燃气流量可调固体火箭冲压发动机动态响应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新一代导弹对高性能动力装置的需求促进了燃气流量可调固体火箭冲压发动机(流量可调固冲发动机)的发展,但目前的研究成果尚不足以帮助人们清晰理解流量可调固冲发动机的工作过程,尤其是燃气流量调节中的参数动态响应过程,仍需进一步深入研究。本文主要通过理论分析和数值模拟的方法对流量可调固冲发动机的动态响应过程进行研究。
     通过理论分析,确定了流量可调固冲发动机流量调节过程中的负调现象的物理机理,从理论上回答了负调为何发生、何时发生、何时终止以及受何因素影响等问题,建立了负调理论。提出并定义了燃气流量调节临界喷喉面积变化率的概念。给出了临界喷喉面积变化率、负调持续时间、负调量和参数响应时间的理论计算方法。编程计算了不同喷喉面积变化速率的调节过程,计算结果验证了负调理论。燃气流量调节试验样机的试验结果也表明了本文负调理论相关内容的正确性。
     基于ALE描述的包含多组分化学反应的N-S方程,通过在成熟软件上的二次开发建立了流量可调固冲发动机动态响应过程数值模拟方法,该方法的正确性得到了一维稀疏波传播问题解析解和燃气流量调节试验结果的验证。
     开展了机械阀门式流量可调固冲发动机非稳态工作过程的数值模拟。计算了典型调节过程,分析了调节过程中发动机内部的流场结构变化和参数的动态响应情况。建立了流量可调固冲发动机动态响应过程评价体系,以该评价体系为指导计算并分析了阀门作动速度、阀门作动形式、推进剂燃速压强指数、调节尺度和燃气发生器自由容积对动态响应过程的影响。相关计算结果进一步验证了本文的负调理论。
     建立了气动喉道式流量可调固冲发动机的数值模拟方法,利用相关文献的试验结果验证了该方法的正确性。利用该方法开展了气动喉道式流量可调固冲发动机数值模拟研究,分别研究了其稳态调节特性和动态调节特性。计算结果表明,气动喉道确实可以达到改变燃气发生器喷喉面积进而调节燃气流量的目的,但是调节能力有限。分别计算并分析了二次流/主流流量比和二次流喷射角度对稳态调节特性和动态调节特性的影响,得到了相关结论,并证明了本文建立的负调理论对气动喉道式燃气流量可固体火箭冲压发动机也是适用的。
Demonds for high performance propulsion system for the next generation missile have greatly promoted the research and development of Variable Flow Ducted Rocket (VFDR). Alough considerable progress in this field has been seen, still many issues, especially the response characteristics of VFDR, remained for us to conduct further investigation. Approaches of theoretical analysis and numerical simulation were both applied to study the response characteristics of VFDR in this dissertation.
     Physical mechanisms of anti-regulation phenomenon in the regulation process of VFDR have been discovered through theoretical analysis. A theory of anti-regulation was established, and it theoretically answered the questions of why does anti-regulation happen, when does it happen, when will it stop and how is it influenced by some given parameters. The concept of Critical Change Rate of gas generator Throat Area (CCRTA) were initiated and defined, calculation methods of CCRTA, anti-regulation duration and anti-regulation extent were also provided. The anti-regulation theory was validated by theoretical calculation results and VFDR experiment data.
     Based on ALE depicted N-S equations as well as dynamic mesh method, an unsteady numerical simulation method for the unsteady working process of VFDR has been established. The correctness of this simulation method was verified by analytical solution of one dimensional expansion wave propagation problem and VFDR experiment data.
     Numerical investigation of the unsteady working process of mechanical valve style VFDR was conducted, the variation of flow field inside the VFDR and the response characteristics were analyzed. An evaluation system of the response characteristics has been established. The influences of valve velocity, pressure exponent, free volume etc. were calculated and analyzed. The anti-regulation theory was validated again.
     Numerical simulation method of gas throat style VFDR was established and validated by relevant experiment data. Steady and Unsteady regulation property of gas throat style VFDR was studied using this method. The results demonstrated the feasibility of gas throat style VFDR. The influences of the secondary flow - main flow rate and secondary flow inject angle were investigated, which indicated that the anti-regulation theory established in this dissertation is also suitable for gas throat style VFDR.
引文
[1]曹军伟,王虎干.整体式固体火箭冲压发动机在中远程空空导弹上的应用[J].航空兵器, 2002 (4): 33-36.
    [2]曹军伟,徐东来.固体火箭冲压发动机工作包线分析[J].航空兵器, 2006 (1): 53-56.
    [3]王起飞.局部战争的特点与远程空空导弹的发展趋势[J].航空兵器, 2004 (2): 10-14.
    [4]陈旭扬.固冲发动机的流量调节技术[D].西安:西北工业大学. 1996.
    [5]盛德林.丛林狼超声速掠海靶弹[J].飞航导弹, 2006 (12): 2-5.
    [6]张炜,朱慧,方丁酉等.用于燃气流量可调固冲发动机的贫氧推进剂[J].推进技术, 1999, 20(5):95-98.
    [7] Greatrix R D. Transient Solid-Propellant Burning Rate Model: Comparisons to Experimental Data[C]. AIAA 2006-4426, 2006.
    [8] Hewitt P W. Status of Ramjet Programs in the United States[J]. AIAA 2008-5265, 2008.
    [9]孙娜,吴虎,郑书娥等.壅塞可调固体火箭冲压发动机性能计算[J].科学技术与工程, 2008, 8 (11): 2893-2897.
    [10]何洪庆,陈旭扬.固冲发动机贫氧燃气流量调节技术的初步研究[C]. 96联合推进会议论文集, 1996.
    [11]何洪庆,陈旭扬.固冲发动机贫氧燃气流量调节技术[J].航空兵器, 1999 (3) : 18-21.
    [12]姜洲.固体火箭冲压发动机燃气流量调节技术[D].长沙:国防科技大学. 2007.
    [13]毛成立,李葆萱,李逢春等.燃气发生器流量调节方案的比较[J].固体火箭技术, 2000, 23(4):16-18.
    [14] Ronald S Fry. A century of ramjet propulsion technology evolution[ J ]. Journal of Propulsion and Power, 2004, 20 (1).
    [15]叶定友.固体火箭冲压发动机的若干技术问题[J].固体火箭技术, 2007, 30(6): 470-473.
    [16]郑日恒.法国冲压发动机研究进展[J].航天制造技术, 2006: 4-2, 6-10.
    [17] R. Marguet, ISABE 89-7005, Ramjet Research and application in France.
    [18] Ph. Novelli, D. Scherrer, D. Gaffi.Scram jet flowfields investigation by namerical simulation.XII ISABEM elbourne, 1995.
    [19] L. Serre. F Falempin.PROMETHEE the French military hypersonic propulsionprogram:status in 2002.AIAA 2003-6950, 2003.
    [20]张天光.美欧低空防御导弹发展现状.航空兵器, 2005 (2): 40-43.
    [21] Raytheon Company. ESSM (Evolved SeaSparrow Missile) [EB/OL]. http: //www. raytheon. com.
    [22] Ferrard.S. Long-range air-to-air missile meteor far and fast with a ramjet[J]. Planet Aerospace, 2002 (7): 36-37.
    [23] MINARD, J. P., FALEMPIN. Low Cost Ramjet Technology For Tactical Missile Application[C]. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
    [24] Sreeriatha A G, Bhardwaj N. Mach Number Controller for a Flight Vehicle with Ramjet Propulsion[C]. AIAA 1999-3157, 1999.
    [25]英国《简氏防务周刊》2006年5月17日报道,欧洲的"流星"(Meteor).
    [26] Hans-L Besser. History of Ducted Rocket Development at Bayern-Chemie[C]. AIAA 2008-5261, 2008.
    [27]戴耀松.固体火箭冲压发动机的研究进展[J].推进技术, 1987, 8(5): 40-43.
    [28]孙贵宁,何洪庆,陈旭扬.固冲发动机的流量调节技术(3)调控系统软件设计[J].战术导弹技术, 2009 (4): 89-92.
    [29] Fei Q, Guoqiang H, Jiang L. Integrated Flow Field Calculation of Combustor and Inlet in Variable Flow Ducted Rocket[C]. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA 2008-5172, 2008.
    [30]张炜,朱慧,方丁酉等.用于燃气流量可调固冲发动机的贫氧推进剂[J].推进技术, 1999, 20(5): 95-98.
    [31]魏祥庚,何国强,李江等.非同轴式喉栓变推力发动机压强响应分析[J].固体火箭技术, 2009, 32(4): 59-62.
    [32] Hu J X, Xia Z X, Wang Z J, Guo J. Eeperimenral Investigation and Numerical Simulation of Secondary Chamber Flow in SDR[C]. AIAA 2004-3306, 2004.
    [33]夏智勋,张炜,方丁酉等.固体火箭冲压发动机性能调节研究[J].固体火箭技术, 1999, 22(1): 19-22.
    [34]孙娜,吴虎,郑书娥等.壅塞可调固体火箭冲压发动机性能计算[J].科学技术与工程, 2008, 8(11): 2893-2897.
    [35] Xiaojing Y, Guoqiang H, Jiang L. Numerical Analysis of Flow in Variable Thrust SRM Based on Vortex Valve[C]. AIAA 2007-5801, 2007.
    [36]周建军.固体火箭冲压发动机燃气流量调节技术与试验研究[J].弹箭与制导学报, 2005, 25(4): 558-560.
    [37]夏智勋.固体冲压发动机调节特性研究[C].联合推进会议论文集, 1998.
    [38]鲍文,牛文玉,陈林泉等.固体火箭冲压发动机燃气发生器及燃气流量调节阀建模及仿真[J].固体火箭技术, 2008, 31(6): 569-574.
    [39]王志吉,夏智勋等.固体火箭冲压发动机燃气流量调节技术研究.联合推进会议论集, 2005.
    [40]林小树,王宝山,金世学.双燃速固体火箭发动机内弹道计算方法[J].固体火箭技术,1991, 14(4): 52-56.
    [41]倪火才.变深度发射和能量可调发射动力系统[J].舰载武器, 1998 (1): 16-25.
    [42]申法义,吕希诚.固体燃料流量调节地面试验系统.中国航天第八专业信息网2003年度技术信息交流会, 2003.
    [43]王志吉,夏智勋,罗振兵.固体火箭冲压发动机燃气流量调节技术研究[C].中国复合材料学会教育与科普委员会2001年学术研讨会论文集,北京:中国航空学会, 2001: 169-170.
    [44]鲍文,牛文玉,陈林泉等.固体火箭冲压发动机燃气流量调节特性[J].推进技术, 2007, 28(4): 433-436.
    [45]张炜,方丁酉,夏智勋等.固体火箭冲压发动机的工作特性分析[J].国防科学技术大学学报, 2000, 22(4): 19-22.
    [46]李岩芳,陈林泉.固冲燃气发生器流量调节数值模拟研究[C].中国宇航学会固体火箭推进专业委员会2001年年会,西安: 2001.
    [47]何洪庆,陈旭扬.固冲发动机贫氧燃气流量调节技术的初步研究[C]. 96联合推进会议论文集, 1996.
    [48]何洪庆,陈旭扬,孙贵宁.固冲发动机的流量调节技术(1)流量调节系统设计[J].战术导弹技术, 2009 (2): 89-92.
    [49]孙贵宁,何洪庆,陈旭扬.固冲发动机的流量调节技术(3)调控系统软件设计[J].战术导弹技术, 2009 (4): 89-92.
    [50] F.S.Wilkerson,J.T.Lucas.Variable Flow Solid Propellant Gas Generator for Missle Control System. AIAA 81-1464, 1981.
    [51] Hisahiro Nakayama, Yoshiyuki Ikegami, and Akihiko Yoshida. Full-scale Firing Tests of Variable Flow Ducted Rocket Engines employing GAP Solid Fuel Gas Generator. AIAA 2009-5121, 2009.
    [52] Wen Bao, Bin Li, Juntao Chang, etc. Switching control of thrust regulation and inlet buzz protection for ducted rocket. Acta Astronautica 2010 (67): 764–773.
    [53] Juntao Chang, Bin Li, Wen Bao, etc. Thrust control system design of ducted rockets. Acta Astronautica, 2011(69): 86–95.
    [54]何洪庆,陈旭扬,孙贵宁等.固冲发动机的流量调节技术—流量调节系统设计.战术导弹技术, 2009 (2): 36-40.
    [55]李娟,王占利,郑凯等.喉栓式推力可调固体火箭发动机动态响应过程数值分析.固体火箭技术, 2009, 32(1):21-25.
    [56]杨石林,高波,董新刚等.滑盘式流量调节燃气发生器动态特性分析[J].固体火箭技术, 2009, 32(5): 506-510.
    [57]牛文玉,于达仁,鲍文等.燃气流量可控的固体火箭冲压发动机燃起发生器动态特性[J].固体火箭技术, 2008, 31(2): 145-148.
    [58] Edelman R B, Harsha P T. and Schmotoloch S N. Modeling Techniques for the Analysis of Ramjet Combustion Processes[C]. AIAA 80-1190, 1980.
    [59]赵坚行.燃烧的数值模拟[M].北京:科学出版社, 2002.
    [60]黄玉辉.液体火箭发动机燃烧稳定性理论、数值模拟和试验研究[D].长沙:国防科学技术大学, 2001.
    [61] Kral L D. Recent experience with different turbulence models applied to the calculation of flow over aircraft components[J]. Progress in Aerospace Sciences, 1998, 34(2): 481-541.
    [62]向红军.固体火箭发动机熔渣沉积数值模拟与试验研究[D].北京:北京航空航天大学, 2000.
    [63]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社, 1992.
    [64] Oliveira P J, Gosman A D, and Issa R I. A method for particle location and field interpolation on complex, three-dimensional computational meshes[J]. Advances in Engineering Software, 1997 (28): 607-614.
    [65] Frank T and Schulze I. Numerical simulation of gas-droplet flow around a nozzle in a cylindrical chamber using a Lagrangian model based on a multigrid Navier-Stokes solver[J]. Numerical Methods for Multiphase Flows, 1994 (185): 93-107.
    [66] Jayant S S, Frederik J D, andGibeling H J. Calculation of particle trajectories in solid rocket motors with arbitrary acceleration[J]. Journal of Propulsion and Power, 1992, 8(5): 961-967.
    [67]胡建新.含硼推进剂固体火箭冲压发动机补燃室工作过程研究[D].长沙:国防科学技术大学, 2006.
    [68]胡春波,李强,何洪庆等.喷口数与进气道角对固冲发动机补燃室气流掺混的影响[J].固体火箭技术, 2003, 26(4): 14-17.
    [69]李强,胡春波,何洪庆等.切向旋流对SRR补燃室内气流掺混影响[J].推进技术, 2003, 24(4): 300-302.
    [70]武渊,田维平,乐发仁等.含硼贫氧燃气补燃室反应流场研究[J].推进技术, 2004, 25(4): 294-297.
    [71]董岩,余为众,吕希诚.固体火箭冲压发动机二次燃烧室流场数值计算和试验研究[J].推进技术, 1995, 16(1): 27-32.
    [72]廖昌明,林文漪,周力行.双侧进气突扩燃烧室冷态三维流场数值模拟[J].推进技术, 1993, 14(5): 1-7.
    [73] Liu T K, Luh S P, and Perng H C. Effect of Boron Particles Surface Coating on Combustion of Solid Propellants for Ducted Rockets[J]. Propellants, Explosive, Pyrotechnics, 1991, 16(4): 156-166.
    [74] Suzuki T, Odawara T, Kunitou K, Tanabe M, and Kuwahara T. Combustion and Ignition Characteristics of Zr in Solid Fuel of Ducted Rocket[C]. AIAA 2004-3727, 2004.
    [75] Liou T M and Wu S M. Flow Field in a Dual-inlet Side-Dump Combustor[J]. Journal of Propulsion and Power, 1988, 4(1): 53-60.
    [76] Wang T, Chen Y, and Farmer R. Numerical study of reactive ramjet dump combustors flow fields with a pressure base CFD method[C]. AIAA 89-2798, 1989.
    [77] Ristori.A and Dufor.E. Numerical Simulation of Ducted Rocket Motor[C]. AIAA 2001-3193, 2001.
    [78] Stowe R A, Dubois C and Harris P G. Two Phase Flow Combustion Modelling of a Ducted Rocket[C]. AIAA 2001-3461, 2001.
    [79]王国辉,何国强,刘佩进.过载状态下固体火箭发动机燃烧室内二相流动数值模拟[J].固体火箭技术, 2001, 24(2): 8-12.
    [80]刘华坪,陈浮,马波.基于动网格与UDF技术的阀门流场数值模拟[J].汽轮机技术, 2008, 50(2): 106-108
    [81] T. Ye, R. Mittal. An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries[J]. Journal of Computational Physics, 1999 (156): 209-240.
    [82] Michle Lesoinne, Charbel Farhat.Geometric Conservation for Flow Problems with Moving Boundaries and Deformable Meshes, and their Impact on Aeroelastic Computations[J]. Computer methods in applied mechanics and engineering, 1996 (134): 71-90.
    [83]姜孝海,范宝春,李鸿志等.基于ALE方程的动网格膛口流场数值研究[J].计算力学学报, 2008, 25(4): 78-82.
    [84]王志健,杜佳佳.动网格在固体火箭发动机非稳态工作过程中的应用[J].固体火箭技术, 2008, 31(4): 54-58.
    [85]秦飞,何国强,李江等.可控推力发动机非稳态数值模拟[J].弹箭与制导学报, 2006, 26(1): 15-19.
    [86]徐华舫.空气动力学基础(上册)[M].北京:北京航空学院出版社, 1986.
    [87]姜孝海,范宝春,李鸿志等.基于ALE方程的动网格膛口流场数值研究[J].计算力学学报, 2008, 25(4): 253-267.
    [88]江召兵,沈庆等. ALE动网格法在流固耦合数值模拟中的应用[J].应用力学学报, 2008, 25(2): 669-672.
    [89]田德余,刘剑洪.化学推进剂计算能量学.郑州:河南科技出版社, 1999.
    [90]李娟.喉栓发动机推力调节特性研究[D].西安:西北工业大学,2007.
    [91]李泽勇.固冲发动机组合喷管流量调节及推力矢量技术研究[D].长沙:国防科学技术大学,2007.
    [92]刘占生,张云峰.拉伸弹簧和扭曲弹簧模拟动态网格方法分析和改进[J].哈尔滨工业大学学报,2008, 37(8): 1098-1102.
    [93]王飞,祁丽霞,孙永生. CFD技术在发动机研究中的应用[J].中国水运,2007, 07(04): 43-44.
    [94] Thomas P D, lombard C K. The geometric conservation law link between finite-difference an finite-volume methods of flow computation on moving grids[R]. AIAA 78-1028, 1978.
    [95]是勋纲.湍流[M].天津:天津大学出版社, 1991.
    [96]张兆顺.湍流[M].北京:国防工业出版社, 2002.
    [97]陈矛章.粘性流体动力学基础[M].北京:高等教育出版社, 1993.
    [98]杨涛.火箭发动机燃烧原理[M].长沙:国防科技大学出版社, 2008.
    [99]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科技大学出版社, 1992.
    [100] Ristori A and Dufor E. Numerical simulation of ducted rocket motor[C]. AIAA 2001-3193, 2001.
    [101]赵坚行.燃烧的数值模拟[M].北京:科学出版社, 2002.
    [102] Craft T J, Gerassimov A V. Development and Application of Wall-function Treatment[J]. International Journal of Heat and Fluid Flow, 2002, 23(2): 148-160.
    [103]黄利亚.镁基水冲压发动机内部燃烧过程与燃烧组织方法研究[D].长沙:国防科技大学, 2010.
    [104]卢芳芸.一维不定常流体动力学教程[M].北京:科学出版社, 1995.
    [105]戴耀松.固体火箭-冲压发动机的研究进展.推进技术, 1987, 8(5): 40-42.
    [106]谢侃等.固体火箭发动机气动喉部冷流试验[J].推进技术, 2011 (已录用).
    [107] Miller, D. N. and Catt, J. A., Conceptual Development of Fixed-Geometry Nozzles Using Fluidic Injection for Throat-Area Control[R], AIAA 95-2603, 1995.
    [108] McArdle, J. G., Internal Characteristics and Performance of an Aerodynamically Controlled, Variable Discharge Convergent Nozzle[R]. NACA-TN4312, July1958.
    [109] Damiel, Y., Miller, N., Patrick, J. Y., and Jeffrey, W. H., Fluidic Throat Skewing for Thrust Vectoring in Fixed-Geometry Nozzles[R], AIAA 99-0365, 1999.
    [110] Baruzzini D., Domel N., and Miller, D. N. etc. Pulsed Injection Flow Control for Throttling in Supersonic Nozzles– A Computational Fluid Dynamics Design Study[R], AIAA 2007-4215, 2007.
    [111] Walsh.R.F, LEWELLEN.W.S, STICKLER.D.B. Investigation of a solid propellant rocket motor modulated by a fluidic vertex valve[C]. AIAA 70-643, 1970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700