]李丽娟,张红州,刘锋,等.纤维与混凝土粘结的界面力学性能研究[J].新型建筑材料,2004, (10):1-5.
    [108]程秀菊.钢纤维混凝土的增强机理及断裂韧性的研究[D].河海大学,2005.
    [109] Sun M Q., Mao Q Z. Size effect and loading rate dependence of the pressure sensitivity of carbon fiber reinforced concrete[J]. Journal of Wuhan University of Technology, 1998,13(3): 58-61.
    [110] Craig A., William G., Habib J D. Testing and Analysis of Partially Composite Fiber Reinforced Polymer-Glulam-Concrete Bridge[J]. Journal of bridge engineering,2004,19(4):1084-1092.
    [111] Tripathi D., Jones F R. Measurement of the Load-bearing Capability of the Fiber/MatrixInterface by Single Fiber Fragmentation[J]. Composites Sci. and Tech., 1997,57(8):925-934.
    [112]冷锦文译.混凝土工程[M].北京:煤炭工业出版社,1981.
    [113] JTG E30 T0553-2005,水泥混凝土立方体抗压强度试验[S].北京:电子工业出版社,2005.
    [114] GB50086-2001,锚杆喷射混凝土支护技术规范[S].北京:中国计划出版社,2001.
    [115]马智英.钢纤维混凝土早期力学性能发展规律的试验研究[D].北京工业大学,2003.
    [116] DL/T 5195-2004,水工隧洞设计规范[S].北京:中国水利水电出版社,2004.
    [117] SL279-2002,水工隧洞设计规范[S].北京:中国水利水电出版社,2002.
    [118] DL/T 5181-2003,水电水利工程锚喷支护施工规范[S].北京:中国水利水电出版社,2003.
    [119]龚洛书.混凝土实用手册[M].北京:中国建筑工业出版社,1995.
    [120] JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.
    [121] European Specification for Sprayed Concrete. European Federation of National Associations of Specialist Contractors and Material Supplier for the Construction Industry,1996.
    [122] Japanese Society of Civil Engineers. Method of Test for Flexural Strength and Flexural Toughness of SFRS, Standard JSCE-SF4.
    [123] American Society for Testing and Materials Test Method C1018-97 Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber Reinforced Concrete,West Conshohocken, PA.1997.
    [124] Morgan D R., Chen L., Beaupre D. Toughness of Fibre Reinforced Shotcrete, Shotcrete for Underground Supporting[C]. Proceedings of the Engineering Foundation Conference Telfs, 1995,(6):66-87.
    [125] CECS 13:89,钢纤维混凝土试验方法[S].北京:中国计划出版社,1991.
    [126] CECS 38:2004,纤维混凝土结构技术规程[S].北京:中国计划出版社,2004.
    [127]赵景海,徐鹏,樊承谋.钢纤维混凝土韧性及压缩韧性指标的研究[J].建筑结构学报, 1991,12(4):44-51.
    [128]范铃铃.钢纤维混凝土韧性试验研究[D].河北工业大学,2002.
    [129]吴少鹏,南策文.钢纤维聚合物水泥基复合材料中钢纤维的分布[J].武汉理工大学学报,2001,23(12):9-12.
    [130]李志男.湿喷钢纤维混凝土钢纤维方向效能系数研究[J].河南科学,2002,20(6):660-662.
    [131]郑洽馀,鲁钟琪.流体力学[M].北京:机械工业出版社,1980.
    [132] Mardia K V. Statistics of Direction Data[M]. London And New York:Academic Press,1972.
    [133]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [134]宋宏伟,郭志宏,周荣章,等.围岩松动圈支护理论的基本观点[J].建井技术,1994,(4):3-9.
    [135]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [136]张素敏,宋玉香,朱永全.隧道围岩特征曲线数值模拟分析[J].岩土力学,2004,25(3):455-458.
    [137]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [138]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2003.
    [139]张俊儒.隧道单层衬砌作用机理及设计方法研究[D].西南交通大学,2007.
    [140]王焕文,王继良.锚喷支护[M].北京:煤炭工业出版社,1989.
    [141]徐干成,白洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2003.
    [142]李晓红.隧道新奥法及其测量技术[M].北京:科学出版社,2002.
    [143]杨延毅.加锚层状岩体的变形破坏过程与加固效果分析模型[J].岩石力学与工程学报, 1994,13(4):309-317.
    [144]朱汉华,孙红月,杨建辉.公路隧道围岩稳定与支护技术[M].北京:科学出版社,2007.
    [145]孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.
    [146]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [147]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [148]陆兆漆.工程地质学[M].北京:中国水利水电出版社,2001.
    [149]陈子萌.围岩力学分析中的解析方法[M].北京:煤炭工业出版社,1994.
    [150]周仲良译.突变论:思想和应用[M].上海:上海译文出版社,1989.
    [151] Cubitt J., Shaw B. The geological implicatlon of steady state mechanisms in catastrophe theory[J]. Math,Geology,1976(8):657-661.
    [152] Henly S. Catastrophe theory models in geology[J]. Math,Geology,1979,(8):6-11.
    [153] Potier F M. Towards a catastrophe theory for the mechanics plasticity and fracture[J]. Int J Eagng Sci,1985,23(8):821-837.
    [154]殷有泉,郑顾团.断层地震的尖角型突变模型[J].地球物理学报,1988,3l(6):657-633.
    [155]秦四清,何怀锋.狭窄煤柱冲击地压失稳的突变理论分析[J].水文地质工程地质,1995, (5):17-20.
    [156]刘学增.深部隧道失稳的尖点灾变模型[J].山东科技大学学报,2000,19(1):38-40.
    [157]闫长斌,徐国元.基于突变理论深埋硬岩隧道的失稳分析[J].工程地质学报,2006, 14(4):508-512.
    [158]秦四清.非线性工程地质学导引[M].成都:西南交通大学出版社,1993.
    [159]葛亮涛.关于煤矿底鼓水力学机理的探讨[J].煤田地质与勘探,1986,(1):33-41.
    [160]孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,1994.
    [161]徐芝纶.弹性力学[M].北京:人民教育出版,1983.
    [162]程桦,孙钧,吕渊.软弱围岩复合式隧道衬砌模型试验研究[J].岩石力学与工程学报,1997, 16(2):162-170.
    [163]吴梦军,陈彰贵,许锡宾,等.公路隧道围岩稳定性研究现状与展望[J].重庆交通学院学报, 2003,22(2):24-28.
    [164]朱赞成,华渊,付小英.隧道开挖与支护有限差分法分析[J].铁道建筑,2005(9):57-59.
    [165]刘君,孔宪京.节理岩体中隧道开挖与支护的数值模拟[J].岩土力学,2007,28(2):321-326.
    [166]张洵安,王显彬.软岩隧道开挖与支护的三维有限元仿真分析[J].郑州大学学报,2008, 29(2):137-140,144.
    [167]曾国平,刘忠,徐家礼.塑性力学有限元-理论与应用[M].北京:兵器工业出版社,1989.
    [168]国家重点公路杭州至兰州线摩天岭隧道勘察报告[R].武汉:中交第二勘察设计院,2006.
    [169] GB50218-94,工程岩体分级标准[S].北京:水利水电出版社,1994.
    [170] Barton N., Grimstad E. Rock mass conditions dictate choice between NMT and NATM[J]. Tunnels & Tunnelling, 1994,26(10):39-42.
    [171] Norwegian Concrete Association. Sprayed Concrete for Rock Support Technical Specification, Guidelines and Test Methods[M]. Publication No.7,1999 edition,1999.
    [172]金学易,陈文英.隧道通风及隧道空气动力学[M].北京:中国铁道出版社,1983.
    [173]秦岭终南山隧道运营通风研究报告[R].西安:长安大学公路学院,2003.
    [174] JTJ 026.1-1999,公路隧道通风照明设计规范[S].北京:人民交通出版社,2000.
    [175]仇玉良,李宁军,谢永利.喷射混凝土衬砌隧道通风阻力系数测试研究[J].中国公路学报,2005,18(1):81-84.
    [176]孙一坚.通风工程设计手册[M].北京:中国建筑工业出版社,1997.
    [177]吴成三.及时掌握单层衬砌技术,降低隧道工程造价[J].铁道标准设计,1996,(12):1-3.
    [178]赖真宝.昆-石高速公路隧道单层衬砌高性能喷射混凝土性能研究[J].岩土工程界,2002,5(7):19-20.
    [179]张俊儒,仇文革,龚彦峰,等.隧道单层衬砌结构及其防水性能的设计[J].现代隧道技术,2006, (supp):340-344.
    [180]钟世云,袁华.聚合物在混凝土中的应用[M].北京:化学工业出版社,2003.
    [181]杨其新,刘东民,盛草樱,等.隧道及地下工程喷膜防水技术[J].铁道学报,2002,24(2):83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700