贵州晴隆锑矿构造—流体耦合关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州晴隆锑矿田是黔西南重要的锑矿产地。前人对构造的研究多集中在层间滑动、岩溶不整合面,而对于矿田构造演化及控矿作用的研究则较为薄弱。在晴隆锑矿田成矿流体方面,前人多采取通过脉石矿物作为研究对象,忽略水—岩反应对流体造成的影响,而根据流体来源的特征来指示成矿物质来源。本文应用构造地质解析、岩石地球化学、流体包裹体地质学、电子探针、X射线衍射、稳定同位素及放射性同位素等方法与手段,对晴隆锑矿构造特征、矿床地球化学、流体地球化学进行研究,并在矿田构造样式及控矿作用、成矿流体地球化学方面取得了新的认识,并对晴隆锑矿构造—流体耦合关系进行了讨论,建立了晴隆锑矿构造—流体耦合成矿模式。
     (1)对晴隆锑矿田不同构造进行研究,得出晴隆锑矿田具有复式半地堑的构造组合样式,并对大厂古隆起进行了厘定;矿田构造控矿特征表现为:矿田内断裂构造具有分级和等距控矿特征,古隆起、岩溶不整合面和复式半地堑为有利的成矿构造背景,矿床(体)多沿北东向断裂带展布,就位于岩溶不整合面之上、古隆起顶部。
     (2)通过矿床围岩、矿石、矿物常量与微量元素以及流体包裹体的研究,对晴隆锑矿成矿流体地球化学特征取得了新的认识。研究结果表明,晴隆锑矿田成矿流体具有改造型层控矿床成矿流体的特点:即流体均一温度较低,变化范围为125℃~200℃;流体密度较低,为0.88 g/cm3~0.95g/cm3;成矿流体属Ca2+—Na+—Cl-—F型体系,为贫K型;流体包裹体液相成分稳定同位素δD和δ18O以及气体成分数据显示,成矿流体来源主要为加热的大气降水,其次为建造水,与玄武岩浆热液联系不明显;成矿流体以稀土元素含量很低、富F-为特征;流体在成矿过程中由还原性向氧化性转化,大气降水的混入可能是引起这一变化的重要原因;凝灰岩、凝灰角砾岩等这套火山碎屑岩可能是晴隆锑矿矿源层。
     (3)对构造—流体耦合作用进行讨论,认为晴隆锑矿田是以构造为主导,构造—流体耦合成矿作用的结果。研究认为晴隆锑矿为火山沉积—改造型层控矿床,概括其成矿模式是:改造流体(大气降水、建造水)沿构造(断裂、不整合面)进入矿源层形成成矿流体,至有利空间沉淀富集。
Qinglong antimony ore field is important antimony locality in west-south depression of Quizhou province.The predecessors' researches on Qinglong antimony ore field structural were focus on interlayer-gliding, karst and unconformity. But those researches were behindhand on mine field structural evolution and ore-control action. On research on metallogenic fluid, the predecessors' researches were always adopted veinstone minerals as objects, so they often neglected effect of water-rock reaction of metallogenic fluid. And, they often suggested the source of metallogenic according characteristics of metallogenic fluid In this paper, obtain new recognition on characteristics of mine-field structure ore-controlling, geochemistry of ore deposit and metallogenic fluid geochemistry on the basis of researching of antimony ore field of Qinglong antimony field structural characteristics, geochemistry of ore deposit, fluid geochemistry, according to structure analysis, petrological, geochemistry, fluids inclusions geology, electron probe-microanalysis, X-ray diffraction analysis, stable isotopes and radioactive isotope etl. as the research methods. By researching and discussing the coupling of metallogenesis and the ore-forming fluid, genetic the metallogenetic model of Qinglong antimony ore field.
     (1) It can be concluded that Qinglong antimony ore field have complex semi-graben assemble patter and redefined the old uplift of Dachang by researching separately configurations antimony ore field of Qinglong. The characteristics of structure controlling exhibited that:it has fractionation and equidistant on ore controlling. old uplift, paleokarst unconformity and complex semi-graben are the best geotictonic settings of ore formation. The fracture zone and paleokarst-unconformity are good for migration and fitting of ore-fluid. NE trending fracture have important effects in the the mineralization.
     (2) We can achieve new cognition on the geochemistry characteristic of metallogenic fluid of Qinglong antimony ore field based on the research on deposits, surrounding rocks, ores, normal and trace elements and fluid inclusions. The result of the research shows that the metallogenic fluid of Qinglong antimony ore field have the characters like reformed type strata-bound ore deposit metallogenic fluid:low homogenization temperature of fluid, range from 125 to 200℃, low liquid density (0.88 to 0.95g/cm3). Metallogenic fluid belong to Ca2+—Na+—Cl-F- system, with poor K diabetes. The data ofδD andδ18O components of liquid-phase of fluid inclusion show that the main sources of metallogenic fluid is heated atmospheric precipitation, then formation water, no obvious connection with basaltic magmas hydrothermal fluid. The characters of metallogenic fluid are low rare earth element and rich F-. Metallogenic fluid transform from reducibility to oxidizability in mineralization process. The mix of atmospheric precipitation may another important reason causing this change. Tuff, tuff breccia and so on may the ore source bed of antimony ore field of Qinglong.
     (3) According to the discussing about the structure-fluid coupling, suggested that the structure of Qinglong antimony ore field is the main actor in coupling in the structure-fluid coupling mineralization. Research results show that antimony Qinglong ore field is volcano-sedimentary-reformed type strata-bound deposit. The metallogenetic model is that transformation fluids including atmospheric precipitation and formation water flows along the structures (fracture、unconformity) into ore source bed then changed into metallogenic fluid, in the end precipitated in the advantageous space.
引文
曹俊臣,吴大清,施继锡,李本超.1981.贵州晴隆锑矿石膏晶洞的成因及晶体的结晶特征[J].地球化学,4:373-381
    陈代演.1990.云南富源老厂层控锑矿床地球化学特征[J].贵州工学院学报,19(2):18-27
    陈代演.1991.滇东黔西主要层控锑汞矿床稳定同位素研究[J].贵州地质,1991,8(3):227-240
    陈代演.1992.滇中黔西大中型层控锑汞矿床的类型及其若干地质评价准则[J].贵州地质,9(2):118-124
    陈发景,汪新文,陈昭年,杨杰.2004.伸展断陷盆地分析[M].北京:地质出版社:1-86
    车自成,刘良,罗金海.2002.中国及其邻区区域大地构造学[M].科学出版社.410-411
    陈国达.1973.成矿构造研究法[M].北京:地质出版社,7—12
    陈懋弘,毛景文,屈文俊,吴六灵,Phillip, J,Uttley, Tony Norman,郑建民,秦运忠.2007.贵州贞丰烂泥沟金矿含砷黄铁矿Re-Os同位素测年及地质意义[J].地质论评,53(3):371-382
    陈懋弘.2007.基于成矿构造和成矿藕合条件下贵锦丰(烂泥沟)金成矿模式[D].中国地质科学院博士学位论文:161-180
    陈燊明,黄华斌,聂爱国.1989.晴隆大厂锑矿包裹体地球化学研究[J].西南矿产地质,3(4):17-39
    陈衍景.2010.初论浅成作用和热液矿床成因分类[J].地学前缘(中国地质大学(北京);北京大学),17(2):27-34
    池三川.1983.层控矿床的控矿构造类型[J].地球科学——武汉地质学院学报,2:125-134
    陈豫.1984.贵州晴隆大厂锑矿床成因讨论[J].矿床地质,3(3):1-12
    戴天富,向鼎璞.1983.中国层控矿床成矿特征[J].甘肃地质,1:137-157
    邓军,杨立强,翟裕生,孙忠实,陈学明.2000.构造-流体-成矿系统及其动力学的理论格架与方法体系[J].地球科学——中国地质大学学报,25(1):71-78
    刁理品,韩润生,李波,王雷,党立春.2008.黔西南晴隆大厂锑矿田构造控矿特征[J].昆明理工的大学学报(理工版),33(2):5-10
    刁理品,韩润生.贵州晴隆大厂锑矿地质及控矿因素,第二届全国应用地球化学学术讨论会论文专辑,25(4),2007
    刁理品,韩润生,刘鸿,李波,王雷.2007.贵州晴隆大厂锑矿地质及控矿因素,第二届全国应用地球化学学术讨论会论文专辑,25(4):467-473
    樊文苓,王声远,田弋夫.1997.SiO2与成矿元素Sb络合作用的实验研究[J].矿物学报,17(4):472-477
    傅家谟,彭平安,林清,刘德权,贾蓉芳,施继锡,卢家烂.1990.层控矿床有机地球化学研究的几个问题[J].地球科学进展——学科发展与研究,10(5):43-49
    贵州112地质队.1978.贵州省晴隆县大厂锑矿田后坡南矿床详查评价报告[R].18-20
    贵州112地质队.1972.贵州省晴隆县大厂锑矿田西舍矿床初勘地质报告[R].9-15
    贵州省晴隆锑矿.1976.贵州省晴隆锑矿大厂矿段、水井湾矿段、西舍矿段矿山地质储量报告[R],17
    贵州省地质局区域地质调查大队.1981.区域地质调查报告(兴仁、安龙幅)[R]
    郭彬,李威,刘自成等.曹家埠金矿床构造控矿规律与找矿预测[J].黄金科学与技术,16(6):33-35
    韩润生,邹海俊,吴鹏,方维萱,胡煜昭.2010.楚雄盆地砂岩型铜矿床构造-流体耦合成矿模型[J].地质学报,84(10):1438-1447
    韩至钧,盛学庸.1996.黔西南金矿及其成矿模式[J].贵州地质,13(2):146-153
    郝百武.2007.普晴锑金勘查区成矿条件分析[J].矿业工程,5(1):9-11
    何斌,王雅玫,姜晓玮.2005.茅口组灰岩顶部古喀斯特地貌的厘定[J].中国地质,1:50-55
    黄智龙,陈进,韩润生等.2004.云南会泽超大型铅锌矿床地球化学及成因——兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社,108-116
    华仁民,毛景文.1999.试论中国东部中生代成矿大爆发[J].矿床地质,18(4):300-308
    胡瑞忠,李泽琴.1995.黔桂三角区微细浸染型金矿床成矿热液一种可能的演化途径:年代学证据[J].矿物学报,17(2):145-149
    胡世忠.1994.论东吴运动构造事件与二叠系分统界线问题[J].地层学杂志,18(4):309-315
    胡煜昭,方维萱,刘玉平等.2010.贵州省晴隆县晴隆锑矿接替资源勘查(普查)报告[R]
    胡煜昭.2011.黔西南坳陷沉积盆地分析及锑、金成矿与预测[D].昆明理工大学博士论文
    胡煜昭.2010.基于埋藏史-剥蚀史的晴隆锑矿成矿深度、成矿时间分析[J].矿床地质,29(增刊):403-404
    贾斌,毋瑞身.2004.构造-流体耦合关系对水上亚系统金矿成矿环境的影响[J].地球化学,33(2):197-207
    贾庆素,尹伟,陈发景等.2007.准噶尔盆地中部车-莫古隆起控藏作用分析[J].石油与天然气地质,28(2):257-265
    嵇福元.1992.皖南赣北等地微细浸染型金矿成矿条件[J].南京大学学报(地球科学),4(3):86-96
    金景福,陶琰,曾令交.锡矿山式锑矿床的成矿流体研究[J].矿物岩石地球化学通报,2001,20(3):156-164
    梁定益,聂泽同,宋志敏.1994.扬子西缘东吴伸展运动[J].地球科学——中国地质大学学报,19(4):443-453
    廖朝中.1984.贵州大厂锑矿床成因探讨[J].贵州地质科技情报,1:12-18
    廖善友,胡涛.1990.贵州晴隆大厂锑矿床控矿条件和成矿机制[J].贵州地质,1990,24(3):229-236
    黎彤.化学元素的地球化学丰度[J].地球化学,1976,3(167-164)
    刘宝珺.1980.沉积岩石学[M].北京:地质出版社,59-100
    刘鸿.2007.贵州晴隆大厂锑矿控制因素和成矿规律研究,第二届全国应用地球化学学术讨论会论文专辑,25(4):413-414
    刘建中,邓一明,刘川勤,夏勇,张兴旺,陶琰.2006.水银洞金矿床包裹体和同位素地球化学研究[J].贵州地质,23(1):51-56
    刘平,李沛刚,李克庆,雷志远,李小红,宋卫华,张华松.2006.黔西南金矿成矿地质作用浅析[J].贵州地质,23(2):83-97
    廖善友.1989.黔西南锑矿床成因探讨[J].贵州科学,16(4):276-279
    刘特民,刘炳温,陈国栋.2001.南盘江盆地构造演化与油气保存区划分[J].天然气工业,21(1):25-30
    刘文均.1992.华南几个锑矿床的成因探讨[J].成都地质学院学报,19(2):10-19
    李卫锋.2006.贵州晴隆县普晴锑矿床控矿因素分析及地球化学探矿方法的应用[D].昆明理工大学硕士学位论文
    李文亢.1989.黔西南微细金矿床地质特征及成矿作用[A].见:中国金矿主要类型区域成矿条件文集[C].沈阳地质矿产研究所编,北京:地质出版社,237-240
    罗立志.1981.中国西南地区晚古生代以来地裂运动对石油等矿产形成的影响[J].四川地质学报,1:20—29
    卢武长,崔秉苓,杨绍全.1992.二叠纪海相碳酸盐岩的锶同位素演化及其意义.矿物岩石,12(4):80-87
    吕古贤,林文蔚,郭涛,殷秀兰,舒斌,郭初笋.2001.金矿成矿过程中构造应力场转变与热液浓缩稀释作用[J].地学前缘(中国地质大学,北京),8(4):254-264
    马承安,韩文彬.萤石染色机理初析——以武义萤石为例[J].火山地质与矿产,1992,13(3):53-62
    毛景文,华仁民,李晓波.1999.浅议大规模成矿作用与大型矿集区[J].矿床地质,18(4)291-299
    马杏垣,索书田,游振东,刘如琦.1981.嵩山构造变形—重力构造、构造解析[M].北京:地质出版社,10—120
    闵茂中,沈保培.我国最大古岩溶型铀矿床成因的同位素地球化学研究[J].沉积学报,15(1):118-122
    聂爱国,秦德先,管代云,黄志勇,张竹如.2007.峨眉山玄武岩浆喷发对贵州西部区域成矿贡献研究[J].地质与勘探,43(2):50-54
    彭建堂,胡瑞忠,漆亮,,蒋国豪.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学,2002,37(3):277-287
    彭建堂,胡瑞忠,蒋国豪.2003a.贵州晴隆锑矿床中萤石的Sr同位素地球化学[J].高校地质学报,9(6):244-251
    彭建堂,胡瑞忠,蒋国豪.2003b.萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J].岩石学报,9(4):785-791
    彭建堂,胡瑞忠,苏文超.2000.扬子地台南缘锑矿床中矿石铅的组成及其地质意义[J].地质地球化学,28(4):43-47
    全国地层委员会.2001.中国区域年代地层(地质年代)表(海相地层区)
    冉崇英,胡煜昭,吴鹏,何明勤,陈好寿,王学焜,韩润生.2010.学习实践“改造成矿作用”理论——以滇中砂岩铜矿为例兼论改造作用的上、下限问题[J].地学前缘,17(2):35-44
    茹克.1990.裂陷盆地的半地堑分析[J]..中国海上油气(地质),4(6):1-10
    申萍,沈远超,李光明,刘铁兵,曾庆栋,李厚民.胶东金牛山金矿床构造-流体-成矿作用体系研究[J].地质科学,39(2):272-283
    沈忠义.2008.贵州晴隆固路锑矿床控矿因素及三维可视化模型研究[D].昆明理工大学硕士论文
    帅德权.1991.层控矿床中的金属矿物生物组构和有机碳物质及其成矿意义[J].矿产与地质,3(4):23-39
    孙晓明,王敏,薛婷,孙凯.2004.流体包裹体中微量气体组成及其成矿示踪体系研究新进展[J].地学前缘,11(2):471-478
    唐诗佳,彭恩生.广西泗顶—古丹铅锌矿庆的构造控矿作用及其找矿方向[J].桂林工学院学
    涂光炽.1984.中国层控矿床地球化学(第一卷)[M].科学出版社,1-9
    涂光炽.1987.中国层控矿床地球化学(第二卷)[M].科学出版社
    涂光炽.1988.中国层控矿床地球化学(第三卷)[M].科学出版社,5-37
    王国芝,胡瑞忠,刘颖,孙国胜,苏文超,刘鸿.2003.黔西南晴隆锑矿区萤石的稀土元素地球化学特征[J].矿物岩石,23(2):62-65
    王国芝,胡瑞忠,苏文超.黔西南晴隆锑矿萤石对成矿流体的地球化学限定[J].矿床地质,2002,21(增刊):1028-1030
    王津津,胡煜昭,李伟.2011.黔西南中部逆冲推覆构造控制卡林型金矿的地震勘探证据[J].地质与勘探,录用,待刊
    王可勇,姚书振,吕新彪.2001.川西北马脑壳金矿床构造-流体-金成矿作用系统演化模式[J].地质科学,36(2):164-175
    王书凤,魏家秀,张绮铃.1994.贵州八檬锑矿田的地质学和地球化学[M].北京:地质出版社
    王秀璋,程景平,张宝贵.1992.中国改造型金矿床地球化学[M].北京:科学出版社
    王秀璋,张宝贵,程景平,樊文苓,白正华,梁华英.1989.改造成矿作用及改造型金矿床[J].黄金地质科技,2:51-52
    王砚耕,索书田,张明发.1994.黔西南构造与卡林型金矿[M].地质出版社.9-10
    王砚耕.1993.中国西南地区沉积地质特征与沉积盆地分类[J].贵州地质,10(4):265-271
    王义天,毛景文.2002.碰撞造山作用期后伸展体制下的成矿作用——以小秦岭金矿集中区为例[J].地质通报,21(8-9):562-566
    吴根耀,马力,钟大赉,吴若浩,季建清,邝国敦,徐克定.2001.滇桂交界区印支期增生弧型造山带:兼论与造山作用耦合的盆地演化[J].石油实验地质,23(1):1-10
    吴学益,杨元根,肖化云,吴惠明.1999.赣东北断裂带铜、金成矿控制因素耦合作用及其模拟实验[J].大地构造与成矿学,23(1):3-5
    吴学益,黄彩芳,张开平,杨元根.2002.赣东北断裂带活化构造控制铜、金成矿及模拟实验[J].大地构造与成矿学,26(2):216-222
    肖龙,叶乃清,张明华,陈桂英,唐晓东.1996.滇黔桂金三角岩浆活动与金矿成矿关系[J].桂林工学院学报,16(3):263-271
    夏勇.1993.晴隆大厂锑矿田锑矿成矿的构造控制及实验研究[J]..贵州地质,10(18):18-25
    夏勇.1996.构造改造成矿机制:——四川羊石坑汞矿成矿作用探讨[J].地质与勘探,32(2):4-11
    徐义刚,种孙霖.2001.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件[J].地球化学,30(1):1-9
    杨惠民,刘炳温,邓宗怀.1999.滇黔桂海相碳酸盐岩地区最佳油气保存单元的评价与选择[M].贵阳:贵州科技出版社
    杨立强,邓军,翟裕生.2000.构造-流体-成矿系统及其动力学[J].地学前缘(中国地质大学,北京),7(1):178
    杨瑞东.1997.层序地层学与沉积、层控矿产的关系[J].矿床地质(增刊):100-103朱上庆.1991.中国层控矿床时空分布特征[J].矿床地质,10(1):27-34
    杨振福,李树军,臧玉东等.大石桥-凤城-宽甸古隆起硼矿体特征及远景推测[J].化工矿产与地质,32(1):33-38
    燕继红.2006.中国南方东吴运动的特征[J].油气构造(增刊):3-5
    姚超,劁贵浩,王同和,邢厚松.2004.中国含油气构造样式.石油工业出版社[M]:1-410
    叶造军.1995.有机质在晴隆大厂锑矿成矿中的作用(摘要)[J].地质地球化学,6:111-113
    叶造军.1996.贵州大厂锑矿流体包裹体与稳定同位素[J].地质地球化学,5:18-20
    袁万春,李院生,张国平,龙洪波.1997.滇黔桂地区汞锑金砷等低温矿床组合碳、氢、氧、硫同位素地球化学[J].矿物学报,17(4):422-426
    翟裕生.1984.矿田构造学[M].北京:冶金工业出版社,58—195
    翟裕生,邓军,宋鸿林,程小久,彭润民.1998.同生断层对层控超大型矿床的控制[J].中国科学(D辑),28(3):214-218
    翟裕生.1996.关于构造-流体-成矿作用研究的几个问题[J].地学前缘(中国地质大学,北京),3(3-4):230-236
    翟裕生,吕古贤.2002.构造动力体制转换与成矿作用[J].地球学报,23(2):97-102
    张国林.辉锑矿中稀土及多元素地球化学特征[J].矿产与地质,1999,13(1):13-19
    张国林,姚金炎,谷湘平.1999.中国主要类型锑矿床矿物包裹体地质地球化学[J].地质与勘探,35(6):4-8
    张启厚,黄华斌,戎昆方.1989.贵州晴隆大厂锑矿床古喀斯特层滑构造与成矿关系的初步讨论[J].贵州工学院学报,18(4):43-49
    张文淮,陈紫英.1993.流体包裹体地质学[M].北京:中国地质大学出版社,1147-154
    张文淮.1995.滇黔桂汞锑矿砷等低温矿床组合成矿流体性质、演化及矿化关系研究报告[R]
    中国石化股份有限公司南方勘探开发分公司.2005.黔中隆起及其周缘实测构造走廊大剖面报告[R]
    中国石油化工股份有限公司南方勘探开发分公司.2004.南盘江坳陷“三史”研究及油气勘探[R]
    周德忠,杨国桢,毛健全.1980.贵州晴隆大厂火山沉积-构造改造锑矿床地质特征及成因分析[J].贵州工学院学报(自然科学版), (1):4-21
    朱上庆,郑明华.1991.层控矿床学[M].
    Anders E, Grevesse N.1989. Abundances of the elements:meteoritic and solar[J]. Geochim. Cosmochim Acta 57:197-214
    Bau M. Rare-earth mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chem. Geol.,1991,93:219-230
    Bodnar R J.1983. A method of calculateing fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids. Econ Geol,78:535-542
    Bosworth W. Strain-induced preferential dissolution of halite[J]. Tectonophysics,1981,78(1-4): 509-525
    Boynton W V. Geochemistry of the rare earth elements:meteorite studies [A]. Henderson P. Rare-earth element geochemistry [M]. Amsterdam Elsevier Science Publishers,1984: 63-114.
    Clayton R N., O'Neil J R, Mayeda T K.1972. Oxygen isotope fractionation in quartz and water. J.Geophys. Res.,77:3057-3067
    Dostal J, Chatterjee A K. Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton(Nova Scotia, Canada)[J]. Chem Geol,2000,163:207-218
    Epstein S., Sharp R P and Gow A J.1965. Six-year record of hydrogen and oxygen isotope variations in South Pole fur. J.Geophys. Res.,70:1809-1814
    Faure G.1986. Principles of isotope geology (second edition). John Wiley and Sons, New York
    Giggenbach W F, Sheppard D S, Robinson B W, et al. Geochemical structure and position of the Waiotapu geothermal field, New Zealand[J]. Geothermics,1994,23:599-644
    Giggenbach W F. Relative importance of thermodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high-heat flow sedimentary basins[J]. Geochimica et Cosmochimica Acta,1997,61 (17):3763-3785
    Goldschmidt V M. The principles of distribution of chemical elements in minerals and rocks[J]. Chem Soc,1937:655-67
    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chem Geol,1995,120:347-395
    Haas D L.1976. Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solutions. U S Geol Surv Bull,1421 A:1-73
    Hall D L, Sterner S M.1993. Preferential water loss from synthetic fluid inclusions. Contrib Mineral Petrol,114:489-504
    Irvine T N and Barager W R A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences,1971,8:523—548
    Jamieson R A.1991. p-T-t paths of collisional orogenesis[J]. Geologie Rundschau,180:321-332
    Kerrich R., Wyman D. Geodynamic setting of mesothermal gold deposits:An association with accretionary tectonic regime[J]. Geology,18:882-885
    Le Maitre R W (ed). A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 1989,193
    Moller P, Parekh P P, Schneider H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposit,1976,11:111-116
    Neumann N L., Southgate P N., and Gibson G M.2009. Defining unconformities in Proterozoic Sedimentary Basin Using Detrial, Geochronology and Basin Analysis-example from the Mount Isa Iilier, Australia[J]. Precambrian Research,168:149-166
    Norman D I, Moore J N, Musgrave J.1997. Gaseous species as tracers in geothermal systems[A]. Proc 22nd workshop Geotherm Reservoir[C]. Eng:Stanford University:419-426
    Norman D I, Moore J N.1999. Methane and excess N2 and Ar in geothermal fluid inclusions[A]. Proc.24th Workshop Geotherm Reservoir[C]. Eng:Stanford University.196-202
    Norman D I, Musgrave J.1994. N2-Ar-He compositions in fluid inclusions:Indicators of fluid source[J]. Geochim Cosmochim Acta,58:1119-1131
    Pearce T H et al. The relationship betwee major element chemistry and tectonic environment of basic and intermediate vocanic rocks. Earth Planet. Sci. Lett.,1977(36),121—132
    Potter R W Ⅱ.1977. Pressure correction for fluid inclusion homogenization tempreture based on the volumetre properties of the system NaCl-H2O. J Res V S Geol Surv,5:603-607
    Sheppard S M F, Dawson J B.1973.13C/12C,18O/16OA and D/H isotope variations in "primary" igneous carbonatites[J]. Fortsch. Mineral,50:128-129
    Sorby H C. On the Direct Correlation of Mechanical and Chemical Forces[J]. Proc. Roy. Soc,1862-1863,12:538-550
    Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposit. Econ.Geol.,69:843-883
    Taylor H P.1979. Oxygen and hydrogen isotope realationships in hydrothermal mineral deposits. In.Barnes H. L.(ed.), Geochemistry of hydrothermal ore deposits,2nd edition. New York: Wiley, pp.236-277
    Wood S A. The aqueous geochemistry of the rare-earth elements and yttrium:1-Review of available low-temperature data for inorganic complexes and inorganic REE speciation of natural waters[J]. Chem. Geol.,1990,82:159-186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700