光纤法布里—珀罗声波传感器及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业和科技的发展,适用于石油化工、流体工程、风洞实验、飞机发动机和机翼空气动力学测试、生物医学以及电力工业运行安全等领域静压以及动态压强的高性能测量技术显得尤为重要。基于非本征法布里-珀罗干涉仪(Extrinsic Fabry-Perot Interferometer, EFPI)结构的膜片式光纤EFPI传感器具有结构简单、本质安全、灵敏度高、频带宽、抗电磁干扰、耐高温等优点,特别适用于高温、强磁场干扰和易燃易爆等恶劣环境下对静态低压、微压和声波等物理量的测量。本文对膜片式光纤EFPI传感器的相关理论、器件和应用进行了深入的研究。论文的主要工作概括如下:
     在对膜片式光纤EFPI传感器相关理论研究的基础之上,设计并制作了具有压力平衡结构的全石英膜片式光纤EFPI低压传感器。采用一种锥形口双孔结构石英毛细管作为光纤EFPI传感器的光纤准直和支撑元件,选用厚度为30μm的石英膜片作为压力敏感元件,利用CO2激光热熔技术对石英膜片和毛细管进行密封连接。通气孔结构以及低热膨胀系数的石英材料使得膜片式光纤EFPI传感器具有较小的温度敏感性。结合基于最小均方误差估计的光纤EFPI传感器解调系统对膜片式光纤EFPI低压传感器的性能进行了测试。实验结果表明该系统的腔长变化分辨率为0.12nm,相应的压强分辨率为4.7Pa,在0-3KPa的压强范围内,传感器的灵敏度达到25.89nm/KPa,腔长与压强的线性相关系数为0.99958。
     首次采用新型的聚合物光子材料杂萘联苯型聚芳醚砜酮(poly, phthalazinone ether sulfone ketone, PPESK)材料作为膜片式光纤EFPI声波传感器的敏感膜片,结合工作点自稳定的干涉/强度解调方法,设计并研制了基于可调谐非相干光源和可调谐光纤激光器的工作点自稳定光纤声波传感器(光纤麦克风)系统,实现了空气声波信号的高灵敏度测量。对光纤麦克风的性能测试实验结果表明,对频率为1KHz的正弦声波信号,膜片式光纤EFPI声波传感器在0-3Pa的声压范围内具有良好的线性输出,线性相关系数为0.99979;信噪比为29dB;灵敏度达31mV/Pa。在频率为100Hz-10KHz范围内具有平坦的响应:-30.54±0.88dB (Re.1V/Pa)
     将膜片式光纤EFPI声波传感器用于光声光谱微量气体检测系统中的光声信号检测,可以实现微量气体光声探测器探头端无源,实现全光探测。针对共振式光声池的声学特性,设计并制作了基于有机聚合物材料PPESK材料的膜片式光纤EFPI声波传感器,该传感器的膜片有效直径为2.75mm,在200Hz-2500Hz的频率范围内具有较平坦的响应,灵敏度为-16.65±0.63 dB;在1KHz的信噪比为35dB。应用该光纤麦克风,结合共振式光声池、可调谐非相干光源(ASE)和光纤激光器,采用波长调制和二次谐波探测技术,对乙炔以及氨气进行了实验测量。在调制频率为802Hz,调制振幅为14mV的条件下选用波长为1530.37nm的P9峰对乙炔气体进行了测量:在0.05-1ppm浓度范围内,光声信号与乙炔气体浓度具有很好的线性关系,其线性相关系数为0.99981。在常温常压下,对浓度为50ppb的流动状态乙炔气体所测量得到的二次谐波信号的信噪比为32dB,相应的乙炔的检测极限灵敏度为1.56ppb。在调制频率为818Hz,调制振幅为14mV的情况下选用波长为1531.7nm的吸收波长对氨气进行了测量:在0.3-2ppm氨气浓度范围内,光声信号与氨气浓度线性相关系数为0.99976;浓度为500ppb的流动的氨气所测量得到的二次谐波信号的信噪比为48dB,对氨气的检测极限灵敏度为10.4ppb。该系统在医学呼吸气体监测和诊断、在电力系统大型变压器局部放电监测等领域有广阔的应用前景。
As the development of the industry and technology, high-performance measurements on static and dynamic pressure have becoming more and more important in many industrial areas, such as petrochemical industry, fluid engineering, wind tunnel test, biomedicine and industrial safety, etc. Because of the advantages of compact size, high sensitivity, high frequency response and immunity to electromagnetic interference, diaphragm-based extrinsic Fabry-Perot Interferometer (EFPI) optical fiber sensor is a good choice to detect the low pressure and acoustic wave in harsh environment with high temperature and strong electromagnetic interference. In this dissertation, systematic and intensively study on the theory, devices and applications of the diaphragm-based EFPI optical fiber sensor is presented. The major research works are outlined as followings:
     Based on the theoretical study of the diaphragm-based EFPI optical fiber sensor, an all silica diaphragm-based EFPI optical fiber differential pressure sensor with the pressure balance structure is designed. A capillary with cone-shaped cup and two holes is employed as the alignment and support component of the diaphragm-based EFPI optical fiber sensor, which use a silica diaphragm with 30μm thickness as sensing element. The silica diaphragm is bonded with the capillary by carbon dioxide laser. Due to the vent structure and the low thermal expansion coefficient of the silica material, this sensor has low temperature response and high sensitivity. The demodulation algorithm based on the minimum mean square error estimation is used. Experimental results show that the resolution of this system is 0.12nm, corresponding to a pressure resolution of 4.7Pa. The sensitivity is 25.89nm/KPa in the range of 0-3KPa with a linear correlation coefficient of 0.99958.
     The novel polymer poly(phthalazinone ether sulfone ketone, PPESK) diaphragm is used as the sensing element of diaphragm-based EFPI fiber optical acoustic sensor for the first time. The self-stabilized quadrature point of optical acoustic sensor (optical microphone) interferometer/intensity systems based on tunable incoherent light source and a tunable fiber laser are designed and studied in this thesis. Based on this self-stabilized system, the polymer diaphragm-based EFPI fiber acoustic sensor can be used to detect the acoustic wave in air with high sensitivity. Experimental results show that the fiber acoustic sensor has a linear response in the range of 0-3Pa at 1 KHz with linear correlation coefficient of 0.99979. The sensitivity of fiber acoustic sensor is 31mV/Pa and its signal-to-noise ratio is 29dB. This sensor can be used for acoustic measurements in a frequency range from 100 Hz to 12.7 KHz and the sensitivity is-30.54±0.88dB (Re.1V/Pa) corresponding to this frequency range.
     The photoacoustic spectroscopy trace gas detection system based on the PPESK diaphragm EFPI fiber acoustic sensor are designed and studied based on the acoustic characteristics of the resonant photo-acoustic cell. This system is passive and can realize all-optical detection. The diameter of the PPESK diaphragm is 2.75mm. The sensor has a flat response in a range of 200Hz to 2500Hz with a sensitivity of -16.65±0.63dB and the signal-to-noise is 35dB at 1KHz. Using wavelength modulation and second harmonic detection method, the acetylene and ammonia are chosen for the demonstration of this photoacoustic spectroscopy system. The acetylene was detected at the absorption peak of 1530.37nm with the modulation frequency of 802Hz and modulation amplitude of 14mV. The linear relationship between the photoacoustic signal and the acetylene concentration in a range of 0.05ppm to lppm is obtained and the linear correlation coefficient is 0.99981. The signal-to-noise of acetylene absorption spectrum for 50ppb concentration is 32dB and the detection limit is 1.56ppb. The ammonia was detected at an absorption peak of 1531.7nm with the modulation frequency as 818Hz and modulation amplitude of 14mV respectively. Experimental results demonstrate that there is a linear relationship between the photo-acoustic signal and the ammonia in a range from 0.3ppm to 2ppm and its linear correlation coefficient is 0.99976. The signal-to-noise of ammonia absorption spectrum for 500ppb concentration is 48dB and the detection limit is 10.4ppb. This system would have great potential applications in biomedicine and safety monitoring of electric power systems, etc.
引文
[1]王玉田,郑龙江,张颖等.光纤传感技术及应用[M].北京:北京航空航天大学出版社,2009.
    [2]Bhatia V, Murphy K, Claus R, et al. Recent developments in optical-fiber-based extrinsic Fabry-Perot interferometric strain sensing technology[J]. Smart Materials and Structures.1995,4:246-251.
    [3]Bhatia V, Murphy K, Claus R, et al. Optical fibre based absolute extrinsic Fabry-Perot interferometric sensing system [J]. Measurement Science and Technology. 1996,7:58-61.
    [4]Rao Y, Jackson D. Recent progress in fibre optic low-coherence interferometry[J]. Measurement Science and Technology.1996,7:981-1000.
    [5]Murphy K, Gunther M, Vengsarkar A, et al. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors[J]. Optics letters.1991,16:273-275.
    [6]Xu J. High Temperature High Bandwidth Fiber Optic Pressure Sensors[D]:Doctor. Virginia:Virginia Polytechnic Institute and State University,2005.
    [7]Qi B, Pickrell G, Zhang P, et al. Fiber optic pressure and temperature sensors for oil down hole application[C]. Proceedings of SPIE,2002:182-190.
    [8]Wang A, Xiao H, Wang J, et al. Self-calibrated interferometric-intensity-based optical fiber sensors[J]. Journal of Lightwave Technology.2001,19:1495-1501.
    [9]Xu J, Pickrell G, Wang X, et al. A novel temperature-insensitive optical fiber pressure sensor for harsh environments [J]. IEEE Photonics Technology Letters.2005, 17:870-872.
    [10]Zhu Y, Pickrell G, Wang X, et al. Miniature fiber optic pressure sensor for turbine engines[C]. Sensors for Harsh Environments, Philadelphia,2004:11-18.
    [11]Liu Y, Zhao X, Zhang S. Novel temperature sensor based on Fabry-Perot cavity structure and micro-mechanical bi-layered membranes[C]. IC020:MEMS, MOEMS, and NEMS 2006:60320A.
    [12]Lv T, Yang S. Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor[J]. Applied optics.2007,46:3682-3687.
    [13]Ran Z, Rao Y, Liu W, et al. Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index[J]. Opt. Express.2008,16:2252-2263.
    [14]Borinski J, Duke J, Horne M. Fiber optic acoustic emission sensors for harsh environment health monitoring[C]. Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring, Newport Beach,2001:399-409.
    [15]Beheim G, Fritsch K, Poorman R. Fiber-linked interferometric pressure sensor[J]. Review of Scientific Instruments.1987,58:1655-1659.
    [16]Wolthuis R, Mitchell G, Saaski E, et al. Development of medical pressure and temperature sensors employingoptical spectrum modulation[J]. IEEE Transactions on Biomedical Engineering.1991,38:974-981.
    [17]Jiang M, Gerhard E. A simple strain sensor using a thin film as a low-finesse fiber-optic Fabry-Perot interferometer[J]. Sensors and Actuators A:Physical.2001, 88:41-46.
    [18]Wang X, Li B, Xiao Z, et al. An ultra-sensitive optical MEMS sensor for partial discharge detection [J]. Journal of Micromechanics and Microengineering.2005,15: 521-527.
    [19]Wang X, Li B, Russo 0, et al. Diaphragm design guidelines and an optical pressure sensor based on MEMS technique[J]. Microelectronics Journal.2006,37:50-56.
    [20]Chin K, Sun Y, Feng G, et al. Fabry-Perot diaphragm fiber-optic sensor [J]. Applied optics.2007,46:7614-7619.
    [21]Sun Y, Feng G, Georgiou G, et al. Center embossed diaphragm design guidelines and Fabry-Perot diaphragm fiber optic sensor[J]. Microelectronics Journal.2008,39: 711-716.
    [22]Deng J, Xiao H, Huo W, et al. Optical fiber sensor-based detection of partial discharges in power transformers[J]. Optics and Laser Technology.2001,33: 305-311.
    [23]Xu J, Pickrell G R, Wang X, et al. Vacuum-sealed high temperature high bandwidth fiber optic pressure and acoustic sensors[C]. Sensors for Harsh Environments II, Boston, MA, USA,2005:599809-599806.
    [24]Lu T, Yang S. Extrinsic Fabry-Perot cavity optical fiber liquid-level sensor[J]. Applied optics.2007,46:3682-3687.
    [25]Lu T, Li Z, Xia D, et al. Asymmetric Fabry-Perot fiber-optic pressure sensor for liquid-level measurement [J]. Review of Scientific Instruments.2009,80:033104.
    [26]Beard P, Mills T. Miniature optical fibre ultrasonic hydrophone using a Fabry-Perotpolymer film interferometer [J]. Electronics Letters.1997,33:801-803.
    [27]Cibula E, Donlagic D. Miniature fiber-optic pressure sensor with a polymer diaphragm[J]. Applied optics.2005,44:2736-2744.
    [28]Melamud R, Davenport A, Hill G, et al. Development of an SU-8 Fabry-Perot blood pressure sensor[C].2005:810-813.
    [29]Hill G, Melamud R, Declercq F, et al. SU-8 MEMS Fabry-Perot pressure sensor[J]. Sensors and Actuators A:Physical.2007,138:52-62.
    [30]Totsu K, Haga Y, Matsunaga T, et al.125 μm diameter fiber-optic pressure sensor system using spectrometer-based white light interferometry with high-speed wavelength tracking[C]. Proceedings of the 3th Annual International IEEE EMBS Special Topic, Hawaii,2005:170-173.
    [31]Wang W, Wu N, Tian Y, et al. Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber [J]. Opt. Express.2009, 17:16613-16618.
    [32]Wang W, Wu N, Tian Y, et al. Miniature all-silica optical fiber pressure sensor with an ultra-thin uniform diaphragm[J]. Optics Express.2010,18:9006-9014.
    [33]Bae H, Zhang X, Liu H, et al. Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45 degree angled fiber[J]. Optics letters.2010,35: 1701-1703.
    [34]Wang X, Xu J, Zhu Y, et al. An optical fiber tip pressure sensor for medical applications[C]. Quantum Electronics and Laser Science Conference (QELS),2005.
    [35]Donlagic D, Cibula E. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm[J]. Optics letters.2005,30:2071-2073.
    [36]Xu J, Wang X, Cooper K, et al. Miniature fiber optic pressure and temperature sensors[C]. Fiber Optic Sensor Technology and Applications Ⅳ,2005:600403.
    [37]Xu J, Wang X, Cooper K, et al. Miniature temperature-insensitive Fabry-Perot fiber-optic pressure sensor[J]. IEEE Photonics Technology Letters.2006,18: 1134-1136.
    [38]Watson S, Gander M, MacPherson W, et al. Laser-machined fibers as Fabry-Perot pressure sensors[J]. Applied optics.2006,45:5590-5596.
    [39]李文革,赵凌云.常用传声器的分类,结构及工作原理[J].科技信息.2006,3:47-47.
    [40]许晓昕.基于MEMS技术的光纤声传感器研究[D]:硕士.上海:中国科学院研究生院(上海微系统与信息技术研究所),2007.
    [41]伊小素,吴先.光纤麦克风传声技术[J].警察技术.2004:3-5.
    [42]Furstenau N, Schmidt M, Horack H, et al. Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring[J]. IEE Proc.-Optoelectnm.1997,144:134-144.
    [43]Gunther M, Wang A, Fogg B, et al. Fiber optic impact detection and location system embedded in a composite material[C].1993.
    [44]Greene J, Tran T, Bhatia V, et al. Optical fiber sensing technique for impact detection and location in composites and metal specimens[J]. Smart Materials and Structures.1995,4:93-99.
    [45]Yu B, Kim D, Deng J, et al. Fiber Fabry-Perot sensors for detection of partial discharges in power transformers[J]. Applied optics.2003,42:3241-3250.
    [46]Teunissen J, Helmig C, Merte R, et al. Fiber optical online monitoring for high-voltage transformers[C].2001:198.
    [47]Zhao Z, Mark M, Leyman D. The directionality of an optical fiber high-frequency acoustic sensor for partial discharge detection and location[J]. Journal of Lightwave Technology.2000,18:795-806.
    [48]Cosgrave J, Spencer J, Jones G, et al. An optical fibre-based acoustic sensor for detecting electricaldischarges in SF 6 puffer circuit breakers[C].1996:307-312.
    [49]Bucaro J, Dardy H, Carome E. Fiber optic hydrophone[J]. The Journal of the Acoustical Society of America.1977,62:1302-1304.
    [50]Dandridge A, Kersey A. Overview of Mach-Zehnder sensor technology and applications[J]. Selected Papers on Fiber Optic Sensors.216-234.
    [51]Gander M, MacPherson W, Barton J, et al. Embedded micromachined fiber-optic Fabry-Perot pressure sensors in aerodynamics applications [J]. IEEE Sensors Journal. 2003,3:102-107.
    [52]Fiirstenau N, Schmidt M, Horack H, et al. Extrinsic Fabry-Perot interferometer vibration and acoustic sensor systems for airport ground traffic monitoring[J]. IEE Proc.-Optoelectnm.1997,144.
    [53]Hess C. An optical microphone for the detection of hidden helicopters[C].1992.
    [54]Brown D, Hofler T, Garrett S. Fiber optic flexural disk microphone[J]. SPIE Fiber Optic and Laser Sensors VI.1988,985:172-182.
    [55]Zuckerwar A, Areford M. Extended frequency response of a fiber-optic microphone [J]. The Journal of the Acoustical Society of America.1988,83:S42.
    [56]Hu A, Cuomo F, Zuckerwar A. Theoretical and experimental study of a fiber optic microphone[J]. The Journal of the Acoustical Society of America.1992,91: 3049-3056.
    [57]Zuckerwar A, Cuomo F, Nguyen T, et al. High-temperature fiber-optic lever microphone[J]. The Journal of the Acoustical Society of America.1995,97: 3605-3616.
    [58]Bilaniuk N. Optical microphone transduction techniques [J]. Applied Acoustics.1997, 50:35-63.
    [59]HUNT L. Design and characterization of an intensity modulated optical MEMS microphone[D]:Master. Florida:University of Florida,2003.
    [60]Yu M. Acoustic measurements using a fiber optic sensor system[D]:Doctor. Maryland: University of Maryland,2002.
    [61]Cole J, Johnson R, Bhuta P. Fiber optic detection of sound[J]. The Journal of the Acoustical Society of America.1977,62:1136-1138.
    [62]Bucaro J, Dardy H, Carome E. Optical fiber acoustic sensor[J]. Applied optics. 1977,16:1761-1762.
    [63]倪明.光纤水听器关键技术研究[D]:博士.北京:中国科学院声学研究所声场信息国家重点实验室,2003.
    [64]McDearmon G, Brooker J. Fiber-optic hydrophone[C]. Fiber Optic and Laser Sensor VII,1990:266-269.
    [65]Kruger L, Theron H. Optical fibre Mach-Zehnder Microphone[C]. International Microwave and Optoelectronics Conference 2007:389-391.
    [66]Crickmore J. Fiber-optic microphones for battlefield acoustics[J]. Appl. Opt.2007, 46:2486-2491.
    [67]Tietjen B. Bias compensated optical grating hydrophone[P]. United States,4450541. 1984.
    [68]Hill D, Nash P, Hawker S, et al. Progress toward an ultra thin optical hydrophone array[C].1998:301-304.
    [69]Nash P, Cranch G, Cheng L, et al.32-element TDM optical hydrophone array[C]. European Workshop on Optical Fibre Sensors, Scotland,1998:238-242.
    [70]Takahashi N, Tetsumura K, Takahashi S. Underwater acoustic sensor using optical fiber Bragg grating as detecting element[J]. Jpn. J. Appl. Phys.1999,38: 3233-3236.
    [71]Takahashi N, Hirose A, Takahashi S. Underwater acoustic sensor with fiber Bragg grating[J]. Optical Review.1997,4:691-694.
    [72]Zheng D, Liu Q, Li E. An FBG-based optical microphone with temperature insensitivity[C].2008 International Conference on Optical Instruments and Technology:Advanced Sensor Technologies and Applications Beijing,2008:71570U.
    [73]Kuzmenko P, Davis D. Fiber optic hydrophone[P]. United States,6549488.1994.
    [74]Guo Z, Li W, Zhang D, et al. Optical fiber acoustic and ultrasonic sensor based on Fabry-Perot interferometry[C]. International Symposium on Photoelectronic Detection and Imaging 2007:Laser, Ultraviolet, and Terahertz Technology, Beijing, 2007:66221U.
    [75]Huang Z, Deng J, Peng W, et al. High-pressure fiber optic acoustic sensor[C]. Fiber Optic Sensor Technology and Applications III, Philadelphia,2004:278-286.
    [76]Zhou J, Dasgupta S, Kobayashi H, et al. Optically interrogated MEMS pressure sensors for propulsion applications[J]. Optical Engineering.2001,40:598-604.
    [77]Cox B, Zhang E, Laufer J, et al. Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation[C]. Advanced Metrology for Ultrasound in Medicine,2004:32-37.
    [78]Li M, Zhao H, Zhang J. Fiber fabry-perot sensors based acoustic detection of partial discharges in power transformers[C]. IEEE,2006:254-257.
    [79]Li M, Zhao H. All-fiber system based on Fabry-Perot sensor for partial discharges in transformer oil[C]. Fundamental Problems of Optoelectronics and Microelectronics III,2007:659521.
    [80]Jerman J, Mallinson S, Sensors I, et al. A miniature Fabry-Perot interferometer fabricated using siliconmicromachining techniques[C].1988:16-18.
    [81]Pulliam W, Russler P, Fielder R. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine engine component testing[C]. Fiber Optic Sensor Technology and Applications Boston,2002:229-238.
    [82]Sun Y, Feng G, Georgiou G, et al. Fabry-Perot Diaphragm Fiber Optic Sensor (DFOS) for Acoustic Detection[J]. Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show.2007,3.
    [83]Xu J, Wang X, Cooper K, et al. Miniature all-silica fiber optic pressure and acoustic sensors[J]. Optics letters.2005,30:3269-3271.
    [84]Kilic O, Digonnet M, Kino G, et al. External fibre Fabry-Perot acoustic sensor based on a photonic-crystal mirror[J]. Measurement Science and Technology.2007, 18:3049-3054.
    [85]Kilic O, Digonnet M, Kino G, et al. Photonic-crystal-diaphragm-based fiber-tip hydrophone optimized for ocean acoustics[C].19th International Conference on Optical Fibre Sensors,2008:700405-700401.
    [86]Kilic O, Digonnet M, Kino G, et al. Miniature photonic-crystal hydrophone optimized for ocean acoustics[J]. Arxiv preprint arXiv:1004.2742.2010.
    [87]Frank W. Detection and measurement device having a small flexible fiber transmission line[P]. United States,3273447.1966.
    [88]Kissinger C, Howland B. Fiber optic displacement measuring apparatus[P]. United States,3940608.1976.
    [89]Cook R, Hamm C. Fiber optic lever displacement transducer [J]. Applied optics.1979, 18:3230-3241.
    [90]Feldmann M, Buttgenbach S. Microoptical distance sensor with integrated microoptics applied to an optical microphone[C]. IEEE,2005:769-771.
    [91]Cazzolato B, Halim D, Petersen D, et al. An optical 3D sound intensity and energy density probe[C]. Proc. Acoustics, Busselton,2005:101-106.
    [92]He G, Cuomo F. Displacement response, detection limit, and dynamic range offiber-optic lever sensors[J]. Lightwave Technology, Journal of.1991,9: 1618-1625.
    [93]Bucaro J, Lagakos N. Lightweight fiber optic microphones and accelerometers[J]. Review of Scientific Instruments.2001,72:2816-2821.
    [94]Bucaro J, Lagakos N, Houston B, et al. Miniature, high performance, low-cost fiber optic microphone [J]. The Journal of the Acoustical Society of America.2005,118: 1406-1413.
    [95]Kadirvel K, Taylor R, Horowitz S, et al. Design and characterization of MEMS optical microphone for aeroacoustic measurement[C].42nd Aerospace Sciences Meeting and Exhibit, Reno,2004:1030.
    [96]Song J, Lee S. Photonic microphone based on a dual-core multimode fiber head combined with a micromirror diaphragm[J]. Microwave and Optical Technology Letters. 2006,49:135-137.
    [97]Nieva P, McGruer N, Adams G. MEMS-based Fabry-Perot vibration sensor for harsh environments[C]. Smart Structures and Materials 2006:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems San Diego,2006:617426.
    [98]Yu M, Balachandran B. Acoustic measurements using a fiber optic sensor system[J]. Journal of Intelligent Material Systems and Structures.2003,14:409-414.
    [99]Han M, Wang X, Xu J, et al. Diaphragm-based extrinsic Fabry-Perot interferometric optical fiber sensor for acoustic wave detection under high background pressure[J]. Optical Engineering.2005,44:060506.
    [100]徐海英.第Ⅱ类超导体中磁通运动的电压噪声谱分析和动力学相变光纤声传感器的实验研究[D]:硕士.南京:东南大学,2005.
    [101]周书铨,盛灵惠.光纤声传感器研究[J].声学学报.1995,20:469-472.
    [102]蒋永梁.光纤麦克风的理论和实验研究[D]:硕士.南京:东南大学,2005.
    [103]吴东方,贾波.基于M-Z动态干涉仪的全光纤麦克风研究[J].传感技术学报.2007,20:1528-1530.
    [104]黄会贤.变压器油中微弱乙炔气体的光声光谱检测特性研究[D]:硕士.重庆:重庆大学,2009.
    [105]单胜军.基于法布里-珀罗腔的光纤气体传感器的研究[D]:硕士.武汉:武汉理工大学,2009.
    [106]Bell A G. On the production and reproduction of sound by light[J]. Am. J. Sci. 1880,20:305-324.
    [107]Tyndall J. Action of an intermittent beam of radiant heat upon gaseous matter [J]. Proceedings of the Royal Society of London.1880,31:307-317.
    [108]罗明才.基于油中溶解气体分析的变压器光声光谱检测及绝缘诊断技术[D]:硕士.重庆:重庆大学,2008.
    [109]Roentgen W. On tones produced by the intermittent irradiation of a gas[J]. Philosophical Magazine Series 5.1881,11:308-311.
    [110]Kerr E, Atwood J. The laser illuminated absorptivity spectrophone:a method for measurement of weak absorptivity in gases at laser wavelengths [J]. Applied optics. 1968,7:915-921.
    [111]Kreuzer L. Ultralow gas concentration infrared absorption spectroscopy[J]. Journal of Applied Physics.1971,42:2934-2934.
    [112]Harren F, Reuss J, Woltering E, et al. Photoacoustic Measurements of Agriculturally Interesting Gases and Detection of C2H4 below the PPB Level[J]. Applied spectroscopy.1990,44:1360-1368.
    [113]Bijnen F, Reuss J, Harren F. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Review of Scientific Instruments.1996,67:2914-2923.
    [114]Bohren A, Sigrist M. Optical parametric oscillator based difference frequency laser source for photoacoustic trace gas spectroscopy in the 3um mid-IR range[J]. Infrared Physics & Technology.1997,38:423-435.
    [115]Fischer C, Sorokin E, Sorokina I, et al. Photoacoustic monitoring of gases using a novel laser source tunable around 2.5 um[J]. Optics and lasers in engineering. 2005,43:573-582.
    [116]Webber M, Baer D, Hanson R. Ammonia monitoring near 1.5 m with diode-laser absorption sensors[J]. Appl. Opt.2001,40:2031-2042.
    [117]Bozoki Z, Mohacsi A, Szabo G, et al. Near-infrared diode laser based spectroscopic detection of ammonia:A comparative study of photoacoustic and direct optical absorption methods[J]. Applied spectroscopy.2002,56:715-719.
    [118]Kosterev A, Tittel F. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser[J]. Applied optics.2004, 43:6213-6217.
    [119]Lewicki R, Wysocki G, Kosterev A, et al. Carbon dioxide and ammonia detection using 2 um diode laser based quartz-enhanced photoacoustic spectroscopy [J]. Applied Physics B:Lasers and Optics.2007,87:157-162.
    [120]Liu K, Li J, Wang L, et al. Trace gas sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy[J]. Applied Physics B:Lasers and Optics.2009, 94:527-533.
    [121]Webber M, Pushkarsky M, Patel C. Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers[J]. Appl. Opt.2003,42: 2119-2126.
    [122]http://www. innova-airtech. com/.
    [123]http://www. omnisens. ch/v1/tga/251-tgaproducts.php.
    [124]云玉新.基于共振光声光谱的变压器油中溶解气体在线监测原理及方法[D]:博士.重庆:重庆大学,2008.
    [125]Laurila T, Cattaneo H, Koskinen V, et al. Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection[J]. Opt. Express.2005,13:2453-2458.
    [126]Koskinen V, Fonsen J, Kauppinen J, et al. Extremely sensitive trace gas analysis with modern photoacoustic spectroscopy[J]. Vibrational Spectroscopy.2006,42: 239-242.
    [127]Koskinen V, Fonsen J, Roth K, et al. Progress in cantilever enhanced photoacoustic spectroscopy[J]. Vibrational Spectroscopy.2008,48:16-21.
    [128]Uotila J. Comparison of infrared sources for a differential photoacoustic gas detection system[J]. Infrared Physics & Technology.2007,51:122-130.
    [129]Laurila T, Cattaneo H, P yh nen T, et al. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser[J]. Applied Physics B:Lasers and Optics.2006,83:285-288.
    [130]Wu J, Deng K, Guida R, et al. Fiber-optic photo-acoustic spectroscopy sensor for harsh environment gas detection[C]. Photonic Fiber and Crystal Devices:Advances in Materials and Innovations in Device Applications,2007:66980E-66981.
    [131]Yang Q, Barnes J, Loock H, et al. Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers[J]. Optics Communications.2007,276: 97-106.
    [132]于清旭.基于差频激光源的微量气体光声光谱检测系统[J].光电子激光.2001,12:923-926.
    [133]杨晓龙,于清旭,李少成.混合气体成分光声光谱分析的非线性拟合法[J].光电子激光.2003,14:163-167.
    [134]王鲲鹏.基于光纤激光器的乙炔气体近红外光声检测技术研究[D]:硕士.大连:大连理工大学,2007.
    [135]刘善峥.基于光纤激光器和光纤放大器的光声光谱仪[D]:硕士.大连:大连理工大学,2009.
    [136]王书涛,车仁生,王玉田等.基于光声光谱法的光纤气体传感器研究[J].中国激光.2004,31:979-982.
    [137]赵凯华,钟锡华.光学[M].北京:北京大学出版社,2004.
    [138]江毅,唐才杰.光纤Fabry-Perot干涉仪原理及应用[M].北京:国防工业出版社,2009.
    [139]张桂菊.应用于高温高压测量的非本征型光纤法布里-珀罗传感器系统研究[D]:博士.大连:大连理工大学,2006.
    [140]Giovanni M D. Flat and corrugated diaphragm design handbook [M]. New York, Basel: Marcel Dekker:CRC,1982.
    [141]Wang Q, Yu Q. Polymer diaphragm based sensitive fiber optic Fabry-Perot acoustic sensor[J]. Chinese Optics Letters.2010,8:266-269.
    [142]Di Giovanni M. Flat and corrugated diaphragm design handbook[M]. CRC Press,1982.
    [143]荆振国.光谱域白光非本征法布里-珀罗干涉光纤传感器及其应用[D]:博士.大连:大连理工大学,2006.
    [144]宋世德.长周期光纤光栅的特性及传感应用研究[D]:博士.大连:大连理工大学,2006.
    [145]May R, Wang A, Xiao H, et al. SCIIB pressure sensors for oil extraction applications[C]. Harsh Environment Sensors II, Boston,1999:29-35.
    [146]Cottler P, Karpen W, Morrow D, et al. Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications[J]. Annals of biomedical engineering.2009,37:1638-1645.
    [147]Xu J, Pickrell G R, Wang X, et al.:Vacuum-sealed high temperature high bandwidth fiber optic pressure and acoustic sensors, Ed. WANG ANBO, SPIE 2005, p.599809.
    [148]Song L, Cooper K, Wang Z, et al. Position location of partial discharges in power transformers using fiber acoustic sensor arrays[J]. Optical Engineering.2006,45: 114401.
    [149]Wlodarczyk M. Temperature-compensated miniature cylinder pressure sensor for automotive applications[C]. Industrial and Highway Sensors Technology, Bellingham, 2004:349-356.
    [150]Wlodarczyk M. Temperature-compensated miniature cylinder pressure sensor for automotive applications [C]. Industrial and Highway Sensors Technology, Providence, 2003:349-356.
    [151]Rao Y, Jackson D, Jones R, et al. Development of prototype fiber-optic-based Fizeau pressure sensorswith temperature compensation and signal recovery by coherence reading[J]. Lightwave Technology, Journal of.1994,12:1685-1695.
    [152]马鲁建,奚爱军.基于微型扬声器的特性设计膜片[J].电声技术.2008,32:17-22.
    [153]李林科.基于新型聚合物材料的微环谐振器的基础研究[D]:硕士.大连:大连理工大学,2007.
    [154]Wang J, Xiao H, Deng J, et al. Self-calibrated interferometric/intensity-based (SCIIB) optical fiber pressure sensor[C]. Process Monitoring with Optical Fibers and Harsh Environment Sensors, Boston,1999:21-27.
    [155]Xiao H. Self-Calibrated Interferometric/Intensity-Based Fiber Optic Pressure Sensors[D]:Doctor. Blacksburg Virginia Polytechnic Institute and State University, 2000.
    [156]Zhao J, Yikai S, Ning S, et al. Structural damage detection with a stabilized optic-fiber Fabry-Perot acoustic emission sensor system[C].3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies:Optical Test and Measurement Technology and Equipment,2007:67233G.
    [157]Zhao J, Shi Y, Shan N, et al. Stabilized fiber-optic extrinsic Fabry-Perot sensor system for acoustic emission measurement[J]. Optics and Laser Technology.2008, 40:874-880.
    [158]Chen J, Chen D, Geng J. Stabilization of optical Fabry-Perot sensor by active feedback control of diode laser[J]. Sensors and Actuators A:Physical.2008,148: 376-380.
    [159]Yu B, Wang A. Grating-assisted demodulation of interferometric optical sensors [J]. Applied optics.2003,42:6824-6829.
    [160]Yu B, Wang A, Pickrell G, et al. Tunable-optical-filter-based white-light interferometry for sensing[J]. Optics letters.2005,30:1452-1454.
    [161]Bang H, Jun S, Kim C. Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors [J]. Measurement Science and Technology.2005, 16:813-820.
    [162]Kim D, Koo B, Kim C, et al. Damage detection of composite structures using a stabilized extrinsic Fabry-Perot interferometric sensor system[J]. Smart Materials and Structures.2004,13:593-598.
    [163]http://www. micronoptics. com. cn/.
    [164]Sagan H. Boundary and eigenvalue problems in mathematical physics[M]. Dover Publications 1989.
    [165]郝绿原.研究分子高振动态的高灵敏激光光声光谱方法[D]:博士.中国科学技术大学,2003.
    [166]Pao Y. Optoacoustic spectroscopy and detection[M]. Elsevier Science & Technology Books,1977.
    [167]PM M, KU I,杨训仁,et al.理论声学(上册)[M].科学出版社,1984.
    [168]王敏.基于光声光谱技术的甲烷气体检测系统的研究[D]:硕士.长春:吉林大学,2006.
    [169]Kania P, Civi S. Application of InAsSb/InAsSbP and lead chalcogenide infrared diode lasers for photoacoustic detection in the 3.2 and 5 [mu] m region[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2003,59: 3063-3074.
    [170]于清旭,李少成,宋昌烈等.微机控制的高灵敏度激光光声光谱仪研究[J].中国激光.2001,28:451-454.
    [171]王杰.光纤乙炔气体传感器的研究[D]:硕士.秦皇岛:燕山大学,2001.
    [172]李洋流.基于光声光谱理论的变压器DGA技术的研究[D]:硕士.哈尔滨:哈尔滨工业大学,2007.
    [173]Qi W, Qingxu Y. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser[J]. Laser physics letters.2009,6:607-610.
    [174]http://www. wavelengthreferences.com/.
    [175]邓敦,邓跃林,陈峰等.配制低蛋白质日粮的必要性及其注意事项[J].饲料广角.2007:31-34.
    [176]赵笑宇.便携式氨气检测仪的研制[D].吉林大学,2006.
    [177]陈东,刘文清,张玉钧等.基于红外激光光谱的NH3检测系统及对北京城区的连续监测[C].中国气象学会2006年年会“提高大气监测自动化水平,为业务技术体制改革作贡献”分会场论文集,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700