鸡白痢沙门氏菌抑制差减杂交文库的构建及ipaJ、mobA基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡白痢沙门氏菌多侵害20日龄以内幼雏,引起白色下痢,病死率极高,成年鸡则可带菌而无临床症状。该病既可垂直传播,又有严重的水平传播,所造成的危害和经济损失巨大。目前,在西方发达国家该病已经被消灭或基本消灭,然而在个别小的禽群中仍有发生,国内禽群鸡白痢的爆发仍较多。寻求鸡白痢沙门氏菌的致病基因对于了解其致病机理及有效地防治鸡白痢具有重要的意义。
     随着微生物基因组序列的大量测定,通过比较基因组差异分析致病微生物的分子致病机制已成为新近微生物基因组研究的一大热点。抑制性差减杂交方法(suppression subtractive hybridisation,SSH)的问世为微生物基因组学研究、致病基因和新基因的筛选提供了新技术。本研究利用SSH构建了鸡白痢沙门氏菌与肠炎沙门氏菌的差减文库,并对其中的部分序列进行了初步分析。
     1.鸡白痢沙门氏菌与肠炎沙门氏菌抑制差减杂交文库的构建
     应用抑制性差减杂交技术(SSH)对鸡白痢沙门氏菌533株与肠炎沙门氏菌50041株进行基因组片段的差异分析,构建了鸡白痢沙门氏菌的差减文库。经Dot-blot筛选,并对部分片段测序和同源性分析,结果表明这些序列主要分为4类:可移动遗传元件,III型分泌系统相关序列,质粒转移相关序列,未知功能序列。其中3个差减片段与编码福氏志贺菌侵入质粒抗原IpaJ蛋白基因的同源性达50%。本研究中构建的差减文库为研究鸡白痢沙门氏菌特异性致病基因和其致病机理提供了重要的材料。
     2.鸡白痢沙门氏菌ipaJ基因的克隆与表达
     鸡白痢沙门氏菌与肠炎沙门氏菌差减文库中的片段PEA2、PE31、PE44与猪霍乱沙门氏菌psfD10 ipaJ相应序列同源性分别达97%、99%和100%。将PEA2、PE31和PE44序列拼接后获得鸡白痢沙门氏菌完整的ipaJ序列,设计一对引物从鸡白痢沙门氏菌中克隆出ipaJ基因并将其构建到原核表达载体pET-30a(+)上,诱导表达出37KDa的蛋白。Western-blot试验显示鸡白痢沙门氏菌阳性血清能与体外表达的蛋白呈现特异性反应。特异性实验表明ipaJ是鸡白痢沙门氏菌特有的基因。对97株不同来源的鸡白痢沙门氏菌分离株的PCR结果反映了ipaJ广泛存在于鸡白痢沙门氏菌中。本研究在国际上首次证实了ipaJ基因存在于鸡白痢沙门氏菌中,但对其功能的了解还有待于更深入的研究。
     3.鸡白痢沙门氏菌mobA基因的克隆与表达
     鸡白痢沙门氏菌与肠炎沙门氏菌抑制差减杂交文库中片段PE30与猪霍乱沙门氏菌psfD10 mobA基因序列同源性达99%。根据GenBank上发表的mobA基因序列,设计了一对引物从鸡白痢沙门氏菌标准株533中扩增出片段约为1.6kb的序列,将此序列构建到原核表达载体pET-30a(+)和pGEMX6p-1上,再将重组质粒分别转化入宿主菌BL21(DE3)和BL21中,在37℃,0.5mmol/L IPTG诱导下,分别表达出分子量约为64KDa和84KDa的蛋白质。将BL21(DE3)中的重组蛋白表达产物经His纯化柱回收后免疫小鼠,Western-blot试验显示免疫小鼠的血清与BL21中表达的MobA蛋白呈现特异性反应,这说明了体外表达的蛋白具有免疫原性。mobA基因的成功克隆与表达为进一步研究提供了条件。
Salmonella enterica serovar Pullorum is the causative agent of pullorum disease in poultry, an acute systemic disease that results in a high mortality rate in young chicks but rarely causes severe clinical disease in adult birds. Salmonella pullorum causes infection by vertical transmission and horizonal transmission. Although pullorum disease has been largely eliminated from many western countries, it still has been happenning in small flocks. The explosion of pullorum disease is popular in china. Searching for virulent genes is very important to understand the pathogenesis of Salmonella pullorum and find therapeutic measures to the disease.
     With the completion of genomic sequence of microbes, comparative analysis of complete genome provides a powerful tool for studying the molecular pathgenesis of pathegenic mirobes. Although SSH (suppression subtractive hybridization) was first developed for cDNA comparison, it has been applied in genomics study of microbes and screening virulent genes and new genes. In this study, the Salmonella pullorum subtractive library was constructed and analyzed by comparison of genomic differences between Salmonella ullorum 533 (tester) and Salmonella enteritidis 50041 (driver) by SSH, and further ipaJ、mobA gene were cloned and expressed.
     1. Construction of suppression subtractive library between Salmonella pullorum and Salmonella enteritidis
     Using suppression subtractive hybridization (SSH) technique, the Salmonella pullorum subtractive library was constructed by comparison of genomic differences between Salmonella pullorum strain 533 (tester) and Salmonella enteritidis strain 50041 (driver). Parts of subtracted fragments were sequenced and searched homologically in GenBank after identification by Dot-blot. The results showed four types of fragments were identified: mobile genetic element, type III secretion sequences, sequences for plasmid transfer, sequences with unknown function. The amino acid homology of three subtracted sequences with ipaJ of Shigella flexneri was 50%. The results suggested that the Salmonella pullorum subtracted library was very useful for searching pathogenicity- related sequences and analyzing pathogenesis of Salmonella pullorum.
     2. Cloning and expression of Salmonella pullorum ipaJ gene
     The Salmonella pullorum subtracted sequences PEA2、PE31 and PE44 were blasted on the GenBank. The results of BLASTX showed that the homological ratio of PEA2、PE31 and PE44 was 97%、99% and 100% respectively to ipaJ gene fragment in plasmid psfD10 of Salmonella choleraesuis. The three subtracted sequences were spliced together into the whole sequences of ipaJ in Salmonella pullorum, then a pair of primers were synthesized to amplify ipaJ gene in Salmonella pullorum strain 533 by polymerase chain reaction (PCR). PCR products were cloned into prokaryotic expressive vector pET-30a(+). The recombinant was transformed into the host strain BL21(DE3) and expressed by 0.5mM IPTG induced at 37℃. The expression product was found to be 37KDa by SDS-PAGE. Specific reaction was found between Salmonella pullorum positive serum and expressed protein in vitro by Western-blot assay. It implied that ipaJ was immunogenic and expressed when Salmonella pullorum infected chicks, may be it was related to pathogenicity of Salmonella pullorum. The specificity test proved ipaJ was only amplified from Salmonella pullorum and this gene is carried by all 97 salmonella pullorum isolates tested. The function of ipaJ was remained to be further studied.
     3. Cloning and expression of Salmonella pullorum mobA gene
     The homological ratio of Salmonella pullorum subtracted sequence PE30 was 99% to mobA in Salmonella choleraesuis plasmid psfD10. According to the published sequence of mobA gene in plasmid psfD10 of Salmonella choleraesuis, a pair of primers were designed and synthesized to amplify mobA gene (about 1.6kb) in Salmonella pullorum strain 533 by polymerase chain reaction (PCR). PCR products were cloned into prokaryotic expressive vectors pET-30a(+) and pGEMX6p-1, then the recombinants were transformed into the host strain BL21(DE3) and BL21 respectively. After induction at 37℃with 0.5mM IPTG for four hours, the expression products were found to be 64kDa in BL21(DE3) and 84kDa in BL21 by SDS-PAGE. The His-MobA fusion protein were purified and used to immunize mice. Specific reaction was found between GST-MobA fusion protein expressed in BL21 and positive serum from mice immunized with His-MobA by Western-blot assay. It proved the immunogenicity of His-MobA protein.
引文
[1] Collazo CM, Galan JE. The invasion-associated type-III protein secretion system in Salmonella—a review. Gene. 1997, 192: 51–59.
    [2] Galan JE, Curtiss R. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA. 1989, 86: 6383–6387.
    [3] Kimbrough TG, Miller SI. Assembly of the type III secretion needle complex of salmonella typhimurium.Microbes Infect. 2002, 4: 75-82.
    [4] Kubori T, Matsushima Y, Nakamura D,et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science. 1998, 280: 602–605.
    [5] Tamano K, Aizawa S, Katayama E, et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. Embo J. 2000, 19: 3876–3887.
    [6] Hoiczyk E, Blobel G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci USA.2001, 98: 4669-4674.
    [7] Kimbrough TG, Millerl SI. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci USA. 2000, 97: 11008-11013.
    [8] Kubori T, Sukhan A, Aizawa SI, et al. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci USA. 2000, 97: 10225-10230.
    [9] Altmeyer RM, McNern JK, Bossio JC, et al. Cloning and molecular characterization of a gene involved in Salmonella adherence and invasion of cultured epithelial cells. Mol Microbiol. 1993, 7: 89-98.
    [10] Stone BJ, Garcia CM, Badger JL, et al. Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J Bacteriol. 1992, 174: 3945-3952.
    [11] Daefler S, Russel M. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein for the proper localization of InvG. Mol Microbiol. 1998, 28: 1367-1380.
    [12] Pucciarelli MG, Garcia-del PF. Protein-peptidoglycan interactions modulate the assembly of the needle complex in the Salmonella invasion-associated type III secretion system. Mol Microbiol. 2003, 48: 573-585.
    [13] Sukhan A, Kubori T, Wilson J, et al. Genetic analysis of assembly of the Salmonella entericaserovar Typhimurium type III secretion-associated needle complex. J Bacteriol. 2001, 183: 1159–1167.
    [14] Pugsley AP, The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993, 57: 50-108.
    [15] Guilvout I, Hardie KR, Sauvonnet N, et al. Genetic dissection of the outer membrane secretin PulD: are there distinct domains for multimerization and secretion specificity? J Bacteriol. 1999, 181: 7212-7220.
    [16] Crago AM, Koronakis VK. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol. 1998, 30: 47-56
    [17] Behlau L, Miller SI. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol. 1993, 175: 4475-4484.
    [18] Pegues DA, Hantman MJ, Behlau I, et al. PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion. Mol Mirobiol. 1995, 17: 169-181.
    [19] Hueck CJ, Hantman MJ, Bajaj V, et al. Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins. Mol Microbiol. 1995, 18: 479-490
    [20] Collazo CM, Galan JE. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect Immun. 1996, 64: 3524-3531.
    [21] Groisman EA, Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993, 12: 3779-3787.
    [22] Sasakawa C, Komatsu K, Tobe T, et al. Eight genes in region 5 that form an operon essential for invasion of epithelial cells by Shigella flexneri 2a. J Bacterial. 1993, 175: 2334-2346.
    [23] Darwin KH, Miller VL. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev. 1999, 12: 405-428.
    [24] Gincocchio CC, Galan JE. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun. 1995, 63: 729-732.
    [25] Li J, Ochman H, Groisman EA, et al. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. ProC Natl Acad Sci USA. 1995, 82: 7252-7256.
    [26] Eichelberg K, Ginocchio CC, Galan JE. Molecular and functional characterization of the invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J.Bacteriol. 1994, 176: 4501–4510.
    [27] Monack DM, Raupach B, Hromockyj AE, et al. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA 1996, 93: 9833-9838.
    [28] Penheiter KL, Mathur N, Giles D, et al. Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer’s pathes. Mol Microbiol. 1997, 24: 697-709.
    [29] Hueck CJ, Hantman MJ, Bajaj V, et al. Salmonella typhimurium secreted invasion determinants are homologous to Shigella Ipa proteins. Mol Microbiol. 1995, 18: 479-490.
    [30] Kaniga K, Trollinger D, Galan JE. Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J Bacteriol. 1995, 177: 7078-7085.
    [31] Menard R, Sansonetti PJ, Parsot C. Non-polar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol.1993, 175: 5899-5906.
    [32]Tran Van Nhieu G, Ben-Ze’ev A, Sansonetti PJ. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasion. EMBO J. 1997, 16: 2717
    [33]Collazo CM, Galan JE. The invasion-associated type III system of Salmonella typhimurium directs the translocation of the Sip proteins into the host cell. Mol Microbiol. 1997, 24: 747-756.
    [34] Lee CA, Silva M, Siber AM, et al. A secreted salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc Natl Acad Sci USA. 2000, 97: 12283–12288.
    [35] Zhang S, Santos RL, Tsolis RM, et al. The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce Diarrhea in Calves.2002, 70: 3843-3855.
    [36] Hersh D, Monack DM, Smith MR, et al. The salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA. 1999, 96: 2396–2401.
    [37] Santos RL, Tsolis RM, B?umler AJ, et al. Salmonella enterica serovar Typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB independent mechanisms. Infect Immun. 2001, 69: 2293–2301.
    [38] Watson PR, Gautier AV, Paulin SM, et al. Salmonella enterica serovars Typhimurium and Dublin can lyse macrophages by a mechanism distinct from apoptosis. Infect Immun. 2000, 68:3744–3747.
    [39] Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell. 1996, 87: 171–171.
    [40] Hilbi H, Chen, Y, Thirumalai, K. et al. The interleukin 1beta-converting enzyme, caspase 1, is activated during Shigella flexneri-induced apoptosis in human monocyte-derived macrophages. Infect Immun. 1997, 65: 5165–5170.
    [41] Galyov EE, Wood MW, Rosqvist R, et al. A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol. 1997, 25: 903–912.
    [42] Kaniga K, Tucker S, Trollinger D, et al. Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J Bacteriol. 1995, 177: 3965–3971.
    [43] Marquart ME, Picking WL, Picking WD. Soluble invasion plasmid antigen C (IpaC) from Shigella flexneri elicits epithelial cell responses related to pathogen invasion. Infect Immun. 1996, 64: 4182–4187.
    [44] Hayward RD, Koronakis V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 1999, 18: 4926–4934.
    [45] Hardt WD, Chen LM, Schuebel KE, et al. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998, 93:815–826.
    [46] Zhou D, Moosekar M, Galan JE. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science. 1999, 283: 2092–2096.
    [47] Wattiau P, Woestyn S, Cornelis GR. Customized secretion chaperones in pathogenic bacteria. Mol Microbiol. 1996, 20: 255–262.
    [48] Fu, Y, Gala′n JE. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Mol Microbiol. 1998, 27: 359–368.
    [49]OlsonJC, McGuffie EM, Frank DW. Effects of differential expression of the 49- kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eucaryotic cells. Infect Immun. 1997, 65: 248–256.
    [50] Rosqvist R, Forsberg A, Wolf-Watz H. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun. 1991, 59: 4562–4569.
    [51] Shea JE, Hensel M, Gleeson C, et al. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci USA. 1996, 93: 2593–2597.
    [52] Hensel M, Shea JE, Raupach B, et al. Functional analysis of ssaJ and the ssaK/U operon, 13 genes encoding components of the type III secretion apparatus of Salmonella Pathogenicity Island 2. Mol Microbiol. 1997, 24: 155-167.
    [53] Coombes BK, Brown NF, Valdez Y, et al. Expression and secretion of Salmonella pathogenicity Island-2 virulence genes in response to acidification exhibit differential requirements of a functional type III secretion apparatus and SsaL. J Biol Chem. 2004, 279: 49804-49815.
    [54] Pfeifer CG, Marcus SL, Leigha OS, et al. Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect Immun. 1999, 67: 5690-5698.
    [55] Deiwick J, Nikolaus T, Shea JE, et al. Mutations in Salmonella pathogenicity island 2 (SPI2) genes affecting transcription of SPI1 genes and resistance to antimicrobial agents. J Bacteriol. 1998, 180: 4775–4780.
    [56] Hensel M, Shea JE, Waterman SR, et al. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol. 1998, 30:163-174.
    [57] Ruiz-Albert J, Mundy R, Yu XJ, et al. SseA is a chaperone for the SseB and SseD translocon components of the Salmonella pathogenicity-island-2-encoded type III secretion system. Microbiol. 2003, 149: 1103-1111.
    [58] Daniel V, Zurawski, Stein MA. The SPI2-encoded SseA chaperone has discrete domains required for SseB stabilization and export, and binds within the C-terminus of SseB and SseD. Microbiol. 2004, 150: 2055-2068.
    [59] Cirillo DM, Valdivia RH, Monack DM, et al. Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 1998, 30: 175–188.
    [60] Medina E, Paglia P, Nikolaus T, et al. Pathogenicity island 2 mutants of Salmonella enterica serovar Typhimurium are efficient carriers for heterologous antigens and enable modulation of immune responses. Infect. Immun. 1999, 67: 1093–1099.
    [61] Nikolaus T, Deiwick J, Rappl C. SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a translocon. J Bacteriol. 2001, 183: 6036-6045.
    [62] Beuzon CR, Banks G, Deiwick J. PH-dependent secretion of SseB, a product of the SPI2 type III secretion system of Salmonella typhimurium. Mol Microbiol. 1999, 33: 806–816.
    [63] Klein JR, Jones BD. Salmonella pathogenicity island 2-encoded proteins SseC and SseD are essential for virulence and are substrates of the type III secretion system. Infect Immun. 2001, 69: 737–743.
    [64] Vazquez TA, Xu Y, Jones CJ, et al. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 2000, 287: 1655–1658.
    [65] Bispham J, Tripathi BN, Watson PR, et al. Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun. 2001, 69: 367-377.
    [66] Guy RL, Gonias LA, Stein MA. Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms–aroE intragenic region. Mol Microbiol 2000, 37: 1417–1435.
    [67] Stein MA, Leung KY, Zwick M, et al. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 1996, 20: 151–164.
    [68] Kuhle V, Hensel M. SseF and SseG are translocated effectors of the type III secretion system of Salmonella pathogenicity island 2 that modulate aggregation of endosomal compartments. Cell Microbiol. 2002, 4: 813–824.
    [69].Hansen-Wester I, Stecher B, Hensel M. Type III secretion of Salmonella enterica serovar Typhimurium translocated effectors and SseFG. Infect Immun. 2002, 70: 1403– 1409.
    [70] Boucrot E, Henry T, Borg JP, et al. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science. 2005, 308:1174–1178.
    [71] Salcedo SP, Holden DW. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 2003, 22: 5003–5014.
    [72] Deiwick J, Salcedo SP, Boucrot E, et al. The translocated Salmonella effector proteins SseF and SseG interact and are required to establish an intracellular replication niche. Infect Immun. 2006, 74: 6965-6972.
    [73] Abrahams GL, Hensel M. Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol. 2006, 8: 728–737.
    [74] Brumell JH, DL Goosney, Finlay BB. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella induced filament (Sif) formation along microtubules. Traffic. 2002, 3: 407–415.
    [75] 张晓明,焦新安,唐丽华,等. 鼠伤寒沙门氏菌SL7207 SifA- 突变株的构建和鉴定. 微生物学报. 2005, 45: 349-354.
    [76] Beuzon CR, Salcedo SP, Holden DW. Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiol. 2002, 148: 2705–2715.
    [77] Brumell JH, Rosenberger CM, Gotto GT, SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell Microbiol. 2001a, 3: 75–84.
    [78] Boucrot E, Beuzon CR, Holden DW, et al. Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function. J Biol Chem. 2003, 278: 14196–14202.
    [79] Harrison RE, Brumell JH, Khandani A, et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol Biol Cell. 2004, 15: 3146–3154.
    [80] Norris FA, Wilson MP, Wallis TS, et al. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci USA. 1998, 95: 14057–14059.
    [81] Eckmann L, Rudolf MT, Ptasznik A, et al. D-myo-inositol 1,4,5,6-tetrakisphosphate produced in human intestinal epithelial cells in response to Salmonella invasion inhibits phosphoinositide 3-kinase signaling pathways. Proc Natl Acad Sci USA. 1997, 94: 14456–14460.
    [82] Barrett KE, Smitham J, Traynor-Kaplan A, et al. Inhibition of Ca2+-dependent Cl- secretion in T84 cells: membrane target(s) of inhibition is agonist specific. Am J Physiol Cell Physiol. 1998, 274: 958–965.
    [83] Zhou D, Chen LM, Hernandez L, et al. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 2001, 39: 248–259.
    [84] Steele-Mortimer O, Knodler LA, Marcus SL, et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector SigD. J Biol Chem.2000, 275: 37718-37724.
    [85] Monack DM, Hersh D, Ghori N, et al. Salmonella exploits caspase-1 to colonize Peyer's patches in a murine typhoid model. J Exp Med. 2000, 192: 249–258.
    [86] Romashkova JA, Makarov SS.NF -кB is a target of AKT in anti apoptotic PDGF signaling. Nature. 1999, 401:86- 90.
    [87] Hobbie S, Chen LM, Davis RJ, et al. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in culturedintestinal epithelial cells. J Immunol. 1997, 159: 5550–5559
    [88] Darwin KH, Robinson LS, Miller VL. SigE is a chaperone for the Salmonella enterica serovar typhimurium invasion protein SigD.J Bacteriol. 2001, 183: 1452-1454.
    [89] Hong KH, Miller VL. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J Bacteriol. 1998, 180: 1793–1802.
    [90] Nishio M, Okada N, Miki T, et al. Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar Choleraesuis. Microbiol. 2005, 151: 863-873.
    [91] Miller VL, Beer KB, Heusipp G, et al. Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol. 2001, 41: 1053–1062.
    [92] 李文全. 沙门氏菌致病岛研究进展. 《国外医学》流行病学传染病学分册. 1998, 25: 174-177.
    [93] Miller SI. PhoP/PhoQ: macrophage specific modulators of Salmonella virulence? Mol Microbiol. 1991, 5:2073–2078.
    [94] Alpuche-Aranda CM, Swanson JA, Loomis WP, et al. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA.1992, 89: 10079–10083.
    [95] Wood MW, Rosqvist R, Mullan PB, et al. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol. 1996, 22: 327–338.
    [96]Hardt WD, Urlaub H, Galan JE. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic prophage. Proc Natl Acad Sci USA. 1998, 95: 2574–2579.
    [97] Mirold S, Rabsch W, Rohde M, et al. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from epidemic Salmonella typhimurium strain. Proc Natl Acad Sci USA. 1999, 96: 9845–9850.
    [98] Hardt WD, Chen LM, Schuebel KE, et al. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell. 1998. 93: 815-826.
    [99] Hall A. Rho GTPases and the actin cytoskeleton.Science. 1998, 279: 509-514.
    [100] Rudolph MG, Weise C, Mirold S, et al. Biochemical analysis of SopE from Salmonella typhimurium, a highly efficient guanosine nucleotide exchange factor for RhoGTPases. J Biol Chem.1999, 274: 30501-30509.
    [101] Mukherjee K, Parashuraman S, Raje M, et al. SopE acts as an Rab5-specific nucleotide exchange factor and recruits non-prenylated Rab5 on Salmonella-containing phagosomes to promote fusion with early endosomes. J Biol Chem. 2001, 276: 23607-23615.
    [102] Bakshi CS, Singh VP, Wood MW, et al. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J Bacteriol. 2000, 182: 2341-2344.
    [103] Stender S, Friebel A, Linder S, et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol. 2000, 36: 1206–1221.
    [104]Friebel A, Ilchmann H, Aepfelbacher M, et al. SopE and SopE2 from Salmonella typhimurium Activate Different Sets of RhoGTPases of the Host Cell. J Biol Chem. 2001, 276: 34035-34040.
    [105] Smith DL, Tao T, Maguire ME. Membrane topology of a P-type ATPase: the MgtB Mg2+ transport protein of Salmonella typhimurium. J Biol Chem. 1993, 268: 22469– 22479.
    [106] Gunzel D, Kucharski LM, Kehres DG, et al. The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase.J Bacteriol. 2006, 188: 5586-5594.
    [107] Tao T, Grulich PF, Kucharski LM, et al. Magnesium transport in Salmonella typhimurium: biphasic time and magnesium dependence of the transcription of the mgtA and mgtCB loci. Microbiology. 1998, 144: 655–664.
    [108] Blanc-Potard AB, Groisman EA. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 1997, 16: 5376–5385.
    [109] Smith RL, Kaczmarek ML, Kucharski LM, et al. Magnesium transport in Salmonella typhimurium: induction of MgtA and MgtCB expression during invasion of epithelial and macrophage cells. Microbiol. 1998, 144: 1835–1843.
    [110] Miller SI, Kukral AM, Mekalanos JJ. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA. 1989, 86: 5054–5058.
    [111] Fields PI, Groisman EA, Heffron F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science.1989, 243: 1059–1062.
    [112] Fields PI, Swanson RV, Haidaris CG, et al. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 1986, 83: 5189–5193.
    [113] Groisman EA, Chiao E, Lipps CJ, et al. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc Natl Acad Sci USA. 1989, 86: 7077–7081.
    [114] Miller SI, Mekalanos JJ. Constitutive expression of the phoP regulon attenuates Salmonellavirulence and survival within macrophages. J Bacteriol. 1990, 172: 2485–2490.
    [115] Alphen WV, Lugtenberg B. Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli. J Bacteriol. 1977, 131:623–630.
    [116] Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J Bacteriol. 2000, 182: 771-781.
    [117] Garmendia J, Beuzon CR, Ruiz-Albert J, et al. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. Microbiol. 2003, 149: 2385-2396.
    [118] Ibanez-Ruiz M, Robbe-saule V, Hermant D, et al. Identification of Rpos(σs)- regulated genes in Salmonella enterica serovar Typhimurium. J Bacteriol. 2000, 182: 5749-5756.
    [119] Kowarz L, Coynault C, Robbe-Saule V, et al. The Salmonella typhimurium katF (rpoS) gene: cloning, nucleotide sequence, and regulation of spvR and spvABCD virulence plasmid genes. J Bacteriol. 1994, 176: 6852-6860.
    [120] Nichkerson C, Curtiss R. Role of Sigma Factor RpoS in Initial Stages of Salmonella typhimurium Infection. 1997, 65: 1814-1823.
    [121] Eichelberg K, Galan JE, Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI1)-encoded transcriptional activators InvF and hilA. Infect Immun. 1999, 67: 4099–4105.
    [122] Bajaj V, Hwang C, Lee CA. hilA is a novel ompR toxR family member that activates the expression of Salmonella typhimurium expression genes. Mol. Microbiol. 1995, 18: 715–727.
    [123] Kaniga K, Bossio JC, Galan JE. The Salmonella typhimurium invasion genes invF and invG encode homologues to the PulD and AraC family of proteins. Mol Microbiol. 1994, 13:555–568.
    [124] Jones BD. Salmonella invasion gene regulation: a story of environmental awareness. J Microbiol. 2005, 43: 110–117.
    [1] 徐耀辉,焦新安,胡青海,等. 鸡白痢、鸡伤寒沙门氏菌的PCR-RFLP分子鉴别.扬州大学学报(农业与生命科学版). 2005, 26:1-4.
    [2] Diatchenko L,Lau YFC,Campbell AP,et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA. 1996, 93: 6025-6030.
    [3] Sambrook J, Russell DW. 分子克隆实验指南(第三版). 黄培堂, 译. 北京: 科学出版社, 2002.
    [4] Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997, 25: 3389-3402.
    [5] Akopyants NS, Fradkov A, Diatchenko L, et al. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci USA. 1998, 95: 13108-13113.
    [6] Mahairas GG, Sabo PJ, Hicley MJ, et al. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996, 178: 1274-1282.
    [7] Purdy A, Rohwer F, Edwards R, et al. A glimpse into the expanded genome content of Vibrio cholerae through identification of genes present in environmental strains. J Bacteriol. 2005, 187: 2992-3001.
    [8] Tinsley CR, Nassif X. Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities. Proc Natl Acad Sci USA. 1996, 93: 11109-11114.
    [9] Zhang YL, Ong CT, Leung KY, et al . Molecular analysis of genetic differences between virulent and avirulent strains of Aeromonas hydrophila isolated from diseased fish. Microbiol. 2000, 146 :999-1009 .
    [10] Sorsa LJ, Dufke S, Schubert S. Identification of novel virulence-associated loci in uropathogenic Escherichia coli by suppression subtractive hybridization. FEMS Microbiology Letters. 2004, 230: 203-208.
    [11] Chu C, Chiu CH, Chu CH, et al. Nucleotide and Amino Acid Sequences of oriT-traM-traJ-traY-traA-traL Regions and Mobilization of Virulence Plasmids of Salmonella enterica Serovars Enteritidis, Gallinarum-Pullorum, and Typhimurium. J Bacteriol. 2002, 184: 2857–2862.
    [12] Hill CW, Sandt CH, Viazny DA. Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol Microbiol. 1994,12: 865 -871.
    [13] Hill CW, Feulne G, Brody MS, et al. Correlation of Rhs elements with Escherichia coli population structure. Genetics. 1995, 141:15-24.
    [14] Blocker A, Jouihri N. Structure and composition of the Shigella flexneri `needle complex', a part of its type III secreton. Mol Microbiol. 2001, 39: 652-663.
    [15] Keenleyside WJ, Whitfield C. Lateral Transfer of rfb Genes: a Mobilizable ColE1-Type PlasmidCarries the rfbO:54 (O:54 Antigen Biosynthesis) Gene Cluster from Salmonella enterica Serovar Borreze. J Bacteriol. 1995, 177: 5247-5253.
    [16] Liu M, Ren Z. Sequence analysis and characterization of plasmid pSFD10 from Salmonella choleraesuis. Plasmid. 2002, 48: 59-63.
    [1] Stevenson LR. Comparison of two major forms of the Shigella viruLence plasmid pINV: positive selection is a major force driving the divergence. Infect Immun. 2003, 71: 6298–6306.
    [2] Buysse JM, Dunyak DS. Identification and molecular characterization of a 27 kDa Shigella flexneri invasion plasmid antigen IpaJ. Microb Pathog. 1997, 23: 357-69.
    [3] Rubin SJ, Rosenblum ED. Effects of Ethidium Bromide on Growth and on Loss of the Penicillinase Plasmid of Staphylococcus aureus. J Bacteriol. 1971, 108: 1200–1204.
    [4] J. 萨姆布鲁克 D.W. 拉塞尔著.分子克隆实验指南(第三版).北京: 科学出版社. 2002.
    [5] Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997, 25: 3389-3402.
    [6] Liu M, Ren Z. Sequence analysis and characterization of plasmid pSFD10 from Salmonella choleraesuis. Plasmid. 2002, 48:59-63.
    [7] Akopyants NS, Fradkov A, Diatchenko L, et al. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci USA. 1998, 95: 13108-13113.
    [8] Parsot C,Menard R. Enhanced secretion through the Shigella flexneri Mix-Spa translocon leads to assembly of extracellular proteins into maromolecular structures. Mol Microbiol. 1995, 16: 291-300.
    [9] High N, Mounier J. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J. 1992, 11: 1991-1999.
    [10] Ariel B, Noureddine J. Structure and composition of the Shigella flexneri `needle complex', a part of its type III secreton. Mol Microbiol. 2001, 39: 652-663.
    [11] Hueck CJ. salmonella typhimurium secreted invasion determinants are homologous to shigella Ipa proteins. Mol Microbiol. 1995, 18: 479-90.
    [12] Hermant D, Ménard R. Functional conservation of the Salmonella and Shigella effectors of entry into epithelial cells. Mol Microbiol. 1995, 17: 781-789.
    [13] Li ZA, Rong C. Serum antibody responses against Shigella lipopolysaccharides and invasion plasmid-coded antigens in Shigella infected Swedish patients. Scand J Infect Dis. 1993, 25: 569-577.
    [14] Oaks EV, Hale TL. Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp. Infect Immun. 1986, 53: 57-63.
    [15] Van De, Verg LL.Age-specific prevalence of serum antibodies to the invasion plasmid and lipopolysaccharide antigens of Shigella species in Chilean and North American populations. J Infect Dis. 1992, 166: 158-161.
    [1] Liu M, Ren Z. Sequence analysis and characterization of plasmid pSFD10 from Salmonella choleraesuis. Plasmid. 2002, 48: 59-63.
    [2] Willetts N, Wilkins B. Processing of plasmid DNA during bacterial conjugation. Microbio Rev. 1984, 48: 24-41.
    [3] J.萨姆布鲁克 D.W.拉塞尔著.分子克隆实验指南 (第三版). 北京:科学出版社. 2002.
    [4] Cramer WA, Dankert JR, Uratani Y. The membrane channel-forming bacteriocidal protein, colicin El. Biochim Biophys Acta. 1983, 737: 173-193.
    [5] Suit JL, Judy Fan ML, Sabik JF, et al. Alternative forms of lethality in mitomycin C-induced bacteria carrying ColE1 plasmids. Proc Natl Acad Sci USA. 1983, 80: 579-583.
    [6] Woilletts N. Interactions between the F conjugal transfer system and CloDF13::TnA plasmids. Molec gen Genet. 1980, 180: 213-217.
    [7] Cabezon E, Lanka E, Cruz F. Requirements for mobilization of plasmids RSF1010 and ColE1 by the IncW plasmid R388: trwB and RP4 traG are interchangeable. J Bacteriol. 1994, 176: 4455-4458.
    [8] Chu C, Chiu CH, Chu CH, et al. Nucleotide and amino acid sequences of oriT-traM-traJ-traY-traA-traL regions and mobilization. J Bacteriol. 2002, 184: 2857-2862.
    [9] Becker EC, Richard J. Recognition of oriT for DNA processing at termination of a round of conjugal transfer. J Mol Biol. 2000, 300: 1067-1077.
    [10] Keenleyside WJ, Whitfield C. Lateral transfer of rfb genes: a mobilizable ColE1-type plasmid carries the rfbO:54(O:54 antigen biosynthesis) gene cluster from Salmonella enterica serovar Borreze. J Bacteriol. 1995, 177: 5247-5253.
    [11] Gregorova D, Matiasovicova J, Sebkova A, et al. Salmonella enterica subsp enterica serovar enteritidis harbours ColE1, ColE2, and rolling-circle-like replicating plasmids. Can J Microbiol. 2004, 50: 107-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700