煤的芳香性及氢键对钙基阻化剂抑制煤自燃作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤自燃不仅造成能源浪费与环境污染,而且严重影响着矿井的安全生产。阻化剂防止煤自燃是一种有效的方法。由于煤结构与组分的复杂性,预防煤炭自燃的阻化机理需要更为深入的研究。预防煤炭自燃的配位阻化理论是煤加入阻化剂后,煤中的活性基团与阻化剂中的金属离子形成了配合物,从而阻止了活性基团与氧的反应。本文在配位阻化理论的基础上,应用量子化学理论,研究了煤的芳香性、氢键的作用及溶剂化效应对配合物性质变化的影响,对钙基阻化剂与煤中含N活性结构形成配合物分子的几何特征、前线轨道、相互作用能、净电荷布居以及光谱特征等进行了研究。本研究成果是对配位阻化理论的创新与完善。
     研究了煤含N特征结构中芳香性的增加对形成配合物的影响。采用密度泛函在B3LYP/6-311G*水平上计算发现,随着芳香性的增加,N-Ca-O键角增大,Ca-N配位键的键长缩短,Ca-O配位键的键长伸长。当苯环数增加到四个时,形成了Ca-N-C-O四元环状结构。煤活性结构与Ca~(2+)形成的配位化合物的能隙逐渐增大,配合物的相互作用能逐渐降低,形成配合物的稳定性逐渐增大。配位键Ca-O的伸缩振动峰未发生偏移,而配位键Ca-N的伸缩振动峰发生了大幅蓝移,说明煤活性基团的芳香性对配位键Ca-N的影响很大,配合物的稳定性大增。阻化剂的阻化效果随着煤特征结构芳香性的增大而提高。
     研究了氢键对形成配合物的作用。采用密度泛函理论在B3LYP/6-311G*水平上对H_2O参与形成配合物的过程进行优化计算,结果显示H_2O首先通过氢键的分子识别与引导作用与Ca~(2+)的配体-OH相互作用,进而再与Ca~(2+)相互作用形成配合物。在整个过程中,氢键能一直保持并形成分子内Ca-O-H-O四元环结构,配合物的稳定性得到大幅提高。有H_2O参与配位后配合物分子的前线轨道能级和相互作用能降低,稳定性增加。一个H_2O参与配位后Ca仍偏离其表观电荷,还可继续形成配位键。有H_2O参与配位分子内形成Ca-O-H-O四元环结构,煤的芳香性对配位键Ca-N的影响降低。溶剂通过氢键参与配位,阻化剂的阻化效果倍增。
     研究了溶剂化效应对形成Ca~(2+)阻化剂配合物的影响。运用极化连续介质模型(PCM)研究了溶剂化效应对形成配合物的影响。结果显示配合物在液相环境下分子的构象发生变化,溶液中配合物的HOMO轨道的构成由Ca和N转移都苯环和侧链的C上,Ca-N配位键加强,N的活性降低。前线轨道的能量差,净电荷布居都显示配合物稳定性增加。说明配合物受溶剂化效应影响稳定性更强,阻化剂的阻化效果更好。
     本文从微观上揭示了溶剂对阻化剂阻化效果起到的重要作用,阐述了阻化剂防火中溶剂选择的必要性,是预防煤炭自燃的配位阻化理论的创新与完善。
Coal spontaneous combustion cause energy dissipation and environmental pollution, as well as serious problems on production security of coal mine. The use of retardant has been an effective method in preventing coal spontaneous combustion. Due to the complexity of coal structure and component, thoroughly research on mechanism of inhibition of coal spontaneous combustion is needed. Theory of coordinate inhibition in preventing coal spontaneous combustion means that in the presence of retardant, the active groups of coal forms complex with metal ions in retardant so as to prevent their reaction with oxygen. This thesis based on theory of coordinate inhibition, utilized quantum chemistry theory, studied coal aromaticity, hydrogen bond and sovation effect which affected the complex properties. The geometrical characteristics, frontier molecular orbital, net charge population, spectrum characteristics and binding energy of the complex between N containing active structures in coal and calcium based retardant were investigated. The research achievements are creation and improvement on theory of coordinate inhibition.
     Affects on forming complex according to the increasing aromaticity of N containing characteristic structures in coal were studied. An increase of N-Ca-O bond angel, a decrese of Ca-N coordination bond legth and an increase of Ca-O coordination bond legth were noticed along with the increase of aromaticity during calculation on B3LYP/6-311G* level adoping density functional theory. Ca-N-C-O four member ring structure was formed when the number of benzene ring rose to four. The energy gap of complex between Ca~(2+) and active structure of coal increase gradually, the total energy of complex system decrease gradually, and the stability of complex so formed increase gradually. There was no noticeable shift of stretching vibration peak of the coordination bond Ca-O, on the contrary large blue shift was observed of stretching vibration peak of the coordination bond Ca-N. This indicated that large effect on coordination bond Ca-N by the aromaticity of the active group of coal, and more stability of the complex. It is found that the larger the aromaticity of the charictristic sturcture of coal, the more efficent of retardant’s inhibition effect.
     Effect of hydrogen bond on forming complex was studied. Optimized calculation of the process of coordination in the presence of H_2O was carried on B3LYP/6-311G* level adoping density functional theory. Result showed that H_2O first react with the ligand–OH of Ca~(2+) through molecular recognition and molecular guide of hydrogen bond, and further react with Ca~(2+) to form complex. Hydrogen bond always maintained and helped to form intramolecular Ca-O-H-O four member ring structure, which largely increased the stability of complex. The enegy level of frontier molecular orbital and system energy of complex decreased which result in more stability. Ca still diverge its apparent charge after one H_2O molecule coordinated so as it can keep on forming more coordination bond. The intramolecular Ca-O-H-O four member ring structure formed in the presence of H_2O, and the effect of aromaticity of coal on coordination bond Ca-N decresed. The inhibition effect largely increased when solvent coordinated through hydrogen bond.
     Affect on Ca~(2+) retardant complex forming by effect of salvation was sturdied. Affect on complex forming by effect of salvation was sturdied by polarizable continuum model(PCM). Result showed that molecular conformation changed on liquid phase, the composition of HOMO orbital of complex in solution shifted to benzene ring and C of side chain from Ca and N, result in enhancement of Ca-N coordination bond as well as less activity of N. Energy difference frontier molecular orbital and net charge population indicated that more stability of complex. It suggested that complex more stable in aqueoue solution and better inhibition effect of retardant.
     Extreme effect of solvent on inhibition effect of retardant was showed on microcosmic, the necessarity in the need for solvent selection during the configuration retardant process was illustrated, and creation and improvement on theory of coordinate inhibition were achieved in this thesis.
引文
[1]范维唐,卢鉴章,申宝宏.煤矿灾害防治的技术与对策[M].徐州:中国矿业大学出版社,2007:12.
    [2]胡社荣,蒋大成,李泽光等.煤田煤矿区火灾与环境效应及其防治对策[J].地质灾害与环境保护,2001(1):21-23.
    [3]李学诚.中国煤矿安全大全[M].北京:煤炭工业出版社,1998.
    [4]管海晏,冯·亨特伦,谭永杰等.中国北方煤田自燃环境调查与研究[M].北京:煤炭工业出版社,1998.
    [5] Kuchta, J.M., Rowe, V.R., Burgess, D.S. Spontaneous combustion susceptibility of US coals[M]. Pittsburgh,PA:US Bureau of Mines,1980.
    [6] Gouws, M.J., Knoetze, T.P. Coal self-heating and explosibility[J]. J S Afr Inst Min Metall, 1995:37-43.
    [7] Cliff, D., Rowlands, D., Sleeman, J. Spontaneous combustion in Australia underground coal mines[M]. Queensland, Australia:SIMTARS, 1996.
    [8] Jones, R.E., Townend, DTA. Mechanism of the oxidation of coal[J]. Nature, 1945 (155):424-425.
    [9] Jones, R.E., Townend, DTA. The oxidation of coal[J]. J Soc Chem Ind, 1949 (68):197-201.
    [10]王省身,张国枢.矿井火灾防治[M].徐州:中国矿业大学出版社,1990.
    [11] Coward, H.F. Research on spontaneous combustion of coal in mines[M].Queensland, Australia:SIMTARS, 1957.
    [12] Humphreys, D.The spontaneous heating of coal and its relation to petrography composition.BE Thesis[D],The University of Queensland,1976.
    [13]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报.1996,25(3):111-114.
    [14] Lopez, D.Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J].Fuel, 1998, 77(14):1623-1628.
    [15] Wang H.Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J].Fuel,1999, 78(9):1073-1081.
    [16]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报,2007,32(12): 1291-1296.
    [17]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社,2007.
    [18]曾凡桂,谢克昌.煤结构化学的理论体系与方法论[J].煤炭学报,2004,4(29):443-447.
    [19] Carloson, G.A. Computer simulation of the molecular structure of bituminous coal[J].Energy Fuels, 1992 (6):771.
    [20]陈昌国,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21(2):7-12.
    [21]陈昌国,鲜学福.煤结构的研究进展[J].煤炭转化,1998,21(2):7-13.
    [22]钟组英,关梦缤,崔开仁.煤化学[M].徐州:中国矿业大学出版社,1992.
    [23] Given, P.H. The distribution of hydroxyl in coal and its relation to coal structure[J]. Fuel, 1960 (39):147.
    [24] Wiser, W.H. Am Chem Soc Div Fuel Chem, 1975 (20):733.
    [25]陈文敏,张自勋.煤化学基础[M].北京:煤炭工业出版社,1993:212.
    [26] Shine, J.H. Towards an understanding of the coal structure[J]. Fuel, 1984 (63):483-497.
    [27]邓存宝.煤的自燃机理及自燃危险性指数研究[D].阜新:辽宁工程技术大学,2006:33-71.
    [28]申峻,邹纲明,王志忠.煤物理结构特性的研究进展[J].煤化工,1999,4:15-17.
    [29]张代钧,鲜学福.煤的大分子结构与超细物理结构研究(Ⅱ)煤的超细物理结构[J].煤炭转化,1992,15(4):30-32.
    [30] Van krevelen, D.W., Schuyer, J. Coal Sciences[M]. Amsterdam:Elsevier,1957.
    [31] Meters, R.A. Coal Structure[M]. New York:Academic Press, 1982.
    [32] Haenel M.W. Recent progress in coal structure research[J] Fuel.1992,71(11):1211
    [33] Nishioka, M. The associated molecular nature of bituminous coal[J]. Fuel, 1992, 71(8):941-948.
    [34]谢克昌著.煤的结构与反应性[M].北京:科学出版社,2002:10.
    [35]凌丽霞.杂原子类煤结构模型化合物的热解及含硫化合物脱除的量子化学研究[D].山西:太原理工大学博士论文,2010,6.
    [36] Solum, M.S., Pugmire, R.J., Grant, D.M., et al. 15N CPMAS NMR of the argonne premium coals[J]. Energ.Fuel., 1997, 11(2):491-494.
    [37] Miura, K., Mae, K.,Shimada, M., et al. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals[J]. Energ. Fuel., 2001, 15(3):629-636.
    [38]周春光等.煤中硫研究现状[J].煤田地质与勘探,1999,27(1):17-18.
    [39]彭本信.应用热分析技术研究煤的氧化自燃过程[J].煤炭工程师,1992,2:1.
    [40]石小松,杜翠凤.吸湿性新型煤堆抑尘阻化剂的实验研究[J].工业安全与环保,2007, 33(3):28-29.
    [41]梁晓瑜,王德明.水分对煤炭自燃的影响[J].辽宁工程技术大学学报,2003,22(4):472.
    [42]舒新前.煤炭自燃的热分析研究[J].中国煤田地质,1994,25(2):25.
    [43]彭本信.煤的自然发火阻化剂及其阻化机理[J].煤炭学报,1980,3(9):38-48.
    [44]杨胜强.氢氧化钙对高硫煤的阻化实验及机理分析[J].中国矿业大学学报,1996,25(4):68-72.
    [45]倪文耀.石灰浆对中高硫煤的阻化作用[J].煤炭工程师,1998,6:32-33.
    [46]施春红,金龙哲.新型防火抑尘剂的应用[J].煤炭学报,2007,32(6):608-611.
    [47]金龙哲.浅析粘尘阻燃粉的阻化性能[J].陕西煤炭技术,1997,1:9-11.
    [48]苏凤航,金龙哲.浅析煤尘阻燃粉的阻化性能[J].煤,1997,6(5):44-45.
    [49]黄文章.矸石山自燃阻化剂的阻化机理研究[J].中国安全科学学报,2007,17(10):5-8.
    [50] Liodakisa, S., Bakirtzisa, D., Loisb, E., et al. The effect of (NH4)2HPO4 and (NH4)2SO4 on the spontaneous ignition properties of Pinus halepensis pine needles[J]. Fire Safety Journal, 2000(37): 481-494.
    [51] Dong, X.L., Dougal, D. The effect of DDS-inhibitors on suppressing the spontaneous ignition of coal[J]. International Association for Fire Safety Science, 1997: 571-580.
    [52] Liang, M., Tao, Z.J., Chen, J. Sensitizers of Dye-sensitized Solar Cell[J]. Chemistry Online, 2005 (12):889-896.
    [53] Yamaguchi, K., Koshino, S., Akagi, F., et al. J. Am. Chem. Soc., 1997, 119:5752.
    [54]江洪流,王海华.改性MgCl2负载α-二亚胺镍催化乙烯聚合[J].高分子材料科学与工程,2009,25(3):25-27.
    [55] Kryatov, S.V., Rybak-Akimova, E.V., Meyer, F., et al. Eur. J. Inorg. Chem., 2003 (8):1581.
    [56] Domasevitch, K.V., Sieler, J., Rusanov, E.B., et al. Anorg. Allg. Chem., 2002 (628):51.
    [57] Fang, Y.Y., Liu, H., Du, M., et al. J. Mol. Struct., 2002 (608):229.
    [58] Chouai, A., Wicke, S.E., Turro, C., et al. Inorg. Chem., 2005 (44):5996.
    [59] Teng, M.K., Usman, N., Frederick, C.A., et al. J. Nucleic Acids Res., 1988 (16):2671.
    [60] Aymami, J., Nunn, C. M., Neidle, S. Nucleic Acids Res., 1999 (27):2691.
    [61] Parkinson, J.A., Barber, J., Douglas, K.T. et al. Biochemistry, 1990, 29:10181.
    [62] Robertson, N., Cronin, L. Coord. Chem. Rev., 2002 (227):93-127.
    [63]周科,阂锁田.二硫代氨基甲酸镐配合物几何异构体理论研究[J].计算机与用化学,2009,26(3):347-351.
    [64] Canadell, E. Coord. Chem. Rev., 1999:185-186.
    [65] Yang, L.F., Peng, Z.H., Cheng, G.Z., et al. Polyhedron, 2003 (22):3547-3553.
    [66]廖强强,李义久.胺化葡萄糖及其铜配合物的光谱特性[J].光谱学与光谱分析,2008,28(11):2588-2591.
    [67] Bulgarevich, S.B., Bren, D.V., Movshovic, D.Y,, et al. J. Mol.Struct., 1994 (317):147-155.
    [68] Singh, H., Yadv, L.D.S., Mishra, S.B.S. J. Inorg. Nucl. Chem., 1981 (43):1707.
    [69]黄丰良,胡峥勇.含三芳胺基的吡啶甲酸衍生物及其环金属铱配合物的合成与性能[J].化学学报,2008,66(19):2146-2150.
    [70] Criado, J.J., Fernandez, E.R., Garcia, E. Inorg. Chem., 1998 (69):113.
    [71] Freedmann, T.B., Loehr, J.S., Loehr, T.M. J. Am. Chem. Soc., 1976 (98):2809.
    [72] Nakamoto, K., Fujita, J., Condrate, R.A. J. Chem. Phys., 1963, 39(2):423.
    [73] Ditmars, D.A., Ishihara, S., Chang, S.S. J. Res. Natl. Bur. Stand., 1982 (87): 159.
    [74]周春生,范广.含能配合物[Mn(BTA)(phen)2·5H2O]n的合成、结构与性质研究[J].化学学报,2008,66(15):1776-1780.
    [75] Rojas-Aguilar, A., Orozoco-Guareno, E. J. Chem. Thermodyn., 2000 (32):767.
    [76]宋春梅,薛海丽等.端氨基聚(醚-氨酯-酰胺)配体及磁共振成像造影剂研究[J].高分子学报,2009,3,287-282.
    [77] King, C., Wang, J.C., Khan, M.N.I., et al. Inorg. Chem., 1989 (28):2145.
    [78] Fu, W.F., Chan, K.C., Cheung, K.K., et al. J. Chem. Eur., 2001 (7):4656.
    [79] Che, C.M., Kwong, H.L., Poon, C.K., et al. J. Chem. Soc. Dalton Trans., 1990:3215.
    [80]石必明.易自燃煤低温氧化和阻化的微观结构分析[J].煤炭学报,2000,25(6):294-298.
    [81]赵庆福.煤炭自燃阻化技术基础研究[D].阜新:辽宁工程技术大学,2009.
    [82]王雪峰.煤活性基团与Ca2+形成配合物的结构与表征[D].阜新:辽宁工程技术大学,2009.
    [83] Waser, K.N., Trueblood, C.M.K.著.北京化工学院应用化学系无机化学教研室译(上册)[M].科学出版社,1986.
    [84] Robertson, J.M. Nature, 1935 (136):755-756.
    [85] Pauling, L. The Nature of the Chemical Bond[M]. New York:Cornell Univ Press, 1939.
    [86] Pauling, L., Corey, R.B., Branson, H.R. Proc. Nat. Acad. Sci., 1951 (37):205-211.
    [87] Watson, J.D., Crick, F.H.C. Nature, 1953 (171):737-738.
    [88]徐光宪,王样云.物质结构(第二版)[M].高等教育出版社,1988:586-598.
    [89]冯云龙,江旭亮.化学通报,1991,(11):46-48.
    [90]郑能武.化学键的物理概念[M].安徽科技出版社,1985:210-218.
    [91]王海燕,曾艳丽,孟令鹏等.有关氢键理论研究的现状及前景[J].河北师范大学学报(自然科学版),2005,29:177.
    [92] Lutskii, A.E., Shuster, Y.A., Granzhan, V.A., et al. J. Appl. SPectros., 1972 (16):498.
    [93] Biswal, H.S., Wategaonkar, S. J. Phys. Chem. A, 2009 (113):12763.
    [94]王素纹,黎安勇,谭宏伟.高等学校化学学报,2007,28:1962.
    [95] Allerhand A., Schleyer, P.V.R. J. Am. Chem. Soc., 1963 (85):1715.
    [96] Roe, D.M., Bailey, P.M., Moseley, K., et al. J. Chem. Soc. Chem. Commun., 1972:1273.
    [97] Wadepohl, H., Braga, D., Grepioni, F. Organometallics, 1995 (14):24.
    [98] Brown, M.P., Heseltine, R.W. Chem. Commun., 1968:1551.
    [99]罗洪娟.杂环芳香体系分子间氢键和双氢键的理论研究[D].重庆:西南大学,2009.
    [100] Custeicean, R., Jaekson, J.E. Chem. Rev., 2001 (101):1963.
    [101] Kubas, G.J. Metal Dihydrogen andσ-Bond Complex. New York:Plenum Publishers, 2001.
    [102] Bakhmutov, V.L. Dihydrogen Bond: Prineiples, Experiments and Applications. New Jersey: John Wiley & Sons Ltd., 2008.
    [103] Koch, U., Popelier, P.L.A. J. Phys. Chem., 1995 (99):9747-9754.
    [104] Bader, R.W.F. Chem. Rev., 1991 (91):893-928.
    [105] Lipkowski, P., Grabowski, S.J., Robinson, T.L., et al. J Phys Chem A, 2004 (108): 10865-10872.
    [106] Desiraju, G.R., Steiner, T. The weak hydrogen bond. Oxford:Oxford University press, 1997.
    [107] Tampy, G.K., Prudich, M.E., Savage, R.L. Energy & Fuels, 1988 (2):787-793.
    [108]聂百胜,何学秋,王恩元等.煤吸附水的微观机理[J].中国矿业大学学报,2004,33(4): 379-383.
    [109]李祥春,聂百胜.煤吸附水特性的研究[J].太原理工大学学报,2006,37(4):417-419.
    [110]李东涛,李文,李保庆.褐煤中水分的原位漫反射红外光谱研究[J].高等学校化学学报,2002,23(12):2325-2328.
    [111]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.
    [112]陈茺,高晋生,颜勇捷.环己酮抽提煤的研究[J].燃料化学学报,1997,25(1):60-64.
    [113]陈茺.煤中氢键类型的研究[J].燃料化学学报,1998,26(2):140-143.
    [114]张卫,曾凡桂.中等变质程度煤中羟基的红外光谱分析[J].太原理工大学学报,2005,36(5):545-548.
    [115] Brenner, D. Fuel, 1985 (64):167-173.
    [116] Larsen, J.W., Green, T.K., Kovac, J. J. Org. Chem., 1985 (50):4729-4735.
    [117] Miura, K., Mae, K., Sakurada, K., et al. Energy & Fuels, 1992 (6):16-21.
    [118] Menschutkin, N. Phys. Chem., 1980 (6):41.
    [119]徐小燕.水杨醛甘氨酸Schiff碱的溶剂化效应理论研究[J].北京师范大学学报(自然科学版),2007,43(4):419-422.
    [120]罗鑫.矸石基吸附剂合成的溶剂化效应的研究[J].煤炭技术,2007,26(1):143-144.
    [121]周长新.藁本内酯的稳定性与溶剂化效应的关系[J].药学学报,2001,36(10):793-795.
    [122]刘玲玲.甲醛和氟代甲醛在不同溶剂中溶剂化效应的理论计算[J].甘肃科学学报, 2009,21(6):64-68.
    [123]彭洪亮.2-(3-巯基-2-吡啶基)苯并咪唑分子内质子转移及溶剂化效应[J].物理化学学报,2010,26(1):141-148.
    [124]陈晓军.聚乙烯醇(PVA)结晶的溶剂化效应[J].化学研究与应用,2001,13(6):270-272.
    [125]贾秀娟.溶剂化效应对6-亚甲基环戊二烯酮与HCN的反应机理影响的理论研究[J].高等学校化学学报,2008,29(6):1224-1227.
    [1] Pauling, L., Wilson, E.B. Introduction to Quantum Mechanics[M]. New york: McGraw-Hill Book Company, Inc., 1935:340-380.
    [2] Mulliken, R.S. Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations[J]. Phys. Rev., 1932 (41):49.
    [3] Alml?f, J., Taylor, P.R. Adv. Quantum Chem., 1991 (22):301.
    [4] Reed, A.E., Weinhold, F. Natural bond orbital analysis of near-Hartree--Fock water dimmer[J]. J. Chem. Phys., 1983, 78(6):4066-4073.
    [5] Reed, A.E., Weinstock, R.B., Weinhold, F. Natural population analysis[J]. J. Chem. Phys., 1985, 83(2):735.
    [6] Carpenter J.E.,Weinhold F. J.Mol.Struc.(Theochem.),1988 (169):41-46.
    [7] Bader, R.F.W. Atoms in Molecules A Quantum Theory[M]. Oxford:Oxford University Press, 1990.
    [8] Chong D.P. Recent Advances in Density Functional Methods.Part II[M]. World Scientific, 1995:782.
    [9] Parr, R.G., Yang, W. Density-functional theory of atoms and molecules[M]. Oxford:Oxford University Press, 1989.
    [10] Schr?dinger, E. Ann. Physik, 1926 (81):109-139.
    [11] Schr?dinger, E. Phys. Rev., 1926 (28):1049.
    [12]盛六四,邱文元,杜奇石.量子化学新进展[J].化学通报,1996,7:18-19.
    [13]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学技术出版社,1982:295.
    [14]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法(上册)[M].北京:科学出版社,1980:10.
    [15]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社, 2004.
    [16] Roothaan, C.C. Self-Consisten Field Theory for Open Shells of Electronict Systems[J]. Rev. Mod. Phys., 1960, 32(6):179.
    [17] Hohenberg, P., Kohn, W. Inhomogeneous Electron Gas[J]. Phys. Rev., 1964 (136):B864.
    [18] Kohn, W., Sham, L. Self-consistent equations including exchange and correlation effects[J]. J. Phys. Rev., 1965, (140):A1133.
    [19] Slater, J.C. The Self-Consistent Field for Molecular and Solids McGraw- Hill[J]. New York:Quantum Theory of Molecular and Solids, 1974.
    [20] Kohn, W., Sham, L. Self-consistent equations including exchange and correlation effects[J]. J. Phys. Rev., 1965, 140(4A):A1133.
    [21] Lee, C., Yang, W.,Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. 1988 (37):785.
    [22] Parr, R. G., Yang, W. Density-functional theory of atoms and molecules [M]. Oxford:Oxford Univ. Press, 1989.
    [23] Pople, J.A., Gill, P.M.W., Johnson, B.G. Chem. Phys. Lett., 1992 (199):557.
    [24] Labanowski, J.K., Andzelm, J.W. Density Functional Methods in Chemistry[M]. New York:Springer-Verlag, 1991.
    [25]王正行.量子力学原理[M].北京:北京大学出版社,2003.
    [26]孙为银.配位化学[M].北京:化学工业出版社,2004:17-29.
    [27] Boyns, S.F., Bermardi, F. The calculation of small molecular interactions by thedifferences of separate total energies[J]. Mol. Phy., 1970 (19):553-566.
    [28] Tao, F.M., Li, Z.R., Pan, Y.K. An accurate ab initio potential energy surface of He…H2O[J]. Chem. Phys. Lett., 1996 (255):179-186.
    [29] Miertus, S., Scrocco, E., Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects[J]. J. Chem. Phys.,1981 (55):117.
    [30] Pullman, B., Miertus, S., Perahia, D. Hydration scheme of the purine and pyrimidine bases and base-pairs of the nucleic acids[J]. Theoret. Chim. Acta, 1979 (50):317.
    [31] Goldblum, A., Perahia, C., Pullmam, A. Hydration scheme of the complementary base-pairs of DNA[J]. FEBS. Lett., 1979 (91):213.
    [32] Miertu, S., Tomasi,J. Approximate Evaluations of the Electrostatic Free Energy and internal Energy Changes in Solution Processes[J]. J. Chem. Phys., 1982 (65):239.
    [33] Wbng, M.W., Frisch, M.J., Wiberg, K.B. The mediation of electrostatic effect by solvents[J]. J. Am. Chem. Soe., 1991 (113):4776.
    [34] Onsager, L. Electric moments of molecules in liquids[J]. J. Am. Chem. Soc., 1936 (58):1486.
    [35] Wong, M.W., Wiberg, K.B., Frisch, M.J. Solvent effects. 3. Tautomeric equilibria of formamide and 2-pyridone in the gas phase and solution: an ab initio SCRF study[J]. J. Am. Chem. Soc., 1992 (114):1645.
    [36] Wong, M.W., Frisch, M.J., Wiberg, K.B. Hartree–Fock second derivatives and electric field properties in a solvent reaction field: Theory and application[J]. J. Am. Chem. Soc.,1991 (95):8991.
    [37] Cossi, M., Barone, V., Cammi, R., et al. Ab initio study of solvated molecules:a new implementation of the polarizable continuum model[J]. Chem. Phys. Lett., 1996 (255):327.
    [38] Cossi, M., Barone, V., Mennucci, B., et al. Ab initio study of ionic solutions by a polarizable continuum dielectric model[J]. Chem. Phys. Letters, 1998 (286):253.
    [39] Cancès, E., Mennucci, B., Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics[J]. J. Chem. Phys.,1997 (107):3032.
    [40] Cossi, M., Barone, V., Tomasi, J. Analytical second derivatives of the free energyin solution by polarizable continuum models[J]. J. Chem. Phys., 1997 (107):3210.
    [41] Tunon, I., Silla, E., Tomasi, J. Methylamines Basicity Calculations. In Vacuo and in Solution Comparative Analysis[J]. J. Phys. Chem., 1992 (96):9043.
    [42] Luque, F.J., Cossi, M., Tomasi, J. An ab initio SCRF continuum study of the Lewis acid Complexation of esters[J]. J. Mol. Sturct. (Theochem), 1996 (371):123.
    [43] Wiberg, K.B., Keith, T.A., Frisch, M.J., et al. Solvent Effects on 1,2-Dihaloethane Gauche/Trans Ratios[J]. J. Phys. Chem., 1995 (99):9072.
    [44] Wiberg, K.B., Rablen, P.R., Rush, D.J., et al. Amides. 3. Experimental and Theoretical Studies of the Effect of the Medium on the Rotational Barriers for N,N-Dimethylformamide and N,N-Dimethylacetamide[J]. J. Am. Chem. Soc., 1995 (117):4261.
    [1]谢克昌,著.煤的结构与反应性[M].北京:科学出版社,2002,10.
    [2]王继仁,邓存宝.煤微观结构与组分量质差异自燃理论[J].煤炭学报,2007,32(12):1291-1296.
    [3]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社,2007.
    [4] Rabinovitch B S,Winkler C A. The hydrolysis of acid amides in concentrated hydrochloric aeid solutions[J]. Canadian Journal of Research,1942,20:73.
    [5] Rabinoviteh B S,Winkier C A. The hydrolysis of aliphatic nitriles in concentrated hydrochloric solutions[J]. Canadian Journal of Research,1942,20:221.
    [6]阎晓,车得福,徐通模.铜川贫煤中氮赋存形态的红外光谱研究[J].西北大学学报,2004,34(4):429-431.
    [7]王西奎,金祖亮,徐晓白.鲁奇煤气化工艺低温煤焦油的组成研究[J].环境科学学报,1989,9(4):461-472.
    [8]刘长城,陈红,孙元宝,等.煤的分级萃取与组成[J].吉林大学学报(理学版),2004,42(3):442-446.
    [9]李艳,宗志敏,黄丽莉,等.灵武煤CS2/NMP萃取物的柱层析分离及其馏分的GC/MS分析[J].武汉科技大学学报,2010,33(2):88-94.
    [10]Zong Z M,Wang X H,Xie K C,Wei X Y. Identification of organonitrogen compounds in some Chinese bituminous coals[C]. Proceedings of the International Conference on Coal Science and Technology,Okinawa,Japan,2005:9-14
    [11]Wei X Y, Ni Z H, Xiong Y C, Zong Z M,et al. Pd/C-Catalyzed release of organonitrogen compounds from bituminous coals[J].Energy&Fuels,2002,16(2):527-528
    [12]姚婷,宗志敏,袁南华,等.徐州圣戈班高温煤焦油的分离和GC/MS分析[J].武汉科技大学学报,2009,32(6):648-653.
    [1]王庆文,杨玉桓,高鸿宾,编.有机化学中的氢键问题[M].天津:天津大学出版社,1993,12.
    [2]赵荣飞,陆妙燕.氢键对物质性质的影响及应用[J].安顺学院学报,2007,9(4):84-86.
    [3] LIU Gui-lei,LI Hui,SONG Fang,et al. Supramolecular Sheet Co(Ⅱ) Complex Assembled by Hydrogen Bond[J].Journal of Beijing Institute of Technology,2009,6:234-237.
    [4]赵庆福.煤炭自燃阻化技术基础研究[D].阜新:辽宁工程技术大学安全科学与工程学院,2009,6.
    [5]王雪峰.煤活性基团与Ca2+形成配合物的结构与表征[D].阜新:辽宁工程技术大学安全科学与工程学院,2009,12.
    [6]刘吉波.煤炭的阻燃机理分析和氯化盐类汽雾阻化剂的应用[J].华北科技学院学报,2002,4(2):8-10.
    [7]杨胜强,张人伟,邸志前,等.煤炭自燃及常用防灭火措施的阻燃机理分析[J].煤炭学报,1998,23(6):620-624.
    [8]石必明.易自燃煤低温氧化和阻化的微观结构分析[J].煤炭学报,2000,25(3):294-298.
    [9]周心权,编.矿井火灾防治(A类)[M].徐州:中国矿业大学出版社,2002.
    [10]张如意.煤矿用防火材料及阻化剂[J].矿业安全与环保,1999(1):6-7.
    [1] C.莱卡特,编著.有机化学中的溶剂效应[M].北京:化学工业出版社,1987.
    [2] A.Ben-Naim,J.Phys.Chem.1978,82,792.
    [3]蒋华良,陈凯先,嵇汝运.溶剂效应量子化学研究进展[J].化学通报,1995(04):1-6.
    [4]吴勇.若干重要化学反应机理和溶剂效应的理论研究[D].成都:四川大学,2006.3
    [5] B. K. Carpenter, J. Phys. Chem., 1995, 99, 9801.
    [6]胡殿俭.金属离子在水溶液中的溶剂化研究[D].青岛:中国石油大学(华东),2007,4.
    [7] V.Boarne,M.Cossi,J.Tomasi. A new definition of cavities for the computation of salvation free energies by the polarizable continuum model[J],J.Chem.Phys.1997,107,3210.
    [8] M.Cossi,V.Barone,R.Cammi,J.Tomasi. Ab initio study of solvated molecules:a new implementation of the polarzable continuum model[J].Chem.Phys.lett,1996,255, 327.
    [9]王莹.溶剂效应的量子化学研究[D].成都:四川大学,2006,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700