芭蕉芋燃料乙醇固态发酵工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“十一五”期间我国将重点推进不与粮争水争地,不与人争粮的非粮作物原料进行燃料乙醇生产,走自主创新、节能降耗,清洁生产的技术路线。本文对芭蕉芋原料燃料乙醇清洁生产工艺进行研究,并对其经济可行性进行分析。
     浓醪发酵最佳工艺:料水比1:2.2,液化温度85-90℃,液化酶用量5u/g原料,液化时间45min,糖化酶用量150u/g原料,糖化时间23.2min,发酵pH5.5,尿素添加量0.1%,发酵温度27.9℃,ADY添加量0.15%,发酵周期48h,辅料用量1%。此工艺小试试验,结果原料出酒率为31.4%(95vol.%,w/w),淀粉利用率达到85.0%。
     固态发酵研究表明,最佳辅料配比为30%的玉米芯(ZY)和20%的粗糠(XY),采用此配比,通过添加10U/g的淀粉酶和160U/g的糖化酶,进行固态蒸煮,固态糖化同时发酵,乙醇浓度为10.1%(v/v),产率达到29.4%,淀粉利用率达到86%。
     经济分析表明,在目前芭蕉芋市场价下,芭蕉芋固态发酵燃料乙醇生产是经济可行的。固态发酵每升乙醇加工成本1.0926元(0.1366美元),净原料成本每升1.0048元,总成本每升2.0974元(0.2622美元),以年产10万吨燃料乙醇计算,企业年利润超过40000万元,创造数千个就业岗位,使当地农民获得芭蕉芋原料收入34000万元,秸秆收入600万元,年总收入34600万元,农民每亩实现收入760元(11500元/ha)。因此,从技术和经济的角度考虑,发展芭蕉芋燃料乙醇都是可行的,芭蕉芋燃料乙醇产业化,能增加农民收入,带动相关产业发展,促进地方经济增长。
During eleventh five-year plan, the important crops of fuel ethanol development will are those which cannot compete for water and arable land with grain crop. In this work, technology conditions of ethanol fermentation were investigated. Furthermore, its economic feasibility was analyzed.
     The optimum technology of high gravity fermentation were ratio of material to water 1:2.2, a-amylase activity 5u/g C.edulis, liquefaction time 45 min, glucoamylase activity 150u/g C.edulis, saccharification time 23.2 min, pH 5.5, urea 0.1%, fermentation temperature 27.9℃, ADY 0.15%, fermentation time 48h, inert carrier 1%. The results indicated that the yields reach to 31.4% (95 vol.%, w/w), fermentation efficiency 85%.
     Solid state fermentation (SSF) indicated that 10.1% (v/v) of ethanol concentration can attain when 30% corncob and 20% rice bran was added for ethanol fermentation, ethanol conversion rates reach to 29.4%, fermentation efficiency 86%.
     The economic analysis showed fuel ethanol production from Canna edulis meal by SSF technology could produce satisfactory benefits. Processing costs are estimated at about 1.0926 yuan ($0.1366) per litre, net feedstock costs are estimated at about 1.0048 yuan per litre with total ethanol production costs estimated at 2.0974 yuan ($0.2622) per litre based on 2005-06 market prices. As an example to produce 100,000 ton fuel ethanol, the gross profit more than 400 million yuan and that coule let thousands people to obtain employment. The peasant can gain 340,000,000 yuan from feedstock, 6,000,000 yuan from straw, total income 346,000,000 yuan,11500 yuan per hectare (760/mu). Thus, C.edulis fuel ethanol system was feasible in technogy and economy. Industrialization of C.edulis fuel ethanol could increase peasant's income, provide new jobs for people, and promote local economic development.
引文
[1]Klanarong Sriroth,Kuakoon Piyachomkan,金树人,Christopher G.Oate.芭蕉芋淀粉的性质、加工与利用.木薯精细化工,2001,(2):1—8
    [2]中华人民共和国统计局编.2006中国统计年鉴.中国统计出版社,2006
    [3]中国海关网.http://www.customs.gov.cn
    [4]方琴.芭蕉芋的栽培与加工.特种经济动植物,2004,4:22
    [5]方芳,于随然,王成焘.中国玉米燃料乙醇项目经济性评估.农业工程学报,2004,20(3):239-242.
    [6]王瑞明.燃料乙醇固态发酵生产工艺的研究.天津科技大学博士论文,2002
    [7]孙奎钺.介绍一种高产饲料作物—芭蕉芋.畜牧与兽医,1960(10):141—142
    [8]左庆鹿,石鸣,张先华.兴仁县玉米芭蕉芋间作高产高效种植技术研究,1992,4:46-47.
    [9]朱文适,赵维娜,杨正光,赵蕰兰,王永生.芭蕉芋淀粉酶法制取葡萄糖的控制条件研究.贵州农业科学,1998,26(3):44-46.
    [10]朱邦长.高产饲料—芭蕉芋.贵州农学院,1982
    [11]李正川.蕉藕生态适应性初探.四川畜牧兽医,1994,4:26-27
    [12]李胜.生物质燃料乙醇企业循环经济模式研究.中国农业大学博士论文,2005.
    [13]刘代武,彭涛,邬善远,罗必英,李志军.玉米酒精浓醪发酵工艺研究.酿酒科技,2005,128(2):87-89
    [14]吴天祥.芭蕉芋玉米酒精及糟乳酸化饲料发酵工艺的研究.江南大学博士论文,2004
    [15]吴天祥,刘西会,廖忠明.芭蕉芋生产葡萄糖浆的研制.贵州工学院学报,1994,2(23):104—108.
    [16]吴天祥,丁重阳,杨海龙,陈蕴,章克昌.固态酒精发酵与酒精产业化发展的可行性研究.食品与发酵工业,2002,28(12):67-70
    [17]吴天祥,丁重阳,杨海龙,曹建平,章克昌.芭蕉芋原料酒精固态发酵工艺条件的初探.酿酒,2003,30(2),71—73.
    [18]陈家莹.淀粉新秀—芭蕉芋淀粉.淀粉与淀粉糖,1989,3:30-32
    [19]陈英伟,赵令,凌丰,李洪来,于秀荣,武占利.超级酒酵母在浓醪发酵生产中的应用.酿酒科技,2005,132(6):107—109
    [20]张治山,袁希钢.玉米燃料乙醇生命周期净能量分析.环境科学,2006,27(3):437-441.
    [21]国家环保总局.车用汽油有害物控制标准.1999
    [22]国家质量监督局.变性燃料乙醇国家标准(GB18350-2001)和车用燃料乙醇汽油国家标准. 2001.4
    [23]国家发展和改革委员会.燃料乙醇及车用乙醇汽油“十五”发展专项规划.2004.2
    [24]国家发展和改革委员会.车用乙醇汽油扩大试点方案和车用乙醇汽油扩大试点工作实施细则.2004.2
    [25]国家发展和改革委员会.关于加强玉米加工项目建设管理的紧急通知.2006
    [26]国家发展和改革委员会.关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知.2006
    [27]国家发展和改革委员会.能源发展“十一五”规划.2007.4
    [28]胡锦涛.中华人民共和国可再生能源法.2005.2
    [29]胡嗣明,张天杭.酒精生产分析检验.轻工业出版社,1983
    [30]赵华,赵树欣,才向东等.玉米原料酒精浓醪发酵技术的研究.酿酒科技,1998,89(4):38-39.
    [31]赵庆云,寸湘琴,彭凤梅,张发春,谢世清.云南芭蕉芋丰产栽培及加工.云南农业,2001,12:12.
    [32]原国家计委等八部委.车用乙醇汽油使用试点方案和车用乙醇汽油使用试点工作实施细则.2002.3
    [33]贾树彪,李盛贤,吴国封.新编酒精工艺学.北京:化学工艺出版社,2004
    [34]诸葛健.微生物学.北京:中国轻工出版社,2005
    [35]酒精浓醪技术应用交流会秘书处.酒精浓醪技术应用交流会总结.酿酒科技,2005,131(5):129
    [36]徐福建.陈洪章,李佐虎.固态发酵工程研究进展.生物工程进展,2002,22(1):44-48
    [37]章克昌.酒精与蒸馏酒工艺学.北京:中国轻工业出版社,2004.
    [38]章克昌.发展燃料酒精的建议.中国工程科学,2000,2(6):89-93.
    [39]崔民选.2006中国能源发展报告.社会科学文献,2006.68-69
    [40]黄立新,杨松青.芭蕉芋淀粉的工业化生产.武汉工业学院学报,2000,1:21-23
    [41]黄宇彤.酒精浓醪发酵菌种选育及发酵条件的优化.天津科技大学博士论文,2002
    [42]第六届中国亚洲清洁燃料国际研讨会.乙醇汽油未来的发展有赖于生产原料多样化.中国石油化工.2005,12:55-56
    [43]曾麟,王革华.中国甘蔗燃料乙醇生产的技术、经济和环境可行性分析.可再生能源,2006,128(4):46—9
    [44]Balusu R, Paduru RR, Kuravi SK, Seenayya G, Reddy G. Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum SS19, Process Biochem. 2005; 40:3025-30.
    [45]Bandaru WR, Somalanka SR, Menduc DR, Madicherla NR, Chityala A. Optimization of fermentation conditions for the production of ethanol from sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis using response surface methodology. Enzyme Microb. Technol., 2006; 38:209-14.
    [46] Baras J, Gac'es?a S, Pejin D. Ethanol is a strategic raw material. Chem Ind., 2002, 56: 89-105.
    [47] Barry D. Solomon, Justin R. Barnes, Kathleen E. Halvorsen. Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 2007,31:416—425
    [48] Bebic' Z, Jakovljevic' J, Baras J. The corn starch hydrolyzate as a fermentation substrates for ethanol production. Hem Ind., 2000, 54:5-9.
    
    [49] Berg.C World fuel ethanol analysis and outlook. 2004.4. http://www.fo-licht.com/
    [50] Box GEP, Behnken DW. Some new three level designs for the study of quantitative variables. Technometrics, 1960; 2: 455-75.
    [51] California Energy Commission. Ethanol fuel incentives applied in the US, reviewed from California's perspective. CEC staff report P600-04-001, Sacramento, California, January 2004.
    [52] Carstedt.P. Systems perspective on the global development for bioethanol. BioAlcohol Fuel Foundation. 2002.12.
    [53] Casey, G.P, Magnus, C. A., Ingledew, W. M., high gravity brewing: nutrient enhanced production of high concentration of ethanol by brewing yeast. Biotechnol. Lett., 1983, 5:429-34.
    [54] Casey, G. P., Magnus, C. A.&lngledew, W. M., High gravity brewing: effects of nutrition on yeast composition, fermentative ability and alcohol production. Appl.Environ.Microbiol., 1984, 48: 639-46.
    [55] Chen SL. Optimization of batch alcoholic fermentation of glucose syrup substrate. Biotechnol Bioeng 1981; 23:1827-36.
    [56] Classen JJ, Engler CR, Kenerley CM, Whittaker AD. A logistic model of subsurface fungal growth with application to bioremediation, J. Environ. Sci. Health A, 2000, 35 (4):465-488.
    [57] Dai D, Hu ZY, Pu GQ, Li H, Wang CT. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Conversion and Management, 2006, 47(13-14): 1686-1699.
    [58] Demirbas M.F, (?) stafa Balat. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Conversion and Management, 2006,47:2371-2381
    [59] Energy Information Administration. Status and impact of state MTBE ban, 2003. Available at: (http://www.eia.doe.gov/oiaf/servicerpt/mtbeban/)
    
    [60] Erdal G, Esengun K, Erdal H, et al. Energy use and economical analysis of sugar beet production in Tokat province of Turkey [J]. Energy, 2007, 32: 35-41.
    
    [61] Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghoshb S, Szakacs G, Pandey A. Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae, Biochem. Eng. J., 2003,15:107-15.
    
    [62] Gallagher PW, Brubaker H, Shapouri H. Plant size: Capital cost relationships in the dry mill ethanol industry. Biomass and Bioenergy, 2005, 28:565-571.
    
    [63] Graboski M. Fossil energy use in the manufacture of corn ethanol [R]. National Corn Growers Association, Washington, DC, 2002. Also available at: http:// www.ncqa.com/ethanol/pdfs/energy balance report final R1 .PDF
    
    [64] Han BZ, Rombouts FM, Nout MJR. A Chinese fermented soybean food, Int. J. Food Microbiol., 2001,65 (1-2):1-10.
    [65] Haddadin MSY, Abu-Reesh IM, Haddadi FAS n, Robinson RK. Utilisation of tomato pomace as a substrate for the production of vitamin B-12—a preliminary appraisal, Bioresource Technol., 2001, 78 (3):225-230.
    [66] Hari Krishna S, Prasanthi K, Chowdary GV, Ayyanna C. Simultaneous saccharification and fermentation of pretreated sugar cane leaves to ethanol. Process Biochem., 1998; 33: 825-830.
    [67] Hung PV, Morita N. Physicochemical properties and enzymatic digestibility of starch from edible canna (Canna edulis) grown in Vietnam. Carbohydrate Polymers 2005, 61: 314-321.
    [68] Ingeldew WM, Kunkee RE. Factors influence sluggish fermentation of grape juice. Am.J.Enol.Viticult., 1985, 36:65-76.
    [69] Ingledew.W.M.,Jones, A. M.,Bhattry, R.S., Rossnagel, B. G., Fuel alcohol production from hullless barley. Cereal Chem., 1995, 72:147-150.
    [70] Kalil SJ, Maugeri F, Rodrigues Ml. Response surface analysis and si(?)lation as a tool for bioprocess design and optimization. Process Biochem., 2000; 35:539-550.
    [71] Kayalia HA, Tarhana L, Soranb H. Variations of alcohol dehydrogenase activity and fermentative pyruvate, ethanol production of F. equiseti and F. acuminatum depend on the yeast extract and urea concentrations. Enzyme and Microbial Technology, 2005,36:706-711.
    [72] Kadar Zs, Szengyel Zs, Reczey K. Si(?)taneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod., 2004; 20:103-110
    [73] Kim CH, Rhee SK. Process development for silsltaneous starch saccharification and ethanol fermentation by Zymomonas mobilis. Process Biochem., 1993; 28: 331-339.
    [74] Kiransree N, Sridhar M, Suresh K, Rao LV. High alcohol production by solid state fermentation from starchy substrates using thermo-tolerant Saccharomyces cerevisiae. Bioprocess Eng., 1999; 20: 561-563.
    [75] Kiransree N, Sridhar M, Venkateswar RL, Pandey A. Ethanol production in solid substrate fermentation using thermotolerant yeast. Process Biochemistry 1999,34:115-119
    [76] Kovarik B, Henry Ford. Charles Kettering and the "fuel of the future". Automotive History Review, 1998; 32:7-27.
    [77] Kruger L, Pickerell ATW, Axcell B. The sensitivity of different brewing yeast strains to carbon dioxide inhibition: fermentation and production of flavour-active volatile compounds. Inst. Brew., 1992,98:133-138.
    [78] Knight P. Sugar and ethanol in Brazil and South America. International Sugar Journal, 2006, 108(1293): 472.
    [79] Lopes DHJ, Sola-Penna M. Urea Increases Tolerance of Yeast Inorganic Pyrophosphatase Activity to Ethanol: The Other Side of Urea Interaction with Proteins. Archives of Biochemistry and Biophysics, 2001, 394(1): 61-66.
    [80] McCaig R, Mckee J, Pifisterer EA, Hysert DW, (?) noz E, Ingeldew WM. Very high gravity brewing -laboratory and pilot plant trials. J. Am. Soc. Brew. Chem., 1992, 50: 18-26.
    [81] Medeiros ABP., Pandey A, Freitas RJS, Christen P, Soccol CR. Optimization of production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology, Biochem. Eng. J., 2000, 6 (1): 33-39.
    [82] Miller G.., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.
    [83] Minarik E, Jungova Kollar R, Sturdilk E. Wirkung verschiedener Hefezellwand- und cellulose praparate auf die alkoholische garung des mostes. Mitt. Klosterneuburg. 1992, 42:13-15.
    [84] Mojovic' L, Nikolic' S, Rakin M, Vukasinovic M. Production of bioethanol from corn meal hydrolyzates. Fuel, 2006.85:1750-1755.
    [85] Naveena BJ, Altaf Md, Bhadrayya K, Madhavendra SS, Reddya G. Direct fermentation of starch to L (+) lactic acid in SSF by Lactobacillus amylophilus GV6 using wheat bran as support and substrate: medium optimization using RSM. Process Biochem 2005; 40: 681-690
    [86] Ogbonna DN, Sokari TG, Achinewhu SC. Development of an owoh-type product from African yam beans (Sphenostylis stenocarpa) (Hoechst (ex. A. Rich.) Harms.) seeds by solid substrate fermentation, Plant Foods Human Nutr., 2001, 56 (2):183-194.
    
    [87] Ozkan B, Akcaoz H, Fert C. Energy input-output analysis in Turkish agriculture. Renew Energy, 2004, 29:39-51.
    
    [88] Pandey A. Recent process developments in solid-state fermentation, Process Biochem., 1992, 27 (2): 109-117.
    [89] Pandey A, Solid-state fermentation: an overview, in: A. Pandey (Ed.), Solid State Fermentation, Wiley, New Delhi, India, 1994, pp. 3-10.
    [90] Pandey A, Selvakumar P, Soccol CR, Nigam P, Solid-state fermentation for the production of industrial enzymes, Curr. Sci., 1999, 77 (1):149-162.
    [91] Pandey A, Soccol CR, Mitchell DA. New developments in solid-state fermentation. I. Bioprocesses and products, Process Biochem., 2000, 35 (10):1153—1169.
    [92] Pandey A. Solid-state fermentation. Biochemical Engineering Journal, 2003,13:81-84
    [93] Parajo JC, Santos V, Vazquez M. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochem., 1998; 33:181-187.
    [94] Piyachomkwan K, Chotineeranat S, Kijkhunasatian C, Tonwitowat R, Prammanee S, Oates C, Sriroth K. Edible canna (Canna edulis) as a complementary starch source to cassava for the starch industry. Ind Crops Prod., 2002; 16:11-21.
    [95] Plackett RL, Burman JP. The design of opti (?)m (?) Itifactorial experiments. Biometrika, 1946; 33:305-325.
    [96] Prakasham RS, Kuriakose B, Ramakrishna SV. The influence of inert solids on ethanol production by Saccharomyces cerevisiae. Appl Biochem Biotechnol., 1999, 82(2):127-134.
    [97] Postgate JP. Viable counts and viability. In: Norris JR, Ribbons DW, editors. Methods in microbiology. New York: Academic press; 1967. p. 611-628.
    
    [98] Rebitzer G, Ekvall T, Frischknecht R, et al. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications [J]. Environment International, 2004, 30:701-720.
    
    [99] Renewable Fuels Association, 2007.2.25. Web-site. ( http://www.ethanolrfa.org/)
    
    [100] Santacruz S, Koch K, Svensson E Ruales J, Eliasson AC. Three underutilised sources of starch from the Andean region in Ecuador Part I. Physico-chemical characterization. Carbohydrate Polymers, 2002; 49: 63-70.
    [101] Saucedo-Castaneda G, Lonsane BK, Navarro JM, Roussos S, Raimbault M. Potential of using a single fermenter for biomass built-up, starch hydrolysis and ethanol production-solid state fermentation system involving Schwanniomyces castellii. Appl Microbiol Biotechnol. 1992:36:47-61
    [102] Shapouri H and Gallagher P. USDA's 2002 Ethanol Cost-of-Production Survey. USDA, Agricultural Economic Report Number 841: 2005,6:1-19
    [103] Shapouri H, Salassi M, Fairbanks NJ. The economic feasibility of ethanol production from sugar in the United States. USDA, 2006, 6:1-69
    [104] Shigechi H, Fujita Y, Koh J, Ueda M, Fukuda H, Kondo A. Energy-saving direct ethanol production from low-temperature-cooked corn starch using a cell-surface engineered yeast strain co-displaying glucoamylase and a-amylase. Biochem Eng., 2004,18:149-153.
    [105] Solomon BD. Gasohol, economics, and passenger transportation policy. Transportation Journal, 1980, 20(1):57-64.
    [106] Thatipamala R, Hill AG, Rohani S. On-line estimate and adaptive optimization using state equations for continuous production of bioethanol. Biotechnol., 1996, 48:179-190.
    [107] Thitipraphunkul K, Uttapap D, Piyachomkwan K, Takeda Y. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I. Chemical composition and physicochemical properties. Carbohydrate Polymers, 2003; 53: 317-324.
    [108] Thomas KC, Ingledew WM. Production of 21 %(v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol., 1992, 10: 61-68.
    [109] Thomas KC, Hynes SH, Ingledew WM. Effects of Particulate Materials and Osmoprotectants on Very-High-Gravity Ethanolic Fermentation by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 1994, 5:1519-1524.
    [110] Thomas KC, Dhas A., Rossnagel BG., Ingledew WM. Production of fuel alcoholfrom hullless barley by VHG technology. Cereal Chem., 1995, 72:360-364.
    [111] Thomas KC, Hynes SH, Ingledew WM. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochemistry, 1996, 31(4): 321-331
    [112] US House of Representatives, Committee Print of the Energy Policy Act of 2005. (http://enerqvcommerce.house.gov/108/enerqv pdfs 2.htm).
    [113] Wang S, Thomas KC, Sosulski K, Ingledew WM, Sosulski FW. Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale Process Biochemistry, 1999, 34:421-428
    [114] Wood JM, Bremer E, Laszlo N. Osmosensing and osmoregulatory compatible solute accumulation by bacteria Comparative. Biochem. Physiol., 2001, 130:437-460.
    [115] Xu F, Tao WY, Cheng L, Guo LJ. Strain improvement and optimization of the media of taxol producing fungus Fusarium maire. Biochem. Eng. J., 2006, 31:67-73.
    [116] Yang XX, Chen HZ, Gao HL, Li ZH. Bioconversion of corn straw by coupling ensiling and solid-state fermentation, Bioresource Technol., 2001, 78 (3):277-280.
    [117] Zhang C, Han WJ, Jing XD, Pu GQ, Wang CT.Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renewable and Sustainable Energy Reviews 2003, 7: 353-366

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700