新型磨损自修复润滑剂的研制及其摩擦学特性和应用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于微纳米润滑材料和技术在解决机械零部件磨损自修复、延长其使用寿命和减少能源消耗具有的重要意义,设计新型润滑体系日益受到国内外的广泛关注。但由于纳米微粒的制备成本高、在润滑油中的分散稳定性较差、修复涂层中单质金属的成分较低、修复涂层的厚度较薄(一般为几十纳米)、以及修复技术较复杂等问题,限制了其广泛应用。针对上述问题,本文采用活化技术,重点研发了工艺简单、能修复较严重磨损表面、有良好润滑、减摩和抗磨功能且环境友好的、含微纳米软金属(锡、锌、铝锡、铝锡锌、锌锡、铟锌锡)的一系列新型润滑剂,并基于钢-钢、钢-铜摩擦副,考察了其修复性能和摩擦学特性。采用XPS、AES、SEM、淬冷、划痕、拉伸、弯曲、原位纳米力学等测试手段,分别研究了修复涂层的成分、厚度、结合强度、表面接触应力。探讨了润滑剂的摩擦修复作用机理,通过台架试验考察了其在机械传动中的应用前景。取得如下成果:
     用活化技术和机械法研制了粒径小于100nm的活化纳米锡润滑油,用于铜表面摩擦试验。SEM分析显示,该修复润滑剂在铜表面原位摩擦生成了10μm~20μm厚的修复涂层,涂层与基体结合紧密。XPS和AES分析表明,涂层中富含锡,Sn的原子百分比浓度最高达90%,具有优良的减摩抗磨性能。试验证明了活化添加剂对修复质量的重要影响。
     采用00号半流体脂代替32号基础油,解决了添加剂微粒在润滑油中的分散不稳定性。研制的20%活化微米锡半流体脂,在铜表面摩擦生成了20μm厚的Sn涂层,在各种载荷的摩擦试验中均显示负磨损,减摩性和抗磨性比传统抗磨剂3%ZDTP、3%氯化石蜡平均提高了32%、23%和148%、423%。
     研制的含锌和锌锡复合活化润滑脂有良好的修复性能和摩擦学性能,在铜基体上摩擦生成了10μm厚的锌涂层和20μm厚的锌锡涂层。锌锡的协同效应使该脂在各种载荷条件下的减摩抗磨性能明显优于单锌脂。
     研制的含铝系列润滑脂,能在铜基体上摩擦形成厚度为15μm的铝锡涂层和25μm的铝锡锌涂层,Al、Sn、Zn分布在整个修复涂层并渗镀进入铜基体。显示了活化的Al-Sn和Al-Sn-Zn添加剂之间具有良好的互配性和协同性以及与摩擦副的优良匹配性。
     攻克了目前添加剂难以在钢表面生成较厚修复层的难题。利用几种添加剂间的综合效应和协同增效作用,制备出活化锌锡和铟锡锌增效修复润滑剂,有效地修复了受损的钢摩擦副表面,锌锡和铟锡锌修复涂层的厚度分别达20μm和30μm。润滑修复后的钢-钢摩擦副,在各种载荷和各种转速下均呈现负磨损,在高转速下有稳定的低摩擦系数。
     用淬冷试验和划痕试验测试了涂层的结合强度。试验后的涂层无局部起皮、鼓泡、撕裂和脱落,涂层与基体结合牢固。考察了试样在拉伸和弯曲时对涂层结合性能的影响,当拉伸位移为2.7~3.6mm、弯曲变形为3.2~5.6mm时,未见涂层滑移、破裂、拱起和剥落,涂层与基体的固结性能良好。
     用纳米压痕法研究了各修复涂层的弹性模量等微观力学性能,由此分析计算了钢-钢直齿圆柱齿轮传动和钢蜗杆与铜蜗轮传动修复齿面的接触应力。研究表明,修复后的表面性能得到优化,能较大幅度地降低表面接触应力。
     在此基础上,将研制的5In25Sn15Zn脂与00号对比脂分别用于WD33-20型蜗轮减速器进行了台架试验。使用不含添加剂的00号脂润滑的蜗杆和蜗轮齿面均发生了明显磨损,采用5In25Sn15Zn润滑脂后,脂中Fe和Cu的浓度显著下降,蜗杆蜗轮的磨损得到有效控制,且齿面损伤部位已基本修复,减速器的机械效率大幅提高,显示了研发的修复润滑剂的潜在应用前景。
Since micro-nanometer lubricating material and technique possess significant meaning to machine parts in wear repairing, prolonging working life and reducing energy consuming, it is an increasing tendency for scientists to design novel lubricating system. But existed problems, such as higher cost to prepare nano-particulates, unstable decentralization, lower composition of elementary metals in repairing coatings, more thin coating thickness (as decades nanometers) and complicated repairing techniques and so on, restricted its application. This paper focus on researching and developing a serious of novel lubricants with activating method, which contained micro-nanometer soft metals, such as Sn, Zn, Al, Al-Sn, Al-Sn-Zn, Zn-Sn, In-Zn-Sn and so on. These new types of lubricants were in characteristics of simplifying preparing techniques, repairable to relatively serious worn surface, good lubricating, friction-reducing and anti-wear performance, and environment friendly properties. Based on steel-steel and steel-copper tribo-pair, their repairing behaviors and tribological properties were investigated. By means of X-ray Photoelectron Spectrum (XPS), Auger Electron Spectrum (AES) and Scanning Electronic Microscope (SEM), cooling quenching and nick, extend, bend testing, and Nano Mechanical Test Instruments, the composition, thickness, combining intensity, contact stress of the coatings were researched separately. The friction repairing action mechanism of the carried out lubricants were studied and analyzed. Furthermore, the applications foreground of lubricants used in mechanical transmission were also evaluated with frame testing. The results were as follows:
     Activated Nano-Tin lubricant was carried out with activating techniques and mechanical preparation, its particles diameters were below 100nm. The Nano-Tin lubricant was used for copper surface friction test. SEM showed that the repairing coating with thickness about 10μm-20μm has been created on the copper surface by the repairing lubricant under the action of mechanical and friction force. The coating was combined tightly with the substance. XPS and AES analytical results indicated that the coating contained rich Sn and its concentration of atom percentage of Sn could reach to 90% at tiptop. This explained why the coatings possess excellent friction-reducing and anti-wear capabilities. The test also proved the important effect of activated additives on repair quality.
     No.32 basic oil was replaced by No.00 semi-liquid grease to resolve dispersibilities instability and sedimentation of the additive particulates in the lubricating oil. The prepared semi-grease contained 20% activated micrometer Tin, which formed 20μm Sn coating on the cooper surface under friction, always displayed negative wearing characters under various loading conditions, its friction-reducing and anti-wear properties were average higher 32%,23% and 148%,423% separately than traditional anti-wearing lubricants of 3%ZDTP and 3% chlorinated paraffin.
     Zn kind and Zn-Tin Compound activated lubricating grease were developed that possess good repairing character and tribological performance. Zn coating with 10μm thickness and Zn-Sn coating with 20μm thickness were created on the copper substance under friction. Integrating effect of Zn-Sn let its friction-reducing and anti-wear characters exceeded than Zn grease evidently under various loading conditions.
     A1 kind of lubricants were explored that could create Al-Sn coating with 15μm thickness and Al-Sn-Zn coating with 25μm thickness on copper substance under friction. Al, Sn and Zn distributed on entire coatings and seeped plated into the copper base. It implied the mutual fitting performance and synergisms of activated additives of Al-Sn and Al-Sn-Zn, and the good matching capabilities with tribo-pair.
     Difficult problem that additive was hard to form repairing coating in considerable thickness on steel surface was solved. Through integration effect and synergisms under the action of several additives, the effective repairing lubricants with activated Zn-Sn and In-Zn-Sn were carried out. The worn steel surface was repaired efficiently. The coating's thickness of Zn-Sn and In-Zn-Sn were 20μm and 30μm separately. The steel-steel tribo-pair after lubricating repairing was always displayed negative wear situation under various loads and rotating conditions, and low friction coefficient characteristic was showed stably at high rotation speed.
     The combination intensity of the coating was tested through cooling quenching and nick test. The coatings after test there were no crinkling, bullate, avulsion and break off, the combination between the coating and base was eligibility. The affecting to coatings when sample under tension and bending were reviewed. The concretion capability between the coating and base was good under 3.2-5.6mm of bending distortion and 2.7-3.6mm of tension displacement.
     The micro mechanical properties were analyzed by nano-indentation technique. The surface contact stress of the repaired teeth in the steel-steel spur gear transmission and steel worm against copper wormgear transmission were calculated and analyzed. The study indicated that the exterior performance of those repaired surface was optimized and contacting stress on teeth surface could depress obviously.
     On the basis above, the frame testing was performed on the WD33-20 type of wormgear reducer with the carried out 25Sn15Zn5In grease and No.00 contrast grease separately. Worn occurred on the teeth surface of worm and wormgear when use No.00 lubricating grease with no additives. When replaced by 25Snl5Zn5In lubricants, the Fe and Cu concentration in the grease reduced sharply. It means that the abrasion of worm and wormgear has been controlled effectively, and the damnifyed area on the teeth surface has been repaired basically. The mechanical efficiency of the reducer was advanced greatly. It was showed that the developed repair lubricants possess potential application foreground.
引文
[1]徐滨士.军用装备再制造及其摩擦学研究.2006年全国摩擦学学术会议——纪念摩擦学40周年邀请报告.
    [2]张继辉,陈国需.润滑油自修添加剂的研究现状及设想[J].润滑油,2003,18(5):6-8.
    [3]方建,赵源.润滑添加剂的磨损自补偿摩擦学效应[J].材料保护,2006,39(6):34-36.
    [4]徐滨士,马世宁,刘家浚,等.先进制造技术与表面工程[J].现代制造,1997,(3):22-23.
    [5]尼基丁.伊戈尔.符拉基米洛维奇.机械零件摩擦表面和接触表面之选择补偿磨损保护层生成方法的发明[P].CN98121144,1998.
    [6]Hideki Masuda, Masato Yotsuya, Mari Asano, et al. Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina[J]. Applied Physics Letters,2001,78(6):826-828.
    [7]Yang Hong, Tao Baoqi, Qiu Hao, et al. Research on self-diagnose and self-repair using hollow-center optical fiber in smart structure, In optical measurement and nondestructive testing:techniques and applications [C]. Proceedings of SPLE, 2000,4221:264-268.
    [8]赵晓鹏,周本濂,罗春荣,等.具有自修复行为的智能材料模型[J].材料研究学报,1996,10(2):101-104.
    [9]池田泰之,海野春生,武田邦彦.有生命的树脂-汽车中的自修复材料[J],材料学会,2002,(12):162.
    [10]Satoshi Murata, Eiichi Yoshida, Haruhisa Kurokawa, et al. Self-repairing mechanical system [C]. Part of the SPLE conference on sensor fusion and decentralized control in robotic systems Ⅱ, Boston, September 1999:202-213.
    [11]Zako M, Takano N, Fujioka H. Intelligent materials system using epoxy particles for self-repair [C]. Proceedings of the eighth Japan-US. Conference on composite materials, inner harbor Baltimore, Maryland, September 1998:841-849.
    [12]Motuku M, Vaidya U K, Janowski G M. Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact [J]. Smart Mater. Struct.1999,8:623-628.
    [13]NASA turns to universities for reseach in space age materials [DB/OL]. News from Princeton Jul-sep.2002.(http://www.Princetion.edu/pr/news/02/q3/0920-nasa.htm)
    [14]Next Generation Manufacturing (NGM) project [DB/OL].Supported by National Science Foundation (NSF),1997. (http://www.nsf.gov/od/lpa/newa/publict /nsf0050/manufacturing/nextgen.htm)
    [15]Materials Research to Meet 21st Century Defense Needs. National Research Council's Report [DB/OL].The Department of Defense(DoD),2003.
    [16]徐滨士,梁秀兵,马世宁,等.实用纳米表面技术[J].中国表面工程,2001,14(3):13-17.
    [17]徐滨士,马世宁,朱胜,等.军用纳米表面工程[C].总装科技委2002年年会论文集:182-188.
    [18]刘谦,徐滨士.纳米润滑材料和润滑添加剂的研究和进展[J].航空制造技术,2004,(2):71-73.
    [19]赵修臣,刘颖,余智勇.纳米微粒作为润滑油添加剂的研究与展望[J].润滑与密封,2002,27(6):80-82.
    [20]欧忠文,徐滨士,丁培道,等.纳米润滑材料应用研究进展[J].材料导报,2001,14(8):28-30.
    [21]莫易敏,邹岚,赵源,等.磨损自补偿理论设想[J].中国机械工程,1998,9(2):40-41.
    [22]涂政文,赵源.磨损自补偿润滑添加剂的摩擦学效应.材料保护[J],1998,31(8):12-14.
    [23]莫易敏.磨损自补偿理论研究及其在重载丝杆螺母上的应用[D].机械工业部机械科学研究院,博士学位论文,1995,5.
    [24]莫易敏,邹岚,赵源,等.重载丝杆螺母副的微弹流研究[J].机械科学与技术,1997,(5B):1-6.
    [25]莫易敏,邹岚,赵源,等.摩擦行程对磨损自补偿性的效应[J].材料保护,1997,30(2):14-16.
    [26]莫易敏,邹岚,赵源,等.滑动速度对磨损自补偿性的影响研究[J].材料保护,1997,31(4):11-12.
    [27]莫易敏,邹岚,赵源,等.自补偿摩擦面的俄歇分析[J].材料保护,1995(11B):88-91.
    [28]莫易敏,邹岚,赵源,等.自补偿润滑油的高压流变学研究[J].润滑与密封, 1997,22(4):29-31.
    [29]莫易敏,邹岚,赵源.磨损自补偿的载荷效应研究[J].机械科学与技术,1998,17(6):1014-1016.
    [30]莫易敏,邹岚,赵源,等.自补偿摩擦表面微观形貌分析[J].机械科学与技术,1998,17(3):458-463.
    [31]莫易敏,邹岚,赵源,等.基础油粘度对磨损自补偿性能影响研究[J].润滑与密封,1998,23(1):34-36.
    [32]莫易敏,邹岚,赵源,等.自补偿磨损模型研究[J].润滑与密封,1998,23(3):7-8.
    [33]田娥,莫易敏.自补偿添加剂作用下钢-钢摩擦副的摩擦学性能[J].润滑与密封,2006,31(4):73-75.
    [34]付尚发,赵源,涂政文,等.润滑剂对锡青铜-镀硬铬45钢摩擦副的磨损自补偿摩擦学特性试验[J].材料保护,2003,36(5):34-37.
    [35]徐滨士,张伟,刘世参,等.现代装备智能自修复技术[J].中国表面工程,2004,17(1):1-4.
    [36]徐滨士,韩文政,刘世参.等离子喷镀修复件装车试验报告.徐滨士院士科研文选.北京:机械工业出版社,2001.
    [37]徐滨士,朱子新,刘燕,等.高速电弧喷涂Fe-Al金属间化合物涂层[J].中国有色金属学报,2004,14(Speciall):154-158.
    [38]Xu B S, Zhu Z X, Ma S N,et al. Sliding wear behavior of Fe-Al and Fe-Al/WC coatings prepared by high-speed are sprayed[J]. Wear.2004,257(12):1089-1095.
    [39]Xu B S, Zhang W, Xu W P. Influence of oxides on high velocity are sprayed Fe-Al/Cr3C2 composite coatings [J]. Journal of Central South University of Technology.2005,12(3):259-262.
    [40]Xu B S, Wang H D, Dong S Y, et al. Electrodepositing nickel silica nano-composites coatings [J]. Electrochemistry Communications,2005,7(6):572-575.
    [41]Xu B S, Wang H D, Dong S Y, et al. Fretting wear-resistance of Ni-base electro-brush plating coating reinforced by nano alumina grains [J]. Materials Letters,2006,60(5):710-713.
    [42]Xu B S, Ma S N,Huang Y B. Study on ontact-fatigue resistance of brush-plating layers.Proceedings of Surface Engineering International Conference [M]. Tokyo, Japan.1998,293-302.
    [43]陶德华,张玉伟,付尚发.几种微粒经纳米化后的润滑性变化[J].润滑与密封,2007,32(8):95-98.
    [44]刘仁德.新型油溶性有机金属盐化合物与纳米金属粒子的制备及其摩擦学特性研究[D].上海大学,博士学位论文,2004,11.
    [45]梁志杰,原津萍.表面粘涂技术在工程机械上的应用[J].工程机械与维修,2002,(2):82-83.
    [46]李洪来,于静浮.采用表面粘涂技术提高设备的抗腐蚀性能.ZHANJIE,2005,26(1):50-52.
    [47]郭延宝,徐滨士,许一,等.羟基硅酸盐矿物微粉添加剂对内燃机自修复效果的研究[J].中国表面工程,2004,17(6):19-26.
    [48]盛钢,马保吉.制动摩擦材料研究的现状与发展[J].西安工业学院学报,2000,20(1):127-133.
    [49]戴雅康.高速列车摩擦制动材料的现状与发展[J].机车车辆工艺,1994,2:1-8.
    [50]李绍忠,贺奉嘉.汽车制动摩擦材料的现状趋势[J].汽车研究与开发,1995,2:28-31.
    [51]Zhang Siwei, Wang Xinhua, Fan Qiyun, Lin Li. Investigation of the tribological performance of friction pair for disc brake of drilling rig [J]. Science in China(Series A),2001,44(Supplement):253-258.
    [52]王新华,张嗣伟,樊启蕴.石油钻机盘式刹车副材料选配的实验研究[J].摩擦学学报,2002,22(3):197-201.
    [53]马红玉,张嗣伟.金属基复合材料涂层摩擦学的研究进展[J].中国表面工程,2005,18(1):8-15.
    [54]易茂中,韩志海,陈华,等.等离子喷涂铁-镍-钴-碳化钨涂层制动摩擦特性的研究[J].摩擦学学报,1996,16(2):150-155.
    [55]李剑峰,戴玮玮,丁传贤.等离子喷涂碳化铬-镍铬涂层的摩擦学特性[J].摩擦学学报,1996,16(1):14-20.
    [56]陈爱志,张永振,陈跃,等.镍基陶瓷涂层的干滑动摩擦磨损性能[J].兵器材料科学与工程,2002,25(5):52-54.
    [57]孙荣禄,刘勇,杨德庄.钛合金表面激光熔敷NiCrBSi-TiC复合涂层的组织和摩擦磨损性能[J].中国激光,2003,30(7):659-662.
    [58]陈彦宾,任振安.激光熔敷复合涂层[J].焊接学报,2002,23(1):19-22.
    [59]朱子欣,徐滨士,马世宁,等.高速电弧喷涂Fe-Al+WC复合涂层的摩擦学特性[J].摩擦学学报,2003,23(3):174-178.
    [60]罗瑞林.涂层技术的新动向[J].染整技术,2006,28(9):12-24.
    [61]廉海萍,谭德睿,吴则嘉,等.2500年前中国青铜兵器表面合金化技术研究[J]. 特种铸造及有色合金,1998,(5):56-58.
    [62]谭德睿,吴来明,唐静娟,等.古铜镜“水银沁”表面化形成机理研究[J].文物保护与考古科学,1997,9(1):1-9.
    [63]张亮,李晓刚,陈旭.离子喷涂耐高温抗氧化涂层的研究进展[J].装备环境工程,2006,3(4):1-6.
    [64]徐滨士,马世宁.优质高效经济的热喷涂技术——高速电弧喷涂技术.第九届全国焊接会议论文集(第一册)[M].哈尔滨:黑龙江人民出版社,1999.
    [65]姚舜晖.碳化钨几何形状对碳化钨增强镍基合金火焰喷涂涂层的摩擦性能影响[J].摩擦学学报,2009,29(3):194-199.
    [66]王国刚,孙冬柏,王勇,等.热喷涂与熔覆技术制备镍基涂层的空蚀性能[J].材料热处理学报,2007,28(6):109-113.
    [67]万强茂,王文俊,林均品,等.热喷涂技术在锌锅部件中的应用[J].金属热处理,2007,10:79-84.
    [68]伍超群,周克崧,刘敏,等.不同热喷涂技术制备镍基涂层的摩擦磨损性能[J].中国有色金属学报,2007,9:1506-1510.
    [69]Roberta L, Roberto 0, Giacomo C, et al. Self-propa-gating combustion synthesis and plasma spraying depo- sition of TiC-Fe powders [J]. Ceramics International, 2003,29(5):519-526.
    [70]Valente T, Galliano F P. Corrosion resistance proper-ties of reactive plasma-sprayed titanium composite coatings [J]. Surface and Coatings Technology, 2000,127(1):86-92.
    [71]Ananthapadmanabhan P V, Taylor P R. Titanium car-bide-iron composite coating by reactive plasma spraying of ilmenite [J]. J Alloys and Compounds,1999,287(6): 121-125.
    [72]Dallaire S, Legoux J G, Levert L. Abrasion wear re-sistance of arc-sprayed stainless steel and composite stainless steel coatings [J]. Surf Coat Technol,1995, 46:163-168.
    [73]LIU Chang-song, HUANG Ji-hua, ZHAO Yong, et al. TiC-Fe coatings prepared by flame spray synthesis process [J]. Trans Nonferrous Met Soc China,2000, 10(3):405-407.
    [74]LI Zhi-wen, LIU Chang-song, HUANG JI-hua, et al. Synthesis and deposition of TiC-Fe coatings by oxygen-acetylene flame spraying [J]. J Mater Sci & Tech, 2003,19(2):161-163.
    [75]刘长松,李志文,黄继华.反应火焰喷涂TiC/Fe复合涂层的动力学[J].中国有色金属学报,2006,6(9):1522-1526.
    [76]Xu B S, Chen C. The application and progress of brush-plating in machinery maintenance of our country. Proceedings of 8th European Maintenance Congress. Spanishi.1986,5:1-13.
    [77]李昂,王华明.激光熔敷NiTi/Ni3Ti金属间化合物复合材料涂层组织及耐磨性[J].材料热处理学报,2006,27(5):87-90.
    [78]王汝霖,润滑剂摩擦化学[M].北京:中国石化出版社,1994.
    [79]刘谦,许一,史佩京,等.机械零件摩擦磨损表面自修复研究进展[J].中国表面工程2005,18(5):1-4.
    [80]郭志光,顾丽卡,赵源.纳米人员润滑技术的进展[J].新材料产业,2003,(4):67-70.
    [81]欧忠文,徐滨士,马世宁,等.磨损部件自修复原理与纳米润滑材料的自修复设计构思[J].表面技术,2001,30(6):47-53.
    [82]姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究[J].机械科学与技术,1999,18(3):445-447.
    [83]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [84]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
    [85]徐滨士,欧忠文,马世宁.纳米表面工程基本问题及其进展[J].中国表面工程,2001,14(3):6-12.
    [86]向庆华,欧忠文,丁培道,等.基于油润滑条件下的纳米单元表面优化作用机理[J].重庆大学学报,2003,(26):7.
    [87]欧忠文,徐滨士,马世宁,等.基于纳米材料的表面工程应用研究进展[J].中国表面工程,2000,13(3):5-8.
    [88]V N Bakunin, A Yu Suslov,G N Kuzmina,et al. Synthesis and application of inorganic nanoparticles as lubricant components-a review[J]. Journal of Nanoparticle Reasearch,2004(6):273-284.
    [89]高宗明,鲍琼.高分子保护的铜超微粒子分散液的制备[J].石油化工,1993,22(3):159-163.
    [90]Vesna V. Vukovic, Jovan M. Nedeljkovic, Surface Modification of Nanometer-Scale Silver Particles by Imidazole[J]. Langmuir,1993,9:980-983.
    [91]Zhi Jun Zhang, Jun Zhang, Qun Ji Xue. Synthesis and Characterization of a Molybdenum Disulfide Nanocluster [J]. J. Phys. Chem.1994,98:12973-12977.
    [92]Shuang Chen, Weimin Liu. Preparation and Characterization of Surface-Coated ZnS Nanoparticles[J]. Langmuir,1999,15:8100-8104.
    [93]张立德等.纳米材料和结构[M].北京:科学出版社,2001.
    [94]Hisakado.T, Tsukizoe.T, Yoshikawa.H. Lubrication Mechanism of Solid Lubricants in oils [J]. Journal of Lubrication Technology, Transactions ASME,1983,105:245-253.
    [95]Xu Tao, Zhao Jiazheng, Xu Kang, The ball-bearing effect of diamond nanoparticles as an oil additive [J]. J. Phys. D:Appl. Phys.1996,29:2932-2937.
    [96]夏延秋,冯欣,冷曦,等.纳米级镍粉改善润滑油摩擦磨损性能的研究[J].沈阳工业大学学报,1999,21(2):101-103.
    [97]Z S Hu, J X Dong, et al. Study on antiwear and reducing friction additive of nanometer titanium oxide [J]. Wear,1998,216:92-96.
    [98]孙磊,周静芳,张治军,等.季铵盐修饰磷钼酸铵纳米微粒作为液体石蜡添加剂的摩擦学性能[J].摩擦学学报,2001,21(3):196-200.
    [99]张治军.表面修饰纳米粒子的化学制备及摩擦学行为的研究.中国科学院兰州化学物理研究所,博士学位论文,1996,7.
    [100]乔玉林,徐滨士,马世宁,等.含纳米微粒的多功能复合润滑油添加剂[J].新技术新工艺.1998,4:37.
    [101]刘维民,薛群基,周静芳,等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程,2001,14(3):21-23.
    [102]胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000,20(4):292-295.
    [103]徐建生,钟康年,常跃,等.纳米润滑剂的制备及特性研究[J].润滑与密封,2002,27(4):14-16.
    [104]居荫诚,解世文.采用纳米铜改善二冲程油润滑性的实验研究[J].润滑与密封,2002,27(4):51-56.
    [105]刘谦,徐滨士,许一,等.纳米Cu添加剂润滑摩擦表面分析[J].材料工程,2005,(2):13-16.
    [106]张明,王晓波,伏喜胜,等.油溶性纳米Cu在微动磨损条件下的自修复行为与机理研究[J].摩擦学学报,2005,25(6):504-508.
    [107]Jingfang Zhou, Zhishen Wu, Zhijun Zhang, et al. Tribological behavior and lubricating mechanism of Cu nanoparticles in oil [J]. Tribology Letters, 2000,8:213-218.
    [108]豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,27(5):23-25.
    [109]乔玉林,徐滨士,马世宁,等.含纳米铜的减摩修复添加剂摩擦学性能及其作用机理研究[J].石油炼制与化工,2002,33(8):34-38.
    [110]Hisakado T, Tsukizoe T, Yoshikawa H. Phase Transformation nanoparticles [J]. J Lubric Tech,1983,105:245-248.
    [111]夏延秋,金寿日,孙维明,等.纳米级金属粉对润滑油摩擦磨损性能的影响[J].润滑与密封,1999,24(3):33-34.
    [112]周静芳,张治军,王小波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [113]Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction by nanocopper additives to motoroil[J]. Wear,2002,252:63-69.
    [114]史佩京,许一,刘谦,等.纳米复合自修复添加剂的制备及其在发动机上的应用[J].中国表面工程,2004,65(2):37-40.
    [115]张志梅,古乐,齐毓霖,等.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,25(2):40-44.
    [116]赵彦保,张治军,党鸿辛.锡纳米微粒的热性能研究[J].河南大学学报,2003,33(1):41-43.
    [117]赵彦保,张治军,吴志申,等.锡纳米微粒的摩擦学性能[J].应用化学,2003,20(12):1157-1160.
    [118]陈鹏万,恽寿榕,陈权,爆轰合成纳米超微金刚石的热稳定性研究[J].金刚石与磨料磨具工程研究,1999,(5):2-5.
    [119]Z.S. Hu, J.X. Dong, Study on antiwear and reducing friction additive of nanometer titanium oxide [J]. wear,1998,216:92-96.
    [120]J. X. Dong, Z. S. Hu. A study of the anti-wear and friction-reducing properties of the lubricant additive, nanometer zinc borate [J]. Tribology International,1998,31 (5): 219-223.
    [121]叶毅,董浚修,陈国需,等.纳米硼酸盐的摩擦学特性初探[J].润滑与密封,2000,25(4):20-21.
    [1]陶德华,张玉伟,付尚发.几种微粒经纳米化后的润滑性变化[J].润滑与密封,2007,32(8):95-98.
    [2]Rende Liu,Dehua Tao and Yuan Zhao. Tribological performance of rare-earth alkylsalicylate as lubrication additive [J]. Industrial Lubrication and Tribology, 2008,60(1):9-13.
    [3]马剑奇,王晓波,崔若梅,等.表面修饰γ-Fe2O3纳米颗粒的制备、表征及摩擦学性能[J].材料科学与工程,2004,22(4):607-610.
    [4]刘维民,薛群基,周静芳,等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应研究[J].中国表面工程,2001,14(3):21-23.
    [5]杜令忠,徐滨士,董世运,等.镍基纳米Al2O3复合电刷镀层含磨粒油润滑条件下的磨损性能[J].润滑与密封,2005,30(1):20-22.
    [6]刘谦,徐滨士,许一,等.纳米添Cu加剂润滑摩擦表面分析[J].材料工程,2005,(2):13-16.
    [7]乔玉林,徐滨士,马世宁,等.含纳米微粒的多功能复合润滑油添加剂[J].新技术新工艺,1998,4:37.
    [8]王海斗,徐滨士,刘家浚,等.硫化亚铁固体润滑层的减摩机理研究[J].金属热处理,2005,30(1):61-64.
    [9]付尚发,赵源,涂政文,等.润滑剂对锡青铜-镀硬铬45钢摩擦副的磨损自补偿摩擦学特性试验[J].材料保护,2003,36(5):34-37.
    [10]郭志光,顾丽卡,赵源.纳米人员润滑技术的进展[J].新材料产业,2003,(4):67-70.
    [11]Dallaire S, Legoux J G, Levert L. Abrasion wear re-sistance of arc-sprayed stainless steel and composite stainless steel coatings [J]. Surf Coat Technol, 1995,46:163-168.
    [12]赵彦保,张治军,吴志申,等.锡纳米微粒的摩擦学性能[J].应用化学,2003,20(12):1157-1160.
    [13]豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,27(5):23-25.
    [14]张志梅,古乐,齐毓霖,等.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,25(2):40-44.
    [15]田娥,莫易敏.自补偿添加剂作用下钢-钢摩擦副的摩擦学性能[J].润滑与密封,2006,31(4):73-75.
    [16]游中流,高万振,赵源.新型润滑添加剂的磨损自补偿效应研究[J].材料保护,2003,36(2):13-15.
    [17]陶德华,莫云辉.可形成超厚摩擦镀层的微、纳米软金属润滑剂中采用活化剂的制备工艺[P].中国:专利申请号:200910050365.4,2009.
    [18]GB5270-85,金属基体上的金属覆盖层(电沉积层和化学沉积层)附着强度实验方法[S].
    [1]刘谦,许一,史佩京,等.机械零件摩擦磨损表面自修复研究进展[J].中国表面工程,2005,18(5):1-5.
    [2]欧忠文,徐滨士,马世宁,等.纳米润滑材料应用研究进展[J].材料导报,2000,14(8):28-31.
    [3]Erdemir A, Ajayi O O, Fenske G R et al. The synergistic effects of solid and liquid lubrication on the tribological behavior of transformation-toughned ZrO2 ceramic[J]. SILE Trans Trib,1992,35(2):287-297.
    [4]张继辉,陈国需.润滑油自修复添加剂的研究现状及设想[J].润滑油,2003,18(5):6-8
    [5]张立德等.纳米材料和结构[M].北京:科学出版社,2001.
    [6]梁志杰,原津萍.表面粘涂技术在工程机械上的应用[J].工程机械与维修,2002,(2):82-83.
    [7]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004.
    [8]徐滨士,欧忠文,马世宁,等.纳米表面工程[J].中国机械工程,2000,11(6):707-711.
    [9]H格莱特.纳米材料[M].北京:原子能出版社,1994.
    [10]Qiu S Q, Dong J X, Cheng G X. A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils[J]. Lub Science,1999,11(3):217-226.
    [11]R Reisfeld. Nanoparticles in amorphous solids[J]. Adv Sci Technol,1995,11:3-13.
    [12]徐建生,赵源,高万振.新型自补偿添加剂的摩擦学特性研究[J].材料保护,2000(7):16-18.
    [13]Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction by nanocopper additives to motoroil [J]. Wear,2002,252:63-69.
    [14]L I. Garbab, E. Sher, R.Shneck. Structural mechanism of action of some additives to lubricant [J]. Industrial lubrication and Tribology,2000,52(6):186-191.
    [15]Herdan J M. Lubrication oil additive and the environment-an overview [J]. Lubrication Science,1997,9(2):161-172.
    [16]豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,(5):23-25.
    [17]Zhou J F, Wu Z S, Zhang Z J, et al. Tribological behaviors and lubrication mechanism of Cu nano-particles as an oil additive [J]. Tribology Letters,2000,9.
    [18]J C de Lima, D M Triches,V H F dos Santos,et al. Formation of γ-Cu67A133 Alloy by Mechanical Alloying [J]. J Alloys & Compounds,1999,(282):258-260.
    [19]付尚发,赵源,涂政文,等.润滑剂对锡青铜-镀硬铬45钢摩擦副的磨损自补偿摩擦学特性试验[J].材料保护,2003,36(5):34-37.
    [20]谢学兵,陈国需,孙霞,等.纳米锌粉的摩擦自修复研究[J].润滑与密封,2008,33(6):6-8.
    [21]Mack,, Jack E. Mack, Patrick K.. Lubricant additive [P]. US:Patent No.4204968, 1980.
    [22]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [23]胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000,20(4):292-295.
    [24]姚彬,杜达昌,陈理公,等.含硼、铜润滑油添加剂的摩擦学性能[J].润滑与密封,2000,25(1).22-24.
    [25]邵荷生等.金属的磨粒磨损与耐磨材料[M].机械工业出版社,1988,2.
    [26]张明,王晓波,伏喜胜,等.油溶性纳米Cu在微动磨损条件下的自修复行为与机理研究[J].摩擦学学报,2005,25(6):504-509.
    [27]刘谦,徐宾士,许一,等.纳米Cu添加剂润滑摩擦表面分析[J].材料工程,2005,(2):13-16.
    [28]郭志光,顾卡丽,徐建生,等.有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(4):317-321.
    [29]Peterson M B, Calabrese S J, Li S Z, et al. Frictional properties of lubricating oxide coatings In:Pro of the 16th Leeds-Lyon sym on Tri Lyon, France,1989,15-25.
    [30]Yongjian Gao, Guoxu Chen, Yao Li, et al. Study on tribological properties of oleic acid-modified TiO2 nanoparticle in water [J]. Wear,2002,252:454-458.
    [31]Z S Hu, J X Dong, G X chen. Study on antiwear and reducing friction additive of nanometer ferric oxide[J]. Tribology International,1998,31(7):355-360.
    [32]Wenyu Ye, Tiefeng Cheng, Qing Ye, et al. Preparation and tribological properties of tetrafluorobenzoic acid-modified TiO2 nanoparticles as lubricant additives[J]. Materials Science and Engineering A,2003,359:82-85.
    [33]刘仁德.新型油溶性有机金属盐化合物与纳米金属粒子的制备及其摩擦学特性研 究[D].上海大学博士论文,2004,11.
    [34]张玉伟,付尚发,陶德华.几种超细粒子在半流体脂中的摩擦行为[J].润滑与密封,2002,27(6):43-46.
    [35]赵彦保,张治军,吴志申,等.锡纳米微粒的摩擦学性能[J].应用化学,2003,20(12):1157-1160.
    [36]陈晓虎.金属转移层对氧化铝基自润滑复相陶瓷磨损行为的影响[J].中国陶瓷工业,2001,8(2):22-25.
    [37]徐滨士.军用装备再制造及其摩擦学研究[C].哈尔滨:全国摩擦学学术会议--纪念摩擦学40周年,2006.
    [38]马红玉,张嗣伟.金属基复合材料涂层摩擦学的研究进展[J].中国表面工程,2005,(1):8-15.
    [39]廖家轩,夏立芳,孙明仁,等.铝合金表面等离子体基离子注入碳层的摩擦学行为[J].摩擦学学报,2003,23(4):282-286.
    [40]潘承璜,赵良仲.电子能谱基础[M].北京:科学出版社,1981.
    [41]郑伟谋译,[日]染野坦,安盛岩雄.表面分析[M].北京:科学出版社,1980.
    [42]王殿勋,郁向荣.光电子和俄歇能谱[M].北京:科学出版社,1983.
    [43]陆家和,陈长彦.表面分析技术[M].北京:电子工业出版社,1987.
    [44]Avramova N, Neykov N S, Peneva S K, et al. A calorimetric study of Tin grown by reduction of SnC12 with Mg[J]. Journal of Physicsd-Applied Physics,1996, 29(5):1300-1305.
    [45]Nayral C, Teyeb O E, Maisonnat A, et al. A Novel Mechanism for the Synthesis of Tin /Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors [J]. Adu Mater,1999,11(1):61-63.
    [46]陶小军,周静芳,张治军,等.表面修饰LaF3纳米微粒的制备及表征[J].化学研究,2000,11(3):8-11.
    [47]梁起,张治军,薛群基,等.LaF3纳米微粒的摩擦学行为研究[J].中国稀土,1999,20(2):32-35.
    [48]Z. S. Hu, J. X. Dong, G. X. Chen, et al. Preparation and tribological properties of nanoparticle lanthanum borate[J]. Wear,2000,243:43-47.
    [49]Wagner C D. Handbook of X-ray photoelectron spectroscopy[M]. Perkin-Elmer Corporation, Physical Electronic Division, Minnesoto,1979.
    [50]http//Srdata.nist.gov/xps.
    [51]梁英,孙凤莲,王丽凤Sn-Ag共晶钎料与Cu基板界面反应的热力学计算[J]. 哈尔滨理工大学学报,2005,10(5):80-83.
    [52]Byeong Joo Lee, Nong Moon Hwang, Hyuck Mo Lee. Prediction of interface reaction products between Cu and Various Solder Alloys by Thermodynamic calculation [J]. Acta Materialia,1997,45(5):1867-1874.
    [53]Ernest Rabinowicz, Sankar B Narayan,高金堂.氧化铜作为铜的固体润滑剂时的膜厚效应[J].摩擦学学报,1985,5(3):175-183.
    [54]赵勇武,刘家浚,郑庆林.润滑条件下钢/钢滑动摩擦副P-V图的研究[J].清华大学学报,1989,29(5):41-46.
    [55]赵修臣,刘颖,余智勇.纳米微粒作为润滑油添加剂的研究与展望[J].润滑与密封,2002,27(6):80-82.
    [56]李祥明,戴振东,刘德浚,等.摩擦作用下金属氧化反应的机理[J].南京航天航空大学学报,1999,31(2):204-208.
    [57]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [58]王晓勇,陈月珠.纳米材料在润滑技术中的应用[J].化工进展,2001(2):27-30.
    [59]王汝霖.润滑剂摩擦化学[M].北京:中国石化出版社,1994.
    [60]波斯特尼柯夫著S N.摩擦和切削及润滑中的电物理和电化学现象[M].北京:国防工业出版社,1983.
    [1]Hideki Masuda, Masato Yotsuya, Mari Asano, et al. Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina[J]. Applied Physics Letters,2001,78(6):826-828.
    [2]郭志光,顾丽卡,赵源.纳米润滑技术的进展[J].新材料产业,2003,4:67-70.
    [3]游中流,高万振,赵源.新型润滑添加剂的磨损自补偿效应研究[J].材料保护,2003,36(2):13-15.
    [4]Xu B S, Wang H D, Dong S Y, et al. Electrodepositing nickel silica nano-composites coatings. Electrochemistry Communications.2005,7(6):572-575.
    [5]Xu B S, Wang H D, Dong S Y, et al. Fretting wear-resistance of Ni-base electro-brush plating coating reinforced by nano alumina grains. Materials Letters.2006,60(5): 710-713.
    [6]Xu B S, Wang H D, Liang X B, et al. The good maintenance technologicles based on nano surface engineering. Proceedings of International Conference on Intelligent Maintenance Systems.2003:457-466.
    [7]徐滨士,梁秀兵,马世宁,等.实用纳米表面技术[J].中国表面工程,2001,14(3):13-17.
    [8]付尚发,赵源,涂政文,等.润滑剂对锡青铜-镀硬铬45钢摩擦副的磨损自补偿摩擦学特性试验[J].材料保护,2003,36(5):34-37.
    [9]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [10]欧忠文,徐滨士,马世宁,等.磨损部件自修复原理与纳米润滑材料的自修复设计构想[J].表面技术,2001,30(6):47-53.
    [11]向庆华,欧忠文,丁培道,等.基于油润滑条件下的纳米单元表面优化作用机理[J].重庆大学学报,2003,(26):7.
    [12]徐建生,钟康年,常跃,等.纳米润滑剂的制备及特性研究[J].润滑与密封,2002,27(4):14-16.
    [13]刘维民,薛群基,周静芳,等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程,2001,52(3)21-29.
    [14]居荫诚,解世文.采用纳米铜改善二冲程有润滑性的实验研究[J].润滑与密封,2002,27(4):51-56.
    [15]夏延秋,金寿日,孙维明,等.纳米级金属粉对润滑油摩擦磨损性能的影响[J].润滑与密封,1999,24(3):33-34.
    [16]莫易敏.磨损自补偿理论研究及其在重载丝杆螺母上的应用[D].机械科学研究院 博士论文,1995,2.
    [17]徐滨士,张伟,刘世参,等.现代装备智能自修复技术[J].中国表面工程,2004,64(1):1-4.
    [18]乔玉林,徐滨士,马世宁,等.车辆润滑油极压抗磨添加剂的性能及其复配效应[J].表面工程杂志,1997,(1):32-37.
    [19]张津,孙智富,夏华.模具表面无磨损摩擦与在线自修复研究[J].模具制造技术,2005,(2):68-71.
    [20]池田泰之,海野春生,武田邦彦.有生命的树脂-汽车中的自修复材料[J],材料学会,2002,(12):162.
    [21]Adams J H, Godfrey D. Borate gear lubricant-EP film analysis and performance, 1995[J].Lubr Eng,1981,37(1):174-179.
    [22]Satoshi Murata, Eiichi Yoshida, Haruhisa Kurokawa, et al. Self-repairing mechanical system [C]. Part of the SPLE conference on sensor fusion and decentralized control in robotic systems Ⅱ, Boston, September 1999:202-213.
    [23]董伟达,马文江,黄岩.汽车及船用发动机应用金属磨损自修复技术的效果[J].铸造,2005,54(4):401-403.
    [24]莫云辉,陶德华,韦习成,等.磨损自修复纳米锡润滑涂层的基础研究[J].润滑与密封,2007,32(10):69-71.
    [25]莫云辉,陶德华,韦习成,等.锡基自修复涂层的表面分析和厚度研究[J].中国表面工程,2008,21(1):16-18.
    [26]Mo Yun-hui, Tao De-hua,Wei Xi-cheng. Activation and self-repairing effectiveness of lubrication with Nano-Tin as additives [J]. Journal of Shanghai University (English Edition),2009,13(1).45-50.
    [27]胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,2000,20(4):292-295.
    [28]王小波.有机单分子层表面修饰纳米颗粒的合成及作为润滑油添加剂的摩擦学性能研究[D].兰州:中国科学院兰州化学物理研究所,固体润滑国家重点实验室,2004,6.
    [29]徐滨士,史佩京,许一,等.纳米颗粒的摩擦学性能及其用作润滑油修复添加剂的应用研究.中国工程院摩擦学工程科技论坛—润滑应用技术论文集.2004:6-14.
    [30]张治军.表面修饰纳米粒子的化学制备及摩擦学行为的研究[D].中国科学院兰州化学物理研究所,博士论文,1996,7.
    [31]张志梅,古乐,齐毓霖,等.纳米级金属粉改善润滑油摩擦性能的研究[J]. 润滑与密封,2000,25(2):37-40.
    [32]王九,陈波水,侯滨,等.润滑油中CuS纳米粒子的摩擦学习性能研究[J].润滑与密封,2001,26(2):42-43.
    [33]赵修臣,刘颖,余智勇.纳米微粒作为润滑油添加剂的研究与展望[J].润滑与密封,2002,27(6):80-82.
    [34]赵彦保,张治军,吴志申,等.锡纳米微粒的摩擦学性能[J].应用化学,2003,20(12):1157-1160.
    [35]罗瑞林.涂层技术的新动向[J].染整技术,2006,28(9):12-24.
    [36]郭志光,顾丽卡,徐建生.自修复纳米润滑添加剂的自修复效应[J].材料保护,2003,36(10):21-23.
    [37]王红美,徐滨士,马世宁,等.纳米Al2O3颗粒增强镍基复合镀层的制备及微观力学性能[J].材料热处理学报,2005,26(1):81-85.
    [38]乔玉林,徐滨士,马世宁,等.含纳米微粒的的多功能复合润滑油添加剂[J].新技术新工艺,1998,(4):37.
    [39]马剑奇,王晓波,崔若梅,等.表面修饰γ-Fe2O3纳米颗粒的制备、表征及摩擦学性能[J].材料科学与工程学报,2004,22(4):607-610.
    [40]王鹤寿,陶德华.超细氟化石墨的润滑性能研究[J].润滑与密封,1999,24(1):16-17.
    [41]马红玉,张嗣伟.金属基复合材料涂层摩擦学的研究进展[J].中国表面工程,2005,(1):8-15.
    [42]姚彬,杜达昌,陈理公,等.含硼、铜润滑油添加剂的摩擦学性能[J].润滑与密封,2000,25(1).22-24.
    [43]党旭佞,曲健俊,张志谦,等.S-P-Mo减摩剂的摩擦磨损性能的研究[J].润滑与密封,1997,22(3):35-38.
    [44]周静芳,张治军,王晓波,等.油溶性铜纳米微粒作为液体石蜡添加剂的摩擦学性能研究[J].摩擦学学报,2000,20(2):123-126.
    [45]陶德华,张玉伟,付尚发.几种微粒经纳米化后的润滑性变化[J].润滑与密封.2007,32(8):95-98.
    [46]陈金荣,李曙,姜晓霞,等.硫代钼酸镍作为油品添加剂的尺寸效应和摩擦学性能[J].摩擦学学报,2001,21(5):366-370.
    [47]徐滨士,欧忠文,马世宁,等.纳米表面工程基本问题及其进展[J].中国表面工程,2001,14(3):6-12.
    [48]张玉伟,付尚发,陶德华.几种超细粒子在半流体脂中的摩擦行为[J].润滑与密封,2002,27(6):43-46.
    [1]谢学兵,陈国需,孙霞,等.纳米锌粉的摩擦自修复研究[J].润滑与密封,2008,33(6):6-8.
    [2]Vazquez A J. Economy of Radiant Energy in Galvanizing Bath and Improvement of Heat Transfer in Surface heated Ceramic Galvanizing Baths [C].14th International Galvanizing Conference1985:411-415.
    [3]焦俊,陈名估,琛锋,等.锌层质量对球墨铸管防腐蚀效果的影响[J].材料保护,2008,41(3):65-67.
    [4]陆春铁,李瑞雪,王丽贤.水工钢闸喷锌防腐性[J].东北水利水电,2005(8):45-46.
    [5]宋秀丽.国内外管道防腐蚀的现状与发展[J].山西建筑,2002,28(9):88-89.
    [6]胡志鹏,扬燕.球墨铸铁管生产\应用及防腐蚀现状[J].中国通报,2004(Z2):38-41.
    [7]Horstmann D. Problems of Attack by Molten Zinc [J]. Arch Eisenhuttenw, 1960,7:405-411.
    [8]Muster Tim H, Cole Ivan S. The protective nature of passivation films on zinc:surface charge Corrosion Science,2004,46(9):2319-2335.
    [9]马晓丽,李德元,王赫莹,等.耐锌蚀陶瓷防护层的制备与腐蚀机理初探[J].材料保护,2008,41(3):68-70.
    [10]张继辉,陈国需.润滑油自修复添加剂的研究现状及设想[J].润滑油,2003,18(5):6-8.
    [11]张志梅,古乐,齐毓霖,等.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,25(2):37-40.
    [12]赵修臣,刘颖,余智勇.纳米微粒作为润滑油添加剂的研究与展望[J].润滑与密封,2002,27(6):80-82.
    [13]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [14]乔玉林,徐滨士,马世宁,等.含纳米微粒的多功能复合润滑油添加剂[J].新技术新工艺,1998,4:37.
    [15]豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,(5):23-25.
    [16]张玉伟,付尚发,陶德华.几种超细粒子在半流体脂中的摩擦行为[J].润滑与密封,2002,27(6):43-46.
    [17]乔玉林,徐滨士,马世宁,等.车辆润滑油极压抗磨添加剂的性能及其复配效应[J].表面工程杂志,1997,(1):32-37.
    [18]李祥明,戴振东,刘德浚,等.摩擦作用下金属氧化反应的机理[J].南京航天航空大学学报,1999,31(2):204-208.
    [1]张玉伟,付尚发,陶德华.几种超细粒子在半流体脂中的摩擦行为[J].润滑与密封,2002,27(6):43-46.
    [2]陶德华,张玉伟,付尚发.几种微粒经纳米化后的润滑性变化[J].润滑与密封,2007,32(8):95-98.
    [3]乔玉林,方学敬,党鸿辛.两种典型的含硫磷添加剂之复配体系在润滑油中的协同作用机理[J].摩擦学学报,1995,15(1):29-38.
    [4]王公应,严正泽,刘馥英.齿轮油添加剂复合配伍性的研究[J].华东化工学院学报,1990,16(6):700-705.
    [5]Xuejing Fang, Weimin Liu, Yulin Qiao, et al. Industrial gear oil-a study of the interaction of antiwear and extreme-pressure additives [J]. Tribology International,1993,26(6):395-398.
    [6]乔玉林,方学敬,党鸿辛.齿轮油添加剂复配效应的研究[J].润滑油,1994,9(5):49-52.
    [7]乔玉林,放学敬,党鸿辛.碱性氮化合物对硫化烯烃润滑性能的影响[J].石油炼制与化工,1994,25(12):52-57.
    [8]Yansheng Ma, Jiajun liu, Linqing Zhang, et al. The synergistic effects of EP and AW additives with a sulphurised steel surface under boundary [J]. Lubrication Science.1995,7(2):171-179.
    [9]莫云辉,陶德华,王帅宝,等.锌和锡锌半流体脂磨损自修复效应研究[J].润滑与密封,2008,33(6):71-73.
    [10]Mo Yun-hui, Tao De-hua, Wang Shuai-bao, Wei Xi-cheng. Tribological Properties of a new type of Semi-Liquid Grease with Zn and Sn-Zn compound [C]. the 2nd International Conference on Advanced Tribology 2008 at December 3th-5th,2008 in Singapore.
    [11]张志梅,古乐,齐毓霖,等.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,25(2):37-40.
    [12]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [13]张继辉,陈国需.润滑油自修复添加剂的研究现状及设想[J].润滑油,2003,18(5):6-8.
    [14]齐效文,杨育林,范兵利.羟基硅酸镁粉体添加剂含量对金属表面自修复膜生成的影响及机制[J].润滑与密封,2007,32(6):46-49.
    [1]谢学兵,陈国需,孙霞,等.纳米锌粉的摩擦自修复研究[J].润滑与密封,2008,33(6):6-8.
    [2]Tarasov S, Kolubaev A, Belyaev S, et al. Study of friction by nanocopper additives to motoroil[J]. Wear,2002,252:63-69.
    [3]Rende Liu, Dehua Tao, Yuan Zhao. Tribological performance of rare-earth alkylsalicylate as lubrication additive[J]. Industrial lubrication and Tribology, 2008,60(1):9-13.
    [4]张津,孙智富,夏华,等.模具表面无磨损摩擦与在线自修复研究[J].模具制造,2005,(2):68-71.
    [5]Dallaire S, Legoux J G, Levert L. Abrasion wear re-sistance of arc-sprayed stainless steel and composite stainless steel coatings[J]. Surf Coat Technol,1995,46:163-168.
    [6]豆立新,龚华栋,吕振坚,等.分散在润滑剂中的柔性金属微粒的摩擦学行为的实验研究[J].润滑与密封,2002,27(5):23-25.
    [7]游中流,高万振,赵源.新型润滑添加剂的磨损自补偿效应研究[J].材料保护,2003,36(2):13-15.
    [8]郭志光,顾卡丽,徐建生,等.有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(4):317-321.
    [9]田娥,莫易敏.自补偿添加剂作用下钢-钢摩擦副的摩擦学性能[J].润滑与密封,2006,31(4):73-75.
    [10]刘仁德,陶德华,付尚发,等.环烷酸亚锡的合成及其摩擦学性能研究[J].摩擦学学报,2004,24(1):42-45.
    [11]赵彦保,张治军,吴志申,等.锡纳米微粒的摩擦学性能[J].应用化学,2003,20(12):1157-1160.
    [12]陶德华,张玉伟,付尚发.几种微粒经纳米化后的润滑性变化[J].润滑与密封,2007,32(8):95-98.
    [13]张明,王晓波,伏喜胜,等.油溶性纳米Cu在微动磨损条件下的自修复行为与机理研究[J].摩擦学学报,2005,25(6):504-508.
    [14]王海斗,徐滨士,刘家浚,等.硫化亚铁固体润滑层的减磨机理模型[J].金属热处理,2005,30(1):61-64.
    [15]刘谦,徐滨士,许一,等.纳米Cu添加剂润滑摩擦表面分析[J].材料工程,2005,(2):13-16.
    [16]张志梅,古乐,齐毓霖,等.纳米级金属粉改善润滑油摩擦性能的研究[J].润滑与密封,2000,25(2):40-44.
    [17]杜令忠,徐滨士,董世运,等.镍基纳米Al2O3复合电刷镀层含磨粒油润滑条件下的磨损性能[J].润滑与密封,2005,30(1):20-22.
    [18]马大衍,马胜利,徐可为,等.纳米复合Ti-B-N薄膜的结构和摩擦学性能[J].稀有金属材料与工程,2005,34(10):1597-1600.
    [19]姚舜晖.碳化钨几何形状对碳化钨增强镍基合金火焰喷涂涂层的摩擦性能影响[J].摩擦学学报,2009,29(3):194-199.
    [20]方建,赵源.润滑添加剂的磨损自补偿摩擦学效应[J].材料保护,2006,39(6):18-20.
    [21]董伟达,马文江,黄岩.汽车及船用发动机应用金属磨损自修复技术的效果[J].铸造,2005,54(4):401-403.
    [22]郭延宝,徐滨士,许一,等.羟基硅酸盐矿物微粉添加剂对内燃机自修复效果的研究[J].中国表面工程,2004,17(6):19-26.
    [23]史佩京,许一,刘谦,等.纳米复合自修复添加剂的制备及其在发动机上的应用[J].中国表面工程,2004,65(2):37-40.
    [24]刘维民,薛群基,周静芳,等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程,2001,14(3):21-23.
    [25]王红美,徐滨士,马世宁,等.纳米颗粒Al2O3增强镍基复合镀层的制备及微观力学性能[J].材料热处理学报,2005,26(1):81-85.
    [26]马剑奇,王晓波,崔若梅,等.表面修饰γ-Fe2O2纳米颗粒的制备、表征及摩擦学性能[J].材料科学与工程学报,2004,22(4):607-610.
    [27]Avramova N, Neykov N S, Peneva S K, et al. A calorimetric study of Tin grown by reduction of SnC12 with Mg[J]. Journal of Physicsd-Applied Physics,1996, 29(5):1300-1305.
    [28]Nayral C, Teyeb O E, Maisonnat A, et al. A Novel Mechanism for the Synthesis of Tin / Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors[J]. Adu Mater,1999,11(1):61-63.
    [29]乔玉林,徐滨士,马世宁,等.含纳米微粒的多功能复合润滑油添加剂[J].新技术新工艺,1998,(4):37.
    [30]程作慧,薛永强,段燕芳,等.活化对不锈钢着色的影响[J].材料保护,2008, 41(3):28-30.
    [31]李祥明,戴振东,刘德浚,等.摩擦作用下金属氧化反应的机理[J].南京航天航空大学学报,1999,31(2):204-208.
    [32]莫云辉,陶德华,王帅宝,等.铝复合添加剂的磨损自修复和摩擦学特性[J].润滑与密封,2009,34(1):46-48.
    [1]世友.铟的生产、应用与开发[J].稀有金属与硬质合金,1994,22(4):49-53.
    [2]周智华,莫红兵,曾冬铭.高纯铟的制备方法[J].矿冶工程,2003,23(3):40-42.
    [3]铟化学手册[M].北京:北京大学出版社,2005.
    [4]朱协彬,段学臣.铟的应用现状及发展前景[J].稀有金属与硬质合金,2008,36(1):51-55.
    [5]李志伟,陶小军,程亚敏,等.表面修饰In纳米微粒的声化学法制备及结构表征[J].无机化学学报,2005,21(8):1261-1264.
    [6]肖高峰,马雪慧,赵彦保,等.花状结构纳米铟的制备及其摩擦学性能[J].物理化学学报,2008,24(10):1864-1868.
    [7]欧忠文,徐滨士,马世宁,等.磨损部件自修复原理与纳米润滑材料的自修复设计构思[J].表面技术,2001,30(6):47-53.
    [8]姜秉新,陈波水,董浚修.铜型添加剂摩擦修复作用的可行性研究[J].机械科学与技术,1999,18(3):445-447.
    [9]刘维民.纳米颗粒及其在润滑油脂中的应用[J].摩擦学学报,2003,23(4):265-267.
    [10]刘谦,许一,史佩京,等.机械零件摩擦磨损表面自修复研究进展[J].中国表面工程2005,18(5):1-4.
    [11]S K Rhee. Wear equation for polymers sliding against metal surfaces[J]. Wear, 1970(16):431.
    [12]S K Rhee. Wear of Metal-reinforced Phenolic Resins [J]. Wear,1971(18):471.
    [13]Stott F H. Mild wear of a low alloy steel at temperatuere up to 500℃[C]. In:Plenary and Invited paper from the First World Tribology Congress London,1997:391-401.
    [14]Quinn T F J. The physical analysis of tribology. Cambridge University Press, 1991:24-39.
    [15]欧风,李晓.应用摩擦化学的节能润滑技术[M].北京:中国标准出版社,1991.
    [16]Buckley D H. Surface in adhesion, friction, wear and lubrication [J]. Elsevier Scientific Publishing Company,1981,388-420.
    [17]顾卡丽,郭志光,徐建生.载荷对自修复纳米润滑添加剂摩擦学性能的影响[J].材料保护,2004,37(7):142-144.
    [18]董浚修.润滑原理及润滑油[M].烃加工出版社,1987.
    [19]齐效文,杨育林,薛飞.接触应力和相对滑动速度对金属表面自修复膜生成的影响及机制[J].润滑与密封,2007,32(7):20-25.
    [1]Sathy M N, Yaseen M, Role of promoters improving adhesion of organic coating to a substrate [J]. Progress in Organic Coatings,1995,26:275-313.
    [2]尹志岚,硅烷偶联剂对不锈钢表面膜基结合强度的影响[J].功能高分子学报,2004,17(2):298-302.
    [3]谢国先,邱大健,李朝阳,等.氨基硅烷偶联剂对环氧涂层附着力的影响[J].材料保护,2008,41(3):22-24.
    [4]康新婷.预处理对钛上镀银层结合力的影响[J].电镀与环保,2005,25(4):18-19.
    [5]Van Ooij W J, Child J, Protecting metals with silane couplingagents [J]. Chen Tech,1998,28:26-38.
    [6]Pan G. Adhesion promoters-surface coating[J]. Thin Solid Films,2006(5):34-39.
    [7]Zhu D, Van Ooij W J, Adhes J. Adhesion promoters-hand-book of coatings addtives[J]. Sci Tecnol,2002,16:1235-1236.
    [8]郝龙,冯全芬,沈伟,等.前处理对不锈钢表面化学镀Ni-P镀层结合力影响的研究[J].材料保护,2008,41(3):25-27.
    [9]郑臻,余新泉,孙扬善.前处理对镁合金化学镀镍结合力的影响[J].中国腐蚀与防护学报,2006,26(4):221-226.
    [10]高岩,郑志军,曹达华.铝基化学镀Ni-P前处理工艺对镀层结合力的影响[J].电镀与环保,2005,25(2):21-23.
    [11]雷鸣,万家瑰,万德立,等.铝材化学镀镍预处理工艺的研究[J].电镀与环保,2006,26(2):18-20.
    [12]周泽翔,程海斌,薛理辉,等.改善化学镀层结合力的方法及其检测手段[J].材料导报,2006,20(2):79-81.
    [13]工东,石琳,钛合金化学镀镍结合力探讨[J].表面技术,1991,20(3):36-39.
    [14]章明.增强不锈钢镀银层结合力的电解活化法[J].电镀与精饰,1996,18(4):20-21.
    [15]GB5270-85,金属基体上的金属覆盖层(电沉积层和化学沉积层)附着强度实验方法[S].
    [1]Oliver W C, Pharr G M, An Improved Technique for Determining Hardness and Elastic Modulus Using Load Displacement Sensing Indentation Experiments [J]. Mater. Res.,1992,7(6):1546-1583.
    [2]Love A E H. Boussinesq's Problem for a Rigid Cone [J]. Math.,1939,10:161-175.
    [3]Sneddon I N. The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile. Eng.Sci.1965,3:47-56.
    [4]Bolshakov A and Pharr G M. Influences of Pile-up on the Measurement of Mechanical Properties by Load and Depth Sensing Indentation Techniques [J]. Mater. Res., 1998,13:1049-1058.
    [5]张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用[J].现代科学仪器,2002,(1):32-37.
    [6]Bhushan B. Handbook of Micro/Nanotribology [M].2nd, Boca Raton:CRC Press,1999.
    [7]曲敬信,王泓宏.表面工程手册[M].北京,化学工业出版社,1998.
    [8]张泰华,郇勇,杨业敏,等.氮化钛沉积膜的摩擦性能研究[J].摩擦学学报,2003,23(5):367-370.
    [9]张泰华,郇勇,王秀兰.亚微米氮化钛的纳米压痕和划痕测定[J].力学学报,2003,35(4):498-501.
    [10]杨可桢,程光蕴,李仲生.机械设计基础[M].第五版,北京:高等教育出版社,2006.
    [1]李成英,孙江,杨李色,等.一次包络环面蜗杆传动圆盘给料机的设计与效率实验[J].机械设计与制造,2000,(3):31-32.
    [2]彭泽良,秦大同.渐开线蜗杆传动效率的理论与实验分析[J].现代制造工程,2002,(11):56-58.
    [3]孙江,袁惠群,李金.平面一次包络环面蜗杆传动圆盘给料机的传动效率[J].沈阳黄金学院学报,1997,16(1):54-59.
    [4]胡利水,郑堤.齿轮蜗杆减速机效率动态测量[J].机床与液压,2005,(10):149-150.
    [5]路懿,毛梦云.滚珠环面蜗杆传动装置的效率[J].东北重型机械学院学报,1989,13(2):20-25.
    [6]洪家娣,肖文林,王统.润滑油对蜗杆传动效率影响的研究[J].机械设计与研究,1997,(3):19-21.
    [7]徐钢涛,赵晓,戚文正.油品组成对蜗杆副传动效率的影响[J].机械传动,2006,30(6):87-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700