不同形状和结构硫化锌纳米晶的合成及纳米棒的高压研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用溶剂热合成方法,通过改变反应物的摩尔比例制备出了具有不同结构和形貌的ZnS纳米材料。同时采用超高压金刚石对顶砧和Raman光谱实验方法,首次原位研究了ZnS纳米棒在高压下的拉曼光谱和光致发光光谱,探讨了ZnS纳米棒的压致结构相变以及压力对其发光性质的影响。
     在硫化锌ZnS纳米材料的合成研究中发现,通过简单地改变反应物的摩尔比例可以有效地控制合成产物的结构和形貌。改变改变反应物的比例,ZnS纳米材料发生了由闪锌矿和纤锌矿的混合结构到闪锌矿结构再到纤锌矿结构的变化,同时,其形貌发生了由纳米棒和纳米片的混合到六角形纳米片再到纳米棒的变化,发现了在合成过程中ZnS纳米材料的结构和形貌存在相互关联性。实验中首次获得了具有六角形状、闪锌矿结构ZnS纳米片。合成得到的ZnS纳米棒的结晶度较高,直径较小,长径比较高。
     首次研究了ZnS纳米棒的高压在位拉曼光谱和光致发光光谱。纳米棒在高压区转变为岩盐矿结构,相变压力高于纳米颗粒和体材料;在低压区可能经历了从纤锌矿结构到闪锌矿结构的相变。压力对其光致发光光谱存在明显的调制作用。
As a key semiconductor with large band gap, ZnS is potential optical material for short-wavelength laser and other photoelectronic devices. The nanometer scale ZnS with different structures and morphologies also have been attracted much interest because of its unique structure and luminescent properties at room temperature. The synthesis of ZnS nanocrystal with different structures and morphologies and the physical properties, especially the photoluminescence property are still challenging topics in this field. High pressure can change the structure of materials, and thus change the physical properties. It provides us a very powerful tool to study the relations between the structure and physical properties. For ZnS nanorods, there is no report on the structure phase transition and their photoluminescence properties in the field of high pressure.
     In this work, we have first studied the synthesis of ZnS nanocrystal with different structure and morphology by changing the molar ratio of reactants in the solvothermal process. The synthesis of the ZnS nanosheets with hexagonal-shape in zinc-blende structure is first reported. And the ZnS nanorods with small diameter good crystallization were synthesized. We found that there is strong correlation between the structure and morphology of the ZnS products in the solvothermal process. DAC combination with Raman spectroscopy has been employed to study the structural phase transition of ZnS nanorods under high pressure for the first time. The photoluminescence properties at ambient and hydrostatic pressure effect on the photoluminescence properties also have been studied.
     In the process of the solvothermal experiment, the molar ratio of the Zn(NO3)2·6H2O and thiourea was changed between 1:1-1:5, and the structure of the products changed from mixture structure with zincblende and wurtzite to zincblende structure and then to wurtzite structure. The morphology of the products changes from the mixture of nanopaticle and nanorods to nanosheets with hexagonal-shape and then to nanorods. The synthesis of the ZnS nanosheets with hexagonal-shape in zincblende structure is first reported, and the nanosheets with size of 20~50nm is good crystallization. When the molar ratio of the Zn(NO3)2·6H2O and thiourea was changed to 1:5, the obtained ZnS nanorods is good crystallization with the average length of more than 500nm and the average ratio of length to diameter is more than 30. The study of the structure and the morphology of the ZnS products indicates that there is strong correlation between the structure and morphology in the solvothermal process. The photoluminescence of the ZnS nanorods and nanosheets wth pure phase has obvious differences. The ZnS nanosheets have a strong emission band at 534nm while nanorods hav two emission bands at 520nm and 578nm. The results show that we can synthesize the ZnS nanorods with different structure and morphology according to the different application in the luminescence properties.
     We have carried out in situ high pressure measurements for Raman spectroscopy of ZnS nanorods at room temperature. From the discussion, we know that the Rocksalt structure of ZnS appears near 16.7GPa, and the transition pressure is higher than that of the reports. Near 9.3GPa, the full width at half magnitude(FWHM) of the LO mode have changed abruptly, and at same time, the center and the FWHM of the PL emission band changed obviously. So we infer that wurtzite structure maybe transforms to zinc blende structure. Under high pressure, the emission band of the ZnS nanorods shifted to long-wave band. When the pressure is up to 16.7GPa, the PL emission band disappeared. The above discuss on the PL spectra under high pressure indicated that the high pressure can modulate the PL spectra of the ZnS nanorods obviously.
引文
[1]Kubo R J.Phys.Soc.Jpn. 1962 17 975
    [2]Kawabata A and Kubo R J.Phys.Jpn. 1966 21
    [3]Kawabata A J.Phys.(paris) Colloq. 1977 38 2
    [4]Kubo R, Kawabata A,Kobayashi S and Annu Rev. Mater. Sci. 1984 14 49
    [5]Gor’kov L P and Eliashberg G M Eksp.Teor. 1965 48 1407
    [6]Denton R, Muhlschlegel B and Scalapino D J Phys. Rev. B 1973 7 3589
    [7]Butter J, Car R and Myles C W Phys. Rev. B 1982 26 2414
    [8]Denton R, Muhlechlegel B and Scalapino D J Phys. Rev. Lett. 1971 26 707
    [9]Cacicchi R E and Silsbee R H Phys. Rev. Lett. 1984 52 1453
    [10]Dannhauser T,Oeil M,Johansson K, Whitten D and Mclendon G J. Phys. Chem. 1986 90 6047
    [11]Lisensky G C,Penn R L and Murphy C Science 1990 248 840
    [12]Bawendi M G,Wilson W L,Rotherg L and Carroll P J Phys. Rev. Lett. 1990 65 1623
    [13]Hilinski E,Lucas P and Wang Y J. Chem. Phys. 1988 89 3435
    [14]Qu S C,Yang H B,Ren D W,Kan S H,Zou G T, Li D M and Li M H J. of Colloid and Interface Science 1999 215 190
    [15]Awschalom D D, Mocord M A and Grinstein G Phys. Rev. Lett. 1990 65 783.
    [16]张立德,牟季美 物理 1992 21 167
    [17]Lu J and Tinkhan M 物理 1998 27(3) 137
    [18]Feldhein D L and Keating C D Chem.Soc.Rev. 1998 27 1
    [19]Uyeda R Progress in Mater. Sci. 1991 35 1
    [20]Matsuyama I,Susa K,Satoh S and Suganuma T Am. Ceram. Soc. Bull. 1984 63 1408
    [21]Susa K, Matsuyama I,Satoh S and Suganuma T Electron. Lett., 1982 18 499
    [22]Chen X J, Xu H F, Xu N S, Zhao F H, Lin W J, Lin G, Fu Y L, Huang Z L Wang, H Z and Wu M M Inorg. Chem. 2003 42 3100
    [23]Yao W T, Yu S H, Pan L, Li J, Wu Q S, Zhang L and Jiang J Small 2005 1 320
    [24]Yue G H, Yan P X, Yan D, Fan X Y, Wang M X, Qu D M and Liu J Z Appl. Phys. A 2006 84 409
    [25]Zhao Z G, Geng F X, Cong H T, Bai J B and Cheng H M Nanotechnology 2006 17 4731
    [26]Hench L L and West J K Chem. Rev. 1990 154 289
    [27]张立德,牟季美著 纳米材料和纳米结构 北京:科学出版社,2001 411
    [28]Borrelli N F J. A ppl. Phys. 1987 61 5399
    [29]Wang Y and Herron N J. Phys. Chem. 1991 95 525
    [30]Wang Y J. Chem. Phys. 1987 87 7315
    [31]Brus L E J. Chem. Phys. 1984 80 4403
    [32]Takagahara T Phys. Rev. B 1987 36 9293
    [33]Wang Y J. Chem. Phys. 1990 92 6927
    [34]Schlam E P IEEE 1973 61 894
    [35]Xu J and Ji W J. Mater. Sci. Lett. 1999 18 115
    [36]Sun L,Liu C,Liao C and Yan C J. Mater. Chem. 1999 9 1655
    [37]Bredol M and Merikhi J J. Mater. Sci. 1998 33 471
    [38]Vacassy R,Scholz S M,Dutta J,Hofmann H,Plummer C J G, Carrot G,Hilborn J and Akine M Mater. Res. Soc. Symp .Proc. 1998 501 369.
    [39]Calandra P,Goffredi M and Liveri V T Colloids Surf. A 1999 160 9
    [40]Prevenslik T V J. Lumin. 2000 87 1210
    [41]Calandra P,Goffredi M and Liveri V T Colloid. Surface. A 1999 160 96
    [42]Shen G Z,BandoY and Golberg D Appl. Phys. Lett. 2006 88 123107
    [43]Qadri S B J.Appl.Phys. 2000 89 115
    [44]Desgreniers S, Beaulieu L and Lepage I Phys.Rev.B 2000 61 8726
    [45]Qadri S B, Skelton E F, Hsu D, Dinsmore A D, Yang J, Gray H F and Ratna B R Phys.Rev.B 1999 60 9191
    [46]Soumitra K and Subhadra C J.Phys.Chem.B 2005 109 3298
    [47]Jing Y, Meng X M,Liu J, Xie Z Y, Lee C S and Lee S T Adv. Mater., 2003 3 323
    [48]Liang C H, Shimizu Y, Sasaki T, Umehara H and Koshizaki N J.Phys.Chem.B 2004 108 9728
    [49]Wang Y W, Zhang L D, Liang C H, Wang G Z and Peng X S Chem. Phys. Lett. 2002 357 314
    [50]Soumita K and Subhadra C Chem. Phys. Lett. 2005 414 40
    [51]Schleede A Angew. Chem. 1937 50 908
    [52]Ye C H, Fang X S, Li G H and Zhang L D Appl. Phys. Lett. 2004 85 11
    [53]Rosenberg R A and Shenoy G K Appl. Phys. Lett. 2005 86 263115
    [54]Wang Y W, Zhang L D, Liang C H, Wang G Z and Peng X S Chem. Phys. Lett. 2002 357 314
    [55]张海明, 王之建, 张力功等, 无机材料学报 2002 17 1148
    [56]杨素华, 科学发展 2002 358 66
    [57]马国宏, 杜祖亮, 赵伟利, 化学物理学报 1998 11 252
    [58] Xu S J, Chua S J, Liu B, Gan L M, Chew C H and Xu G Q Appl. Phys. Lett. 1998 73 478
    [59]Papakonstantionou D D, Huang J and Lianos P J. Mater. Scien. Lett. 1998 17 1571
    [60]Sun L D, Yan C H, Liu C H, Liao C S, Li D and Yu J Q J. Alloys Compounds, 1998 234 275,
    [61]Chen W, Li G H, MalmJ-O, Huang Y N, Wallenberg R, Han H X, Wang Z P and Bovin J-O J. Lumines. 2000 91 139
    [62]Yang P, Lü M K, Xu D, Yuan D L and Zhou G J J. Lumines. 2001 93 101
    [63]Sooklal K, Cullum B S, Angel S M and Murphy C J J. Phys. Chem. 1996 100 4551
    [64] Khosravi A A, Kundu M, Jatwa L, Deshpande S K, Bhagwat U A, Sastry M and Kulkarni S K Appl. Phys. Lett. 1995 67 2702
    [65] Huang J, Yang Y, Xue S, Yang B, Liu S and Shen J Appl. Phys. Lett. 1997 70 2335
    [66] Albe V, Jouanin C and Bertho D Phys. Rev. B 1998 57 8778
    [67]憨勇, 刘正堂, 郑修麟, 硅酸盐通报 1998 4 15
    [68] Kin Y D and Sonezakik M H J. Mater. Sci. 1997 32 5101
    [69]王文保, 岳永德, 花日茂, 安徽农业大学学报 1997 24 401
    [70]牛新书, 刘艳丽, 徐甲强, 无机材料学报 2002 17 817
    [71] Wang L P and Hong G Y Mater. Res. Bull 2000 35 695
    [72] Okuyama K, Lenggoyo I W and Tagami N J. Mater. Sci. 1997 32 1229
    [73] Chi H, Pike R D, Kevshaw R et al. J. Solid State Chem. 1992 101 115
    [74] Abboudi M and Mosset A J. Solid State Chem.1994 109 70
    [75] Dloczik L, Engelhardt R, Ernst K,et al. Sensors and Actuators B 2002 84 33
    [76] Breen M L, Dinsmore A D, Pink R H, et al. Langmuir 2001 17 903.
    [77] Jiang X C, Xie Y and Lu J Chem. Mater. 2001 13 1213
    [78] Tadao S, Chen S H and Atsushi M Collids and Surface A 1998 135 207
    [79] Xie Y, Huang J X and Li B Adv. Mater. 2000 12 1523
    [80] Ohde H, Ohde M, Bailey F, et al. NanoLetter[M]. Published on Web (2002).
    [81]孙聆东,徐波,付雪峰等 中国科学B 2001 31 146.
    [82] Zhang W H, Shi J L and Chen H R Chem. Mater. 2001 13 648
    [83] Yu S H and Masahiro Y Adv. Mater. 2002 14 296
    [84] Zhao Q R, Xie Y, Zhang Z G and B Xue Crystal Growth & Design 2007 7 153
    [85] Liu X Z, Cui J H, Zhang L P, Yu W C, Guo F and Qian Y T Mater. Lett. 2006 60 2465
    [86] Zhang Y C, Wang G Y, Hu X Y, Shi Q F, Qiao T and Yang Y Journal of Crystal Growth 2005 284 554
    [87] Yue G H, Yan P X, Liu J Z, Qu D M, Yang Q and Fan X Y Journal of Crystal Growth 2006 293 428
    [88] Yue G H, Yan P X, Yan D, Fan X Y, Wang M X, Qu D and Liu J Z Applied Physics A 2006
    [89] Liu H J, Ni Y H, Han M, Liu Q, Xu Z, Hong J M and Ma X Nanotechnology 2005 16 2908
    [90]Chen X J, Xu H F, Xu N S, Zhao F H, Lin W J, Lin G, Fu Y L, Huang Z L, Wang H Z and Wu M M Inorg. Chem. 2003 42 3100
    [91]Biswas S, Kar S and Chaudhuri S J. Phys. Chem. B 2005 109 17526
    [92]Lu H Y, Chu S Y and Chang C C Journal of Crystal Growth 2005 280 173
    [93] Smith P L and Martin J E Phys. Lett. 1965 19 541
    [94] Nelmes R J and McMahon M I Semicond. Semimet. 1998 54 145
    [95] Uchino M, Mashimo T, Kodama M, Kobayashi T, Takasawa E, Sekine T, Noguchi Y, Hikosaka H, Fukuoka K, Syono Y, Kondo T and Yagi T J. Phys. Chem. Solids 1999 60 827
    [96] Ves S, Schwarz U, Christensen N E, Syassen K and Cardona M Phys. Rev. B 1990 42 9113
    [97] Zhou Y H, Campbell A J and Heinz D L J. Phys.Chem. Solids 1991 52 821
    [98] Jaffe J E and Hess A C Phys. Rev. B 1993 48 7903; Jaffe J E, Pandey R and Seel M J Phys. Rev. B 1993 47 6299
    [99] Desgreniers S, Beaulieu L and Lepage I Phys. Rev. B 2000 61 8726
    [100] Nelmes R J and McMahon M I Semicond. Semimet. 1998 54 145
    [101] Qteish A, Abu-Jafar M and Nazzal A J. Phys.Condens.Matter. 1998 10 5069.
    [102] Lo′ pez-Solano J, Mujica A, Rodr?′guez-Herna′ndez P,and Mun?oz A Phys. Status Solidi B 2003 235 452
    [103] Qteish A and Mun?oz A J. Phys. Condens. Matter 2000 12 1705; Qteish A and Parrinello M Phys. Rev. B 2000 61 6521
    [104] Nazzal A and Qteish A Phys. Rev. B 1996 53 8262
    [105] Pan Y W, Qu S C, Dong S S, Cui Q L, Zhang W W, Liu X Z, Liu J, Liu B B, Gao C X and Zou G T, J. Phys. Condens. Matter 2002 14 10487
    [106] Pan Y W, Qu S C, Cui Q L, Zhang W W, Liu X Z, Liu J, Liu B B, Gao C X and Zou G T High Energy Physics and Nuclear Physics 2001 25 58
    [107] Pan Y W, Qu S C, Gao C X et al. Chin. Phys. Lett. 2004 21 67
    [108] Hanzawa H, Kobayashi M, Matsuda O, Kurase K and Giriat W, Phys. Status Solidia 1999 175 715
    [109]Xiong Q H, Wang J G, Reese O, Lew Yan Voon L C and Eklund P C Nano. Lett. 2004 4 1991
    [92]Lu H Y, Chu S Y and Chang C C J.Crystal.Growth 2005 280 175
    [110]Uchida I J.Phys.Soc.JPn. 1964 19 670
    [111]Becher W G and Bard A J J.Phys.Chem. 1983 87 4888
    [112]Murase N, Jagannathan R, Kanematsu Y, Watanabe M, Kurita A,Hirata K, Yazawa T and Kushida T J. Phys. Chem. B 1999 103 754
    [113] Wang Z W, Daemen L L, Zhao Y S, Zha C S,Downs R T, Wang X D, Wang Z L and Hemley R J Nature Materials 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700