含重金属废水、低浊度废水净化剂的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物处理技术作为一种行之有效、安全可靠的方法,在环境污染的治理中起到重要作用。目前生物处理技术的热点之一是微生物胞外多聚物(EPS)的研究。EPS安全无毒,可生物降解,降解产物对环境无害,是环境友好的生物功能材料,在日常生活、工农业生产及环境保护等诸多领域中具有广阔的应用前景。EPS是微生物分泌的高分子聚合物,由粘多糖、蛋白质、核酸等生物大分子组成,具有长链分子,其上含有大量官能团,与壳聚糖的分子结构相似。基于壳聚糖吸附重金属离子的性能以及絮凝性能的报道,本文提出了利用具有类似结构的EPS作为含重金属废水、低浊度废水净化剂的思路。
     本文主要的研究内容包括:从活性污泥和土壤样本中筛选高产EPS的菌株,通过生理生化实验以及16S rDNA系统学研究进行鉴定;分析培养条件对生产EPS的影响,确定产EPS的最佳环境条件和营养条件;提纯EPS,研究其物理性质及结构;通过EPS吸附Cu(II)和Cd(II)的特性及机理研究,考察EPS净化含重金属废水的能力;考察EPS对高岭土、活性炭和粉煤灰等悬浊液的去浊度能力。主要的研究结果如下:
     (1)从活性污泥中筛选得到一株具有高产EPS能力、且该性能传代稳定的细菌F19。通过生理生化实验以及16S rDNA分析,鉴定菌株F19为芽胞杆菌,并命名为Bacillus sp. F19。生长曲线与产EPS能力研究表明,菌株Bacillus sp. F19具有稳定的产EPS能力,在培养的第86小时,发酵液中的EPS浓度可以达到1.47 g/l。该菌株生产的EPS绝大多数分布在上清液内,容易分离提取,适合于工程应用。
     (2)研究了各种培养条件对菌株Bacillus sp. F19生产EPS的影响,确定了最佳环境条件和营养条件,建立EPS生产模型。单因子试验结果表明,半乳糖、蔗糖、果糖、葡萄糖均是适合F19生产EPS的碳源,有机氮源有利于EPS的生产,碱性环境、高通气量、15 %的接种率有利于EPS的合成与分泌。运用Plackett-Burman试验与中心组合试验设计,通过响应曲面法建立EPS的生产模型。结果表明,葡萄糖、酵母粉和K2HPO4对EPS的产量有显著影响。当葡萄糖、酵母粉、K2HPO4的浓度分别为30.26 g l-1、6.41 g l-1和6.65 g l-1时,模型预测的EPS产量最高,达到2.21 g l-1,是未优化时的3倍。验证实验得到的多糖浓度与预测值的误差在10 %以内。
     (3)利用乙醇沉淀,可以从F19的发酵液中提纯到EPS。EPS呈乳白色,含水率高,干燥后的粉末密度非常小,表面多孔,特性粘度为27.57。EPS从270℃开始热解,最后剩下10.33 %的灰分。EPS中总糖和蛋白含量分别占了总量的66.4 %和16.4 %,多糖中糖醛酸是主要成份,占EPS总量的37 %;中性糖其次,占总量的3.6 %,由葡萄糖和甘露糖组成,两者比例为1:1.2;EPS中另含有0.5 %的氨基糖。
     (4)研究EPS吸附Cu(II)和Cd(II)的特性及机理,探讨EPS净化重金属废水的能力。结果发现,EPS是高效的Cu(II)和Cd(II)吸附剂,对Cu(II)和Cd(II)的最大吸附量分别达到244 mg/g和148 mg/g,对Cu(II)的吸附能力大于Cd(II)。EPS对Cu(II)和Cd(II)的吸附速度很快,10分钟内可以达到吸附平衡。Cu(II)在EPS上的吸附量随着溶液pH值的升高而增加,pH 4.8时吸附量达到最大。Cd(II)在EPS上的吸附量先随溶液pH值的升高而增加,pH 6.2时吸附量达到最大,之后随着pH的继续增加而降低。两种离子的吸附过程与Langmuir以及Freundlich等温线拟合良好,二级动力学反应模型可以描述吸附过程。EPS吸附金属离子的机理研究表明,吸附Cu(II)过程中存在离子交换与氧化还原反应,吸附Cd(II)的过程中,络合机理起到了关键作用。
     (6) EPS对高岭土、活性炭和粉煤灰悬浊液具有良好的、独立的絮凝能力,无需金属离子作为助凝剂就能够有效去除浊度。絮凝活性随着pH的增加而降低。随着絮凝剂量的增加,絮凝率先提高,到一定阶段后保持稳定,再降低。金属离子的加入对EPS的絮凝能力没有明显影响。EPS在pH 4-8或90℃处理后,仍具有絮凝性。
Bio-treatment technology has been employed as an effective and safe method for wastewater treatment and extracellular polymeric substance (EPS) has attracted much attention as a promising bio-treatment technology. EPS are characterized by abundant specie, safety, nontoxicity and without secondary pollution, and can be a highly effective water green treatment agent. EPS is a kind of biological macromolecule including proteins, glycoproteins, polysaccharides, lipids and glycolipids and are important to life process. Its molecule is catenarian with many function groups, which is similar with chitosan. Based on the report of chitosan with biosorption and flocculation properties, EPS may be another effective biosorbent or bio-flocculant.
     The present study dealt with the production of EPS as wastewater purifying agent and its use in treatment of metal and suspension wastewater. A strain, Bacillus sp. F19, screened from active sludge samples, was employed as the EPS producer. Response surface methodology was used for optimization of medium for EPS yield. The properties and composition of the EPS were analyzed. Biosorption capacities and mechanism of Cu(II) and Cd(II) by EPS were investigated and the flocculation ability was also researched. The main research results are as follows:
     (1) Strain F19 with EPS producing capability was initially isolated from activated sludge. According to the physiological, biochemical and 16S rDNA sequence characterization, it was identified as Bacillus sp. EPS was mainly secreted to the culture medium. Experiments from growth curve indicated that this strain had stable ability of producing EPS and the EPS concentration get to 1.47 g/l at 86 hour. EPS was mainly secreted to the culture medium which was beneficial to application.
     (2) Single factor experiment illuminated that high inoculum density and shaking rate and alkaline cultural medium were favored by the producing of EPS. Glucose, yeast extract and K2HPO4 were identified as significant factors. When the concentration of glucose, yeast extract and K2HPO4 were 30.26 g l-1,6.41 g l-1 and 6.65 g l-1, respectively, the maximum polysaccharide concentration is get and predicated to be 2.21 g l-1, which is 3 time of un-optimized.
     (3) EPS, showing ivory white and porous surface, was precipitated by adding of ethanol to the culture medium. EPS had high moisture content and the density of dry EPS was low. The intrinsic viscosity of EPS was 27.57. EPS was mainly a polysaccharide with total sugar and total protein content of 66.4 % and 16.4 % (w/w), respectively. The contents of neutral sugar, uronic acid and amino sugars were 3.6 %, 37.0 % and 0.5 % and the molar ratio of mannose to glucose was approximate 1.2:1.
     (4) The adsorption of Cu(II) and Cd(II) from aqueous solution on EPS were investigated in the respective of pH, incubation time, concentration of initial metal ions and EPS dose. The results indicated that EPS was an effective adsorbent for Cu(II) and Cd(II). The maximum adsorption amount of Cu(II) and Cd(II) were 244 mg g-1和148 mg g-1, respectively. The adsorption capacity of Cu(II) was higher than Cd(II) at the same pH. Biosorption equilibrium was established in approximately 10 min. Biosorption of Cu(II) is highly pH dependent and the maximum uptake of Cu(II) was obtained at pH 4.8. Adsorption ability of Cd(II) increased with the increasing of pH until the maximum adsorption mount was reached at pH 6.2. The adsorption process was in accordance with both Langmuir and Freundlich isotherms. The second order model was applied to examine the kinetics of the adsorption and was found to be in harmony with the kinetic data well. EPS was able to adsorb Cu(II) to the surface with the release of K+. The presence of Cu2O and Cu on EPS after sorption showed that the Cu(II) was reduced by EPS。The complex mechanism is critical in Cd(II) adsorption process.
     (5) EPS was effective for flocculation of kaolin, activated carbon and fly coal suspension even without presence of cations. The flocculating activities of all the three suspensions dropped with increasing pH. The relationship between the concentration of the bioflocculant and its flocculating activity showed the typical flocculation curve of the biopolymer.
引文
[1] http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=151309.
    [2]国家环境保护总局,2006年中国环境状况公报,2006。
    [3]王建龙,文湘华,现代环境生物技术, 2001,北京,清华大学出版社。
    [4] Zhang J.,Liu Z.,Wang S.,etc.,Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp NU-2, Applied Microbiology and Biotechnology,2002,59(4-5):517-522。
    [5] Hantuta J.,Bamford D.H.,The efficiency of the protein dependent flocculation of Flavobacterium sp. is sensitive to the composition of growth medium,Appl Microbiol Biotechnol,1991( 36 ):100-104。
    [6] Jang J.H.,Ike M.,Kim S. M.,etc.,Production of a novel bioflocculant by fed-batch culture of Citrobacter sp.,Biotechnology Letters,2001,23(8):593-597。
    [7] Suh H.H.,Kwon G. S.,Lee C. H.,etc.,Characterization of bioflocculant produced by Bacillus sp. DP-152,Journal of Fermentation and Bioengineering,1997,84(2):108-112。
    [8] Yokoi,Yoshida T., Mor S.,etc., Biopolymer flocculant produced by an Enterobacter sp. Biotechnology Letters,1997,19(6):569-573。
    [9]阮敏,杨朝晖,曾光明等,多粘类芽孢杆菌GA1所产絮凝剂的絮凝性能研究及机理探讨,环境科学,2007,28(10): 2336-2341。
    [10]方亮,张丽丽,蔡伟民,活性污泥胞外多聚物提取方法的比较,环境科学与技术,2006,29(3):46-47。
    [11] Brown M. J.,Lester J. N.,Metal removal in activated sludge: the role of bacterial extracelluar polymers,water research,1979(13):817-837。
    [12] Farrah S.,Unz R.,Isolation of exocellular polymer from Zoogloea MP6 and 106 form activated sludge,Appl Environ Microbiol,1976(32):33-37。
    [13] Salehizadeh H.,Shojaosadati S.A.,Extracellular biopolymeric flocculants - Recent trends and biotechnological importance,Biotechnology Advances,2001,19(5): 371-385。
    [14] Schell A.M.,Control of virulence and pathogenicity genes of Ralstonia Solanacearum by an elaborate sensory network,Annual Review of Phytopathology,2000,38:263-292。
    [15] Denny T.P.,Involvement of bacterial polysaccharides in p lant pathogenesis,Annu Rev Phytopathol,1995,33:173-197。
    [16] Denny T.P.,Autoregulator dependent control of extracellular polysaccharide p roduction in phytopathogenic bacteria,European Journal of plant pathology,1999,105(5):417-430。
    [17]王胜坤,王军,徐大平,胞外多糖和脂多糖在青枯菌对尾巨桉根部吸附和侵入过程中的作用研究,林业科学研究,2007,20(2):176-180。
    [18]蔡春光,胞外多聚物对污泥絮凝性能颗粒化及重金属吸附的基础研究[博士论文],上海,上海交通大学,2004。
    [19] Norberg A.B.,Enfors S.O., Production of extracellular polysaccharide by Zoogloea ramigera,Appl Environ Microbiol,1982(44):1231-1237。
    [20] Richard F.,Samuel R.,Exopolymer production and flocculation by Zoogloea MP6, Applied and Environmental Microbiology,1976,31(4):623-626。
    [21] Watanabe M.,Suzuki Y.,Sasaki K.,etc.,Flocculating property of extracellular polymeric substance derived from a marine photosynthetic bacterium,Rhodovulum sp,Journal of Bioscience and Bioengineering,1999,87(5):625-629。
    [22]宫小燕,王曙光,栗兆坤等,微生物絮凝剂产生菌的筛选和优化以及在水处理中的应用,应用与环境生物学报,2003,12(4):574-576。
    [23] Dermlim W.,Prasertsan P.,Doelle H.,Screening and characterization of bioflocculant produced by isolated Klebsiella sp. , Applied Microbiology and Biotechnology,1999,52(5):698-703。
    [24] Nakamura J.,Miyashiro S.,Hirose Y.,Modes of flocculation of yeast cell with flocculant produced by Aspergillus sojae AJ-7002,Agric Biol Chem,1976,40(1565-1571)。
    [25] Nakamura J.,Miyashiro S.,Hirose Y.,Conditions of production of microbial cell flocculant by Aspergillus sojae AJ-7002,Agric Biol Chem,1976,40:1341-1347。
    [26]陶然,杨朝晖,曾光明等,微生物絮凝剂产生菌的筛选、鉴定及其培养条件的优化研究,中国生物工程杂志,2005,25(8): 76-81。
    [27] Tago Y.,Aida K.,Exocellular mucopolysaccharide closely related to bacterial floc formation,Appl Environ Microbiol,1977,34:308-314。
    [28] Nakamura J.,Miyashiro S.,Hirose Y., Screening、isolation and some properties of microbial cell flocculants,Agric Biol Chem,1976,40:377-383。
    [29] Salehizadeh H. , Shojaosadati S.A. , Isolation and characterisation of a bioflocculant produced by Bacillus firmus,Biotechnology Letters,2002,24(1): 35-40。
    [30] Vijayalakshmi S.P.,Raichur A.M.,The utility of Bacillus subtilis as a bioflocculant for fine coal,Colloids and Surfaces B-Biointerfaces,2003,29(4): 265-275。
    [31] Deng S.B.,Bai R. B.,Hu X. M ,etc.,Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment,Applied Microbiology and Biotechnology,2003,60(5):588-593。
    [32] Shih I.L.,Van Y. T.,Yeh L. C.,etc.,Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties,Bioresource Technology,2001,78(3):267-272。
    [33] Bishop G.M.,Robinson S.R., The amyloid hypothesis: let sleeping dogmas lie Response,Neurobiology of Aging,2002,23(6):1101-1105。
    [34]卢文玉,张通,张冬艳等,天然碱碱泥分离用微生物絮凝剂产生菌的筛选,微生物学通报,29(2): 17-21。
    [35] Shimiziu N.,Floc-forming bacteria isolated from activated sludge in high BOD loading treatment,J Ferment Technol,1985,63:67–71。
    [36] Kurane R.,Hatumochi K.,Kakuno T.,etc.,Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis , Biosci Biotechnol Biochem,1994(58):1977-1982。
    [37] Lu W.Y.,Zhang T.,Zhang D. Y.,etc.,A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension,BiochemicalEngineering Journal,2005,27(1):1-7。
    [38]何宁,Corynebacterium glutamicum CCTCCM201005合成新型生物絮凝剂REA-11的研究[博士论文],江苏,江南大学,2001。
    [39] Salehizadeh H.,Vossoughi M.,Alemzadeh I.,Some investigations on bioflocculant producing bacteria,Biochemical Engineering Journal,2000,5(1):39-44。
    [40] Park D., etc., Chromium biosorption by thermally treated biomass of the brown seaweed Ecklonia sp., Industrial & Engineering Chemistry Research, 2004, 43(26): 8226-8232.
    [41] Kumar C.G.,Joo H. S.,Kavali R.,etc.,Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate,World Journal of Microbiology & Biotechnology,2004,20(8):837-843。
    [42] Takagi H.,Kadowaki K.,Purification and chemical properties of a flocculant produced by Pa ecilomyces,Agric Biol Chem,1985,49(11):3158-3316。
    [43] Gutnick D., Engineering polysaccharides for biosorption of heavy metals at oil/water interfaces,Research in Microbiology,1997,148(6):519-521。
    [44]刘紫鹃,巨大芽杆菌Bacillus megaterium A25产生生物絮凝剂的研究[博士论文],北京,中国科学院生物研究所,2000。
    [45] Kurane R.,Hatamochi K.,Kakuno T.,etc.,Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols,Biosci Biotechnol Biochem,1994(58):428-429。
    [46]惠明,枯草芽孢杆菌B53的分离鉴定及产聚γ-谷氨酸的研究,北京,中国农业大学,2005。47] Ekmekyapar F.,Aslan A.,Bayhan Y.,etc.,Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm,Journal of Hazardous Materials,2006,137(1):293-298。
    [48]王镇,王孔星,谢裕敏等,几株微生物絮凝剂产生菌的特殊研究,微生物学报,1995,35(2):121-129。
    [49] Takeda M.,Kurane R.,Nakamura I.,Localization of a biopolymer produced by Rhodococcus erythropolis grown on n-pentadecane,Agric Biol Chem 1991(55):2665-2666。
    [50] Kurane R.,Screening for and characteristics of microbial flocculants,Agri Biol Chem,1986,50(9):2301-2307。
    [51]邓述波,胡筱敏,罗茜等,寄生曲霉产生絮凝剂的培养条件及其絮凝特性,应用与环境生物学报,1998,4(4):405-408。
    [52] He N.,Li Y.,Chen J.,Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum,Bioresource Technology,2004,94(1):99-105。
    [53]刘彬彬,闫永胜,毛艳丽等,一株产絮凝剂的黑曲霉的分离及培养条件优化,环境污染与防治,2007,29(10): 735-739。
    [54]王园园,王向东,陈希,利用淀粉废水培养复合型絮凝剂产生菌研究,中国给水排水,2007,23(9):19-23。
    [55]马放,刘俊良,李淑更,复合型微生物絮凝剂的开发,中国给水排水,2003,19(4):29-33。
    [56]由阳,马放,任南琪等,几株产絮菌利用生物制氢废液产絮的能力研究,中国给水排水,2007,23(21)。
    [57]周旭,王竟,周集体,利用鱼粉废水生产微生物絮凝的性能研究,环境科学研究,2003,16(3)。
    [58]余莉萍,尹华,彭辉,一株产微生物絮凝剂菌株的筛选及特性,上海环境科学,2002,21(8):459-462。
    [59]杨朝晖,陶然,曾光明等,多粘类芽孢杆菌GA1产絮凝剂的培养基和分段培养工艺,环境科学,2006,27(7):1444-1449。
    [60] Kurane R.,Nohata Y.,Nohata Y.,Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from Alcaligenes latus. Agric. Biol.Chem.,1991,55:1127–1129。
    [61] Suh H.H.,Moon S. H.,Kim H. S.,etc.,Production and rheological properties of bioflocculant produced by Bacillus sp. DP-152.,Journal of Microbiology and Biotechnology,1998,8(6):618-624。
    [62] Fujita M.,ke M.,Tachibana S.,etc.,Characterization of a bioflocculant producedby Citrobacter sp TKF04 from acetic and propionic acids,Journal of Bioscience and Bioengineering,2000,89(1):40-46。
    [63] Yokoi H.,Aratake T.,Hirose J.,etc.,Simultaneous production of hydrogen and bioflocculant by Enterobacter sp BY-29 , World Journal of Microbiology & Biotechnology,2001,17(6):609-613。
    [64]刘松,张兰英,微生物絮凝剂诱变菌最佳培养条件及化学成分,环境科学与技术,2006,29(1):18-20。
    [65]郑怀礼,生物絮凝剂与絮凝技术,北京,化学工业出版社,2004,91-281
    [66]栾兴社,微生物絮凝剂产生菌节杆菌LF-Tou2的培养和絮凝条件研究,现代化工,2004,24(6):43-45。
    [67]尹华,彭辉,贾宗剑等,微生物絮凝剂产生菌的筛选及其絮凝除浊性能,城市环境与城市生态,2000,13(1):8-10。
    [68] Gong R.M.,Zhang X.P.,Liu H.J.,Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel,Bioresource Technology,2007,98(6):1319-1323。
    [69] Majumder A.,Goyal A., Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method,Bioresource Technology,2008,99:3658-3691。
    [70] Plackett R.L.,Burman J.P.,The design of optimum muhifactorial experiments,Biometrika,1946,33:255-272。
    [71]何熙璞,张敏,苏荣敏等,Plackett-Burman设计用于筛选曲霉Aspergillus sp.GX-0010果糖转移酶发酵条件主要因子筛选中的应用,营养研究,2007,10:262-264。
    [72]骆健美,金志华,岑沛霖,褐黄孢链霉菌纳他霉素发酵条件优化,高校化学工程学报,2006,20(1):68-73。
    [73] Naveena B.J.,Altaf M.D.,Bhadriah K.,Selection of medium components by Plackett–Burman design for production of L(+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran,Bioresource Technology,2005,96:485-490。
    [74] Majumder A.,Goyal A., Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method,Bioresource Technology,2008,99:3658-3691。
    [75]张洪玲,吴海锁,王连军,生物吸附重金属的研究进展,污染防治技术, 2003, 16(4):53-56.
    [76] D'Souza S.F., Sar P.,Kazy S. K.,etc.,Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads,Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2006,41(3):487-500。
    [77] Sannasi P.,Kader J.,Ismail B. S.,etc.,Sorption of Cr(VI)、Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium , Bioresource Technology,2006,97(5):740-747。
    [78] Miretzky P.,Saralegui A.,Cirelli A.F.,Simultaneous heavy metal removal mechanism by dead macrophytes,Chemosphere,2006,62(2):247-254。
    [79] Kang S.Y.,Bremer P. J.,Kim K. W.,etc.,Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATB-IR spectroscopy ,Langmuir,2006,22(1):286-291。
    [80] Sciban M.,Klasnja M.,Skrbic B., Modified hardwood sawdust as adsorbent of heavy metal ions from water,Wood Science and Technology,2006,40(3):217-227。
    [81] Herrero R.,Cordero B.,Lodeiro P.,etc., Interactions of cadmium(II) and protons with dead biomass of marine algae Fucus sp.,Marine Chemistry,2006,99(1-4):106-116。
    [82]Yunus P.,Kargi M.,Fikret,Effects of operating parameters on kinetics of copper(II) ion biosorption onto pre-treated powdered waste sludge (PWS),Enzyme and Microbial Technology,2007,42(1):76-82。
    [83] Kilic M.,Keskin M. E.,Mazlum S.,etc.,Effect of conditioning for Pb(II) and Hg(II) biosorption on waste activated sludge,Chemical Engineering and Processing:Process Intensification,2008,47(1):31-40。
    [84] Patel R. , Suresh S.,Kinetic and equilibrium studies on the biosorption ofreactive black dye by Aspergillus foetidus,Bioresource Technology,2008,99(1):51-58。
    [85]叶锦韶,尹华,重金属的生物吸附研究进展,城市环境与城市生态,2001,14(3):30-32。
    [86]唐星华,周爱玲,聚糖及其衍生物对金属离子吸附研究进展,江西化工,2007(1):1-5。
    [87]唐星华,张小敏,周爱玲,交联壳聚糖对重金属离子吸附性能的研究进展,离子交换与吸附,2007,23(4):378-384。
    [88] Kuyucak N.,Volesky B.,Accumulation of cobalt by marine alga,biotechnol bioeng,1989,33:809-814。
    [89] Tobin J.M.,Cooper D.G.,Neufeld R.J.,Uptake of metal ions by Rhizopus arrhizus biomass,Appl Environ Microbiol,1984,47:821-824。
    [90] Veglio F.,Beolchini F, Removal of metals by biosorption:A review,Hydrometallurgy, 1997,44(3):301-316。
    [91]韩润平,杨贯羽,张敬华,etc.,光谱法研究酵母菌对铜离子的吸附机理,光谱学与光谱分析,2006,26(12):2334-2337。
    [92]曾景海,齐鸿雁,杨建州等,重金属抗性菌Bacillus cereus HQ-1对银离子的生物吸附-微沉淀成晶作用,环境科学,2008,29(1)。
    [93]汤岳琴,林军,王建华,生物吸附研究进展,四川环境,2001,20(2):12-17。
    [94] Salman A.A.,Yves A.,Claire G.,etc.,Biosorption of Cu(II) from aqueous solution by Fucus serratus:Surface characterization and sorption mechanisms,Bioresource Technology,2008(99):6150–6155。
    [95]何宝燕,尹华,彭辉等,酵母菌吸附重金属铬的生理代谢机理及细胞形貌分析,环境科学,2007,28(1):194-198。
    [96]潘进芬,林荣根,海洋微藻吸附重金属的机理研究,科学视野,2000,24(2):31-34。
    [97] Yang J. B.,Volesky B.,Cadmium biosorption rate in protonated Sargassum biomass,Enbironmental science&Technology,33(5):751-757。
    [98] Chen J. P.,Tendeyong F.,Yiacoumi S.,Equilibrium and kinetic studies of copper ion uptake by calcium alginate,Environmental Science Technology,1997,31(5):1433-1439。
    [99]吴涓,李清彪,邓旭等,重金属生物吸附的研究进展,离子交换与吸附,1998,14(2):180-187。
    [100] Zhang D.,Wang J.,Pan X., Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions,Journal of Hazardous Materials,2006,138(3):589-593。
    [101]王宪,陈丽丹,徐鲁荣等,海藻生物吸附金属离子的机理和影响因素,台湾海峡,2003,22(2):262-268。
    [102] Comte S.,Guibaud G.,Baudu M.,Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values,Journal of Hazardous Materials,2008,151:185-193。
    [103]李洪强,刘成伦,徐龙君,微生物吸附剂及其在重金属废水处理中的应用,材料保护,2006,39(11):48-52。
    [104]维戈利奥F等,综述回收金属的生物吸附法,国外金属矿选矿,1998:27-34。
    [105] King P.,Rakesh N.,Beenalahari S.,etc.,Removal of lead from aqueous solution using Syzygium cumini L.:Equilibrium and kinetic studies,Journal of Hazardous Materials,2007,142(1-2):340-347。106] Malkoc E.,Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis,Journal of Hazardous Materials,2006,137(2):899-908。
    [107] Vijayaraghavan K.,Palanivelu K.,Velan M.,etc.,Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles , Bioresource Technology,2006,97(12):1411-1419。
    [108] Pavasant P.,Apiratikul R.,Sungkhum V.,etc., Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera,Bioresource Technology,2006,97(18):2321-2329。
    [109] Sawalha M. F.,Peralta-Videa J.R.,Jaime R.G.,etc.,Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies,Journal of Colloid and Interface Science,2006,300(1):100-104。
    [110]刘瑞霞,汤鸿霄,重金属的生物吸附机理及吸附平衡模式研究,化学进展,2002,14(2):87-92。
    [111]林达,谢水波,姜赛红等,重金属生物吸附研究进展,铀矿冶,2007,26(2):96-100。
    [112] Lima E.C.,Royer B.,Julio C. P.,etc.,Adsorption of Cu(II) on Araucaria angustifolia wastes: Determination of the optimal conditions by statistic design of experiments,Journal of Hazardous Materials,2007,140(1-2):211-220。
    [113]刘佳佳,康勇,绿色试剂—天然高分子絮凝剂的研究与利用进展,化学工业与工程,2005,22(6): 476-480。
    [114]张鸿龄,孙铁珩,孙丽娜,微生物絮凝剂处理污染水体的研究和应用前景,工业水处理,2007,27(12):1-4。
    [115] Dugan R.P., Flocculation in Biotechnology and seperation System, Amsterda, Elsevier Science Publisher, 1987, 137-256.
    [116]姚重华,混凝剂与絮凝剂,北京:中国环境科学出版社,1991,1-42。
    [117] Nishihara H., Essential Roles of Cell Surface Protein and Carbohydrate Componets in Flocculation of a Brewer's Yeast, Agric Biol Chem, 1987, 51(10): 2721-2726.
    [118] He N., Li Y., Chen J. etc., Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum. Biochemical Engineering Journal, 2002. 11(2-3): 137-148.
    [119] Kobayashi T., Takiguchi Y., Yazawa Y. etc., Structural analysis of an extracellular polysaccharide bioflocculant of Klebsiella pneumoniae, Bioscience Biotechnology and Biochemistry, 2002, 66(7): 1524-1530.
    [120]屹立,赵吉,刘君等,高效微生物絮凝剂产生菌的筛选及其絮凝特性分析,中国给水排水2007,23(21):62-66。
    [121]单宝田,周爱华,梁生康等,鞘氨醇杆菌产微生物絮凝剂的组成及絮凝特性,中国海洋大学学报,2006,36(5): 804-808。
    [122] Oh H.M., Lee S. J., Park M. H. etc., Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp AM49. Biotechnology Letters, 2001. 23(15): 1229-1234.
    [1]奥斯伯,布伦特,金斯顿等著,颜子颖,王海林译,精编分子生物学实验指南,北京,科学出版社,1998。
    [2]迪芬巴赫C .W.,德维克斯勒G. S.著,黄培堂,俞炜源,陈添弥等译,PCR技术实验指南,北京,科学出版社,1999。
    [3] RW H.,NL N.,PH homoeostasis in lactic acid bacteris,Journal of dairy science,1993,76:2354-2365。
    [4]蔡春光,胞外多聚物对污泥絮凝性能颗粒化及重金属吸附的基础研究[博士论文],上海,上海交通大学,2004。
    [5] Yim J.H., Kim S. J.,Ahn S. H.,etc.,Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03,Bioresource Technology,2007,98(2):361-367。
    [6] Tjalsma H. , Bolhuis A., Jongbloed J.D.H.,etc. , Signal Peptide-Dependent Protein Transport in Bacillus subtilis:a Genome-Based Survey of the Secretome,Microbiol. Mol. Biol. Rev. , 2000,64:515-547。
    [1] Chauhan K.,Trivedi U.,Patel K.C.,Statistical screening of medium components by Plackett–Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresource Technology,2007,98:98-103。
    [2] Majumder A. and Goyal A., Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method, Bioresource Technology, 2008, 99: 3685–3691.
    [3]湛雪辉,微生物絮凝剂MBFXH的制备及其性能研究[博士论文],湖南,中南大学,2004。
    [4] Salehizadeh H., Vossoughi M and Alemzadeh I., Some investigations on bioflocculant producing bacteria, Biochemical Engineering Journal, 2000, 5(1): 39-44.
    [5] Salehizadeh H. and Shojaosadati S.A., Extracellular biopolymeric flocculants - Recent trends and biotechnological importance, Biotechnology Advances, 2001,19(5): 371-385.
    [6] Salehizadeh H. and Shojaosadati S.A., Isolation and characterisation of a bioflocculant produced by Bacillus firmus, Biotechnology Letters, 2002. 24(1): 35-40.
    [7]尹利,阎金勇,杨江科等,响应面法优化洋葱假单胞菌产脂肪酶液体发酵工艺,微生物学杂志,2005,27(3): 11-15。
    [8] Montgomery D.C., Design and Analysis of Experiments, 3 rd ed, New York, John Wiley&Sons, 1991.
    [9] Salehizadeh H.,Shojaosadati S.A.,Extracellular biopolymeric flocculants - Recent trends and biotechnological importance,Biotechnology Advances,2001,19(5):371-385。
    [10] He N.,Li Y.,Chen J.,Production of a novel polygalacturonic acid bioflocculant REA-11 by Corynebacterium glutamicum,Bioresource Technology,2004,94(1):99-105。
    [11] Majumder A.,Goyal A.,Enhanced production of exocellular glucansucrase fromLeuconostoc dextranicum NRRL B-1146 using response surface method,Bioresource Technology,2008,99: 3685-3691。
    [12] Reddy L.V.A.,Wee Y.J.,Yun J.S.,etc.,Optimization of alkaline protease production by batch culture of Bacillus sp. RKY3 through Plackett–Burman and responsesurface methodological approaches, Bioresource Technology, 2008, 99: 2242-2249.
    [13] Pan C.M.,Fan Y.T.,Xing Y.,etc.,Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp. Fanp2,Bioresource Technology,2008,99:3146–3154。
    [14] Li Y.,Jiang H.X.,Xu Y.Q.,etc.,Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method,Appl Microbiol Biotechnol. DOI 10.1007/s00253-007-1213-4。
    [15] Li Yaqian, Jiang Haixia, Xu Yuquan, etc., Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method, Appl Microbiol Biotechnol, 2008.
    [1] Chaplin M.F. and Kennedy J.F., Carbohydrate analysis, second ed, New York, Oxford University Press, 1994.
    [2]张维杰,糖复合物生化研究技术,杭州,浙江大学出版社,1994,13-14。
    [3]陈钧辉,陶力,朱婉华,生物化学实验,3ed,北京,科学出版社,26-39。
    [4] Yokoi H., Natsuda O., and J. Hirose, Characteristics of a biopolymer flocculant produced by Bacillus sp. BY-90 Journal of Fermentation and bioengineering, 1995. 79: 378-380.
    [5] Shih I.L., Van Y. T., Yeh L. C., etc., Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresource Technology, 2001. 78(3): 267-272.
    [6] Salehizadeh H., Shojaosadati S.A., Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus, Water Research, 2003, 37(17): 4231-4235.
    [7] Kumar C.G., Joo H. S., Kavali R. etc., Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate, World Journal of Microbiology & Biotechnology, 2004, 20(8): 837-843.
    [8] Lu W.Y., Zhang T., Zhang D. Y., etc., A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochemical Engineering Journal, 2005. 27(1): 1-7.
    [9] He N., Li Y., Chen J., etc., Identification of a novel bioflocculant from a newly isolated Corynebacterium glutamicum. Biochemical Engineering Journal, 2002. 11(2-3): 137-148.
    [10]刘紫鹃,巨大芽杆菌Bacillus megaterium A25产生生物絮凝剂的研究[博士论文],北京,中国科学院生物研究所,2000。
    [11] Yim J.H., Kim S. J., Ahn S. H. etc., Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03, Bioresource Technology, 2007, 98(2): 361-367.
    [12] Takagi H. and Kadowaki K., Purification and chemical properties of a flocculant produced by Pa ecilomyces, Agric Biol Chem, 1985, 49(11): 3158-3316.
    [13] Salehizadeh H. and Shojaosadati S.A., Isolation and characterisation of a bioflocculant produced by Bacillus firmus, Biotechnology Letters, 2002. 24(1): 35-40.
    [14] Kurane R., Hatamochi K, Kakuno T etc., Production of a bioflocculant by Rhodococcus erythropolis S-1 grown on alcohols. Biosci Biotechnol Biochem, 1994(58): 428-429.
    [15] Elangovan R., Philip L., Chandraraj K., Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies,Journal of Hazardous Materials, 2008. 152: 100-112.
    [1] Gutnick D., Engineering polysaccharides for biosorption of heavy metals at oil/water interfaces,Research in Microbiology, 1997, 148(6): 519-521.
    [2] Iscen C.F., Kiran I., Ilhan S., Biosorption of reactive black-dye by Penicillium restrictum: The kinetic study, Journal of Hazardous Materials, 2007, 143(1-2): 335-340.
    [3] Senthilkumar R., Vijayaraghavan K., Thilakavathi M., etc., Application of seaweeds for the removal of lead from aqueous solution, Biochemical Engineering Journal, 2007, 33(3):211-216.
    [4] Yan G.Y., Viraraghavan T., Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Research, 2003, 37(18):4486-4496.
    [5] Ekmekyapar F., Aslan A., Bayhan Y. K., etc., Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm, Journal of Hazardous Materials, 2006, 137(1):293-298.
    [6] Pardo R.., Herguedas M., Barrado E., etc., Biosorption of cadmium, copper, lead and zinc by inactive biomass of Pseudomonas Putida, Analytical and Bioanalytical Chemistry, 2003, 376(1):26-32.
    [7] Dundar M., Nuhoglu C., Nuhoglu Y., Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest, Journal of Hazardous Materials, In Press, Corrected Proof: 220.
    [8] Suh H.H., Kwon G. S., Lee C. H., etc., Characterization of bioflocculant produced by Bacillus sp. DP-152, Journal of Fermentation and Bioengineering, 1997, 84(2):108-112.
    [9] Dogru M., Gul-Guven R., Erdogan S., The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination, Journal of Hazardous Materials, 2007, 149(1): 166-173.
    [10] Salehizadeh H., Shojaosadati S.A., Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus,Water Research, 2003,37(17): 4231-4235.
    [11] Al Rmalli S.W.,Dahmani A.A.,Abuein M.M.,etc.,Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.), Journal ofHazardous Materials, In Press, Corrected Proof: 523.
    [12] Gasser R.P.H.著,赵璧英等译,金属的化学吸附和催化作用导论,北京,北京大学出版社,1991,115-167。
    [13] Kiran I., Akar T., Ozcan A.S., etc., Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions, Biochemical Engineering Journal, 2006, 31(3):197-203.
    [14] Sawalha M.F., Peralta-Videa J.R., Romero-Gonzalez J., etc., Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies, Journal of Colloid and Interface Science, 2006, 300(1):100-104.
    [15] Han R., Li H.K., Li Y.H., etc., Biosorption of copper and lead ions by waste beer yeast, Journal of Hazardous Materials, 2006, 137(3):1569-1576.
    [16] Savvaidis I., Hughes M.N. and Poole R.K., Copper biosorption by Pseudomonas cepacia and other strains, World Journal of Microbiology & Biotechnology, 2003, 19(2): 117-121.
    [17] Valdman E. and Leite S.G.F., Biosorption of Cd, Zn and Cu by Sargassum sp waste biomass, Bioprocess Engineering, 2000, 22(2): 171-173.
    [18] Malkoc E., Ni(II) removal from aqueous solutions using cone biomass of Thuja orientalis, Journal of Hazardous Materials, 2006, 137(2):899-908.
    [19] Chojnacka K., Chojnacki A., Go′recka H., Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process, Chemosphere, 2005, 59: 75-84.
    [20] Yaqian L., Jiang H.X., Xu Y.Q., etc., Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method, Appl Microbiol Biotechnol, 2008.
    [21] HawariA.H., Mulligan C.N., Heavy metals uptake mechanisms in a fixed-bed column by calcium-treated anaerobic biomass,Process Biochemistry, 2006, 41: 187-198.
    [22] Han X., Wong Y.S., Tam N.F.Y., Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata, Journal of Colloid and Interface Science, 2006, 303: 365-371.
    [23] Sarret G., Manceau A., Spadini L., etc., Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy, Environmental Science & Technology, 1998, 32(11): 1648-1655.
    [24] Wong J.P.K., Biosorption of nickel by microalgae[M.Phil. Thesis], 1997, Hong Kong, University of Hong Kong.
    [25] Pino G.H.N., Mesquita L.M.S.D., Torem M.L., etc, Biosorption of cadmium by green coconut shell powder, Minerals Engineering, 2006, 19: 380-387.
    [26] Ahmady-Asbchin S., Andrès Y., Gérente C., etc., Biosorption of Cu(II) from aqueous solution by Fucus serratus: Surface characterization and sorption mechanisms, Bioresource Technology, 2008(99): 6150–6155.
    [27] Han X., Wong Y.S., Wong M.H., etc., Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata, Journal of Hazardous Materials, 2007, 146(1): 65-72.
    [28] http://fds.oup.com/www.oup.co.uk/pdf/0-19-856440-6.pdf.
    [1] Shimofuruya H., Koide A., Shirota K. etc., The production of flocculating substance(s) by Streptomyces griseus. Biosci Biotechnol Biochem, 1996. 60: 498–500.
    [2] Yim J.H., Kim S. J., Ahn S. H. etc., Characterization of a novel bioflocculant, p-KG03, from a marine dinoflagellate, Gyrodinium impudicum KG03, Bioresource Technology, 2007, 98(2): 361-367.
    [3]梁为民,凝聚与絮凝,北京,冶金工业出版社,1987,29-124。
    [4]郑怀礼,生物絮凝剂与絮凝技术,北京,化学工业出版社,2004,91-281。
    [5] Kumar C.G., Joo H. S., Kavali R. etc., Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate, World Journal of Microbiology & Biotechnology, 2004, 20(8): 837-843.
    [6] Salehizadeh H. and Shojaosadati S.A., Isolation and characterisation of a bioflocculant produced by Bacillus firmus, Biotechnology Letters, 2002. 24(1): 35-40.
    [7] Salehizadeh H and Shojaosadati S.A., Extracellular biopolymeric flocculants - Recent trends and biotechnological importance. Biotechnology Advances, 2001, 19(5): 371-385.
    [8] Deng S.B., Bai R. B., Hu X. M , etc., Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology, 2003. 60(5): 588-593.
    [9]刘紫鹃,巨大芽杆菌Bacillus megaterium A25产生生物絮凝剂的研究[博士论文],北京,中国科学院生物研究所,2000。
    [10]常青,傅金镒,郦兆龙,絮凝原理,兰州,兰州大学出版社,1993。
    [11]王琴,复合型生物絮凝剂的絮凝机理与生产工艺研究[博士论文],哈尔滨,哈尔滨工业大学,2005。
    [12]姚重华,混凝剂与絮凝剂,北京,中国环境科学出版社,1991。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700