深海采矿1000米海试系统主要部件布放中的水动力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海采矿系统的布放是深海采矿作业顺利进行的基础,按照系统的动力学特性,布放过程可分为两个部分,第一部分为集矿机从采矿船上吊起到集矿机入水,在集矿机入水时将出现复杂的气-固-液三相耦合过程,集矿机底部将承受瞬间出现的巨大砰击载荷,这将会影响到布放机构的工作,在极端的海况下甚至导致布放的失败;第二部分是从集矿机完全浸没在海水中开始到集矿机到达海底,在这个布放过程中,受到波浪等海洋环境以及船舶的随波运动的影响,布放中的系统处于不稳定状态,浸没在水下的设备总质量将越来越大,巨大的质量在水中随着采矿船运动,可能导致采矿系统与采矿船连接部分承受很大的载荷。因此,深海采矿系统的布放和水动力问题研究是我国深海采矿研究领域中非常重要但又涉及较少的内容,本文以中国深海采矿1000米海试系统为研究对象,采用计算流体力学方法对采矿系统在布放中的关键阶段的动力学和水动力特性进行了探索性研究。
     本文的主要研究成果分为以下几个部分:
     1、在RANSE (Reynolds-Averaged Navier-Stokes Equations)基础上,采用Fluent软件构建了二维数值波浪水槽。在数值水槽的左端采用摇臂法进行造波,而在水槽的右端则设置一段消波区域采用多孔介质法用来消散波浪,减少波浪的反射。在数值方法上,选择有限体积法,并用VOF(Volume of fluid)法追踪二维自由液面的波动。通过适当选择多孔介质特征参数,可以造出理想的规则线性波,二阶Stokes波以及基于海浪谱的随机波。着重对多孔介质特征参数的选择进行了研究,得到不同波高下多孔介质参数选择的方法。通过选择合适的仿真参数得到的波浪仿真结果与1000m海试布放回收作业海洋环境下的波浪十分吻合,为集矿机模型在波浪影响下入水的研究奠定基础。
     2、对集矿机在垂直方向的静水砰击进行了仿真研究。按照入水速度性质的不同,静水砰击分为匀速入水和自由落体入水两种情况。考虑到集矿机的主要外部特征,将其简化为平底物体,得到了在不同入水速度下,集矿机匀速入水最大砰击压力、砰击压力分布及砰击持续时间,分析了入水速度对最大砰击压力和砰击持续时间的影响;对集矿机的自由落体情况进行了研究,得到了最大砰击压力、砰击压力分布、砰击持续时间、砰击时最大加速度、最大速度等,分析了两个主要的特征参数——高度比率与质量比率的变化趋势,并与匀速入水的情况进行了比较。静水砰击研究结果可以与集矿机在波浪影响下的入水砰击进行比较。
     3、在构建完成数值波浪水槽和集矿机入静水研究的基础上,对集矿机在波浪影响下入水进行了研究。首先对集矿机静止悬挂在海面上的工况进行了仿真,其结果表明,其底部砰击力主要由波面水粒子的瞬时加速度决定;其次,根据在集矿机模型入静水研究所总结的理论,分析了集矿机入水时,底部砰击压力可能出现最大值的时间点和位置。在理论分析的基础上进行了仿真,得到不同海况和不同位置入水时,集矿机底部的最大砰击压力时间历程、压力分布情况以及砰击持续时间等要素,其结果与集矿机模型入静水研究进行了比较,得到了波浪的影响,并分析了影响产生的原因;观察到了集矿机在波浪影响下的入水与楔形体垂直入水的相似性。
     4、对深海采矿系统各主要部件水动力特性进行了研究。采用数值方法计算了各主要部件的附加质量系数:第一种方法是根据势流理论,在面元法的基础上使用FORTRAN语言编写计算程序的算法;另一种方法是在用牛顿第二定律分析集矿机模型在流场中运动的基础上,利用F1uent软件得到仿真结果后再进行处理。两种方法所得的结果可以相互验证。
     5、对深海采矿系统布放进行了研究。这里主要指集矿机从完全浸没在海水中开始到集矿机到达海底之前的布放,管道系统可视为垂直悬挂于安装在采矿船上的布放装置上,在集矿机的牵引下逐渐放入海水中。分析了不同海况和不同布放速度对布放作业各个过程的影响,还针对考虑集矿机附加质量和不考虑附加质量两种情况,对作用在集矿机上的拉力变化进行了讨论。
     6、在六自由度实验平台和水池中进行了结构物垂直入静水实验。设计了试验装置和试验模型,测试了模型以不同速度匀速入水时模型底部所受的砰击压力。通过比较表明实验结果与仿真结果相当吻合,可验证采用计算流体力学软件F1uent研究物体入水砰击问题以及仿真中所编制的仿真程序的正确性与可信性。
Successful deployment of mining system is the basic and premise of deep sea mining operation. According to the dynamics characteristics of mining system, the deploying process can be divided into two parts:the first part is from beginning of deployment to water entry of mining tool when a complicated air-body-water coupling process occurs, and the bottom of mining tool would bear a huge impact force, exerting big influence on deploying equipment, which even results in failure of deployment in hostile ocean conditions; the second part is from the time that mining tool fully immerses in sea water to mining tool reaching to seafloor, because of the effect of sea wave and motion of mining vessel, the mining system in deploying process is in unstable state, and the whole mass of immersed parts of mining system is more and more big, leading to considerable large load in connecting parts between mining system and mining vessel. The study of deployment and hydrodynamic characteristics of deep sea mining system is an important but seldom concerned subject. Based on the 1000m sea pilot system of deep-sea mining tool of China, exploratory researches are conducted which focus on deployment and hydrodynamic characteristics of mining system in key process of deployment.
     Efforts have been made and the results are presented as follows:
     1. The two-dimensional (2D) numerical wave tank is developed using CFD code Fluent. A piston-type wave-maker is incorporated in the computational domain to generate the desired waves, including linear waves of different ocean conditions,2-order Stokes wave and random wave based on Pierson-Moskowitz spectrum. Towards the end of the computational domain, the porous media technology is applied to form an artificial damping zone so that the wave energy is gradually dissipated in the direction of wave propagation. To verify their applicability in two dimensions, the computational results are compared with analytical solutions, showing good agreement; the effect of permeability of porous media is discussed, a suggestion for choosing permeability of porous media is made. It is shown that an efficient method for the simulation of waves is successfully established for research of wave-structure interaction by CFD codes.
     2. The hydrodynamic problems of a two-dimensional model of seafloor mining tool entering still water vertically are analyzed based on the velocity potential theory. Two conditions are mainly discussed. The first is that mining tool enters still water in constant speed. Pressure distribution, maximum impact pressure, impact duration time during the water entry of mining tool are presented at various deploying velocity, the two peak pressures in impact process are observed, the relationship between maximum impact pressure and deploying velocity is obtained. The results are compared and verified with that based on other prediction theories and methods. The second condition is that mining tool enters water in free fall motion. The time histories of velocity and pressure during the impact process are obtained. Residual air entrained between the bottom of mining tool and free water surface is observed, and influence which exerts on impact is discussed. The concept of impact added mass is presented to express the coupled function between air-rigid body-water during water entry process. Two dimensionless ratios are determined which the drop simulations should comply with to simulate an average slam:drop height ratio and mass ratio. The relationships between dimensionless ratios and several important parameters derived from simulation results are discussed.
     3. Based on the studies of numerical wave tank and mining tool entering still water, the mining tool impacting with sea water with the influence of ocean waves are studied. The condition that the mining tool is suspended still above the water surface is considered, the simulation results show the impact pressures of this condition are mainly determined by the instant acceleration of water particles on wave surface. The second condition is that mining tool enters waves, the time points and positions of which the pressures on bottom of mining tool reaches to their maximum values are obtained, and the time histories of impact pressure of bottom of mining tool, the pressure distributions and impact durations are presented, those results are compared with that of still water entry of mining tool, thus the influence that waves exert on water entry of mining tool is obtained. The similarity between mining tool entering wave and wedged-shape body entering still water is observed.
     4. Two numerical methods for assessing the added mass of components of deep sea mining system are mainly proposed in this work. The first method is referred to as the Hess-Smith method which is based on surface panel method and potential theory. The second method is referred to here as a Fluent method which is a constant acceleration method based on the CFD software Fluent. The added mass coefficient of components of mining system which are acquired from the two methods are approximately equal, both are applicable for infinite flow field, while for the condition of free surface, including water entry, mining tool touching down the seafloor, the Fluent method is more suitable.
     5. Deployment of seafloor mining tool is studied with the effects of wave and motion of vessel considered. Four ocean conditions which are proper for deployment are considered, and the effect of deploying velocity is also researched. The results indicate that the ocean condition and the deploying velocity play an important role to determine the kinematic and dynamic condition of the deployment process of deep sea mining system, and the research results can provide basic information for the design of the heave compensation system and reduction of dynamics effects of riser system on seafloor mining tool during the deploying process.
     6. Experiments of still water entry of body are conducted by six dimension-of-freedom (DOF) experiment platform and water tank. The experimental model is designed and experimental equipment is constructed. The impact pressures which mining tool model bear when it enters still water in different constant velocities are obtained by measuring devices, The comparisons between simulation results and experimental results indicate that the two results are identical, thus the accuracy and dependablity of simulations of water entry study based on CFD code Fluent can be verified.
引文
[1]Scott S. D. The Dawning of Deep Sea Mining of Metallic Sulfides:The Geologic Perspective[C]. In:Proceedings of the Seventh ISOPE Ocean Mining Symposium, 2007:6-11
    [2]牛京考.大洋多金属结核开发研究述评[J].中国锰业,2002,20(2):20-26
    [3]Park Se-Hun, Yang Hee-Cheol, Lee Kyeong-Yong, et al. Preliminary Feasibility Study for the Commercial Development of Seafloor Hydrothermal Deposits in the EEZ of the Kingdom of Tonga[C]. In:Proceedings of The Eighth (2009) ISOPE Ocean Mining Symposium,2009:27-33
    [4]戴瑜,刘少军,李流军,等.Nautilus矿业公司在海底块状硫化物勘探中采用的取样技术与装备[J].海洋地质与第四纪地质,2008,28(4):41-46
    [5]邬长斌,刘少军,戴瑜.海底多金属硫化物开发动态与前景分析[J].海洋通报,2008,27(6):101-109
    [6]中国大洋协会办公室,国家资源信息中心.关于先驱投资者申请矿区的登记[M].北京:海洋出版社,1998:5-19
    [7]侯孝章.脐带电缆及洋流对潜航器运动之影响[D].台南:成功大学,2005:54-78
    [8]马登武,叶文,于凤全,等.虚拟现实技术及其在飞行仿真中的应用[M].北京:国防工业出版社,2005:17-78
    [9]Everett J. Lecourt, Darrell W. Williams. Deep Ocean Mining New Application for Oil Field and Marine Equipment[R]. In:OTC 1472,1971:26-55
    [10]钟祥,牛京考.日本大洋多金属结核开采试验的进展[J].国外金属矿山,2000,(3):33-38
    [11]Amudha K., Rajesh S. Development and Testing of Remotely Operated Artificial Nodule Laying System at 500-m water depth[C]. In:Proceedings of the Eighth ISOPE Ocean Mining Symposium,2009:233~238
    [12]Xiaozhou Hu, Shaojun Liu, Bin Du. Development of Dynamics Model of Seafloor Mining System and Analysis of Influence Factors in the Deploying Process[C]. In:Proceedings of the Eighth ISOPE Ocean Mining Symposium, 2009:246-254
    [13]Xiaozhou Hu, Shaojun Liu, Bin Du. Dynamic Analysis and force calculation of Seafloor Mining Tool Based on the Heave Motion of Mining Support Vessel in the Process of Launching[C]. In:Proceedings of international conference on measuring technology and mechatronics automation,2009:62-66
    [14]Von Karman. The impact of seaplane floats during landing[R]. NACA,1929:1-8.
    [15]Wagner H. Trans, phenomena associated with impacts and sliding on liquid surfaces[J]. Math Mechanics,1932,12(4):193-215
    [16]Bisplinghoff R. L., Doherty C. S. Some studies of the impact of vee wedges on a water surface[J]. Journal of the Franklin Institute,1952,253(6):547-561
    [17]Fabula A. G. Ellipse-fitting approximation of two-dimensional normal symmetric impact of rigid bodies in water[C]. In:Fifth Midwestern Conference on Fluid Mechanics,1957:299-315
    [18]Watanabe I. Theoretical investigation of wave impact loads on ships[C]. In:16th Symposium Naval Hydrodynamic,1986:52-61
    [19]Cointe R., Armand J. L. Hydrodynamic impact analysis of a cylinder [J]. Journal of Offshore Mechanics and Arctic Engineering, ASME,1987,109(3):237-243
    [20]Chuang S. L. Experiments on flat-bottom slamming [J]. Journal of Ship Research, 1966,(10):10-17
    [21]Verhagen, J. H. G. The impact of a flat plate on a water surface [J]. Journal of Ship Research,1967,(12):211-223
    [22]Yamamoto Y., Lida K., Fukasawa T.,Murakami T. Structural damage analysis of a fast ship due to bow flare slamming[J]. International Ship building Progress, 1985,(32):124-136
    [23]Vinje T., Brevig P. Nonlinear two-dimensional ship motions[C]. In:3rd Proceedings International conference on Numerical Ship Hydrodynamics, Paris, 1981:257-266
    [24]Greenhow M., Lin W. M. Numerical simulation of nonlinear free surface flows generated by wedge entry and wave maker motions[C]. In:Proceedings of 4th Numerical Conference on Ship Hydrodynamics,1985:186-191
    [25]Yim B. Numerical solution of two-dimensional wedge slamming with a nonlinear free-surface condition[C]. In:Proceedings of 4th numerical conference on ship hydrodynamics, Washington DC,1985:107-116
    [26]Greenhow M. Wedge entry into initially calm water [J]. Applied Ocean Research, 1987,9(4):214-223
    [27]Wu G. X., Sun H., He Y. S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[C]. Journal of Fluids and Structures, 2004,19(3):277-289
    [28]陈震,肖熙.平底结构砰击压力的分布[J].中国造船,2005,46(4):97-103
    [29]陈震,肖熙.平底结构砰击压力峰值分析[J].上海交通大学学报,2006,40(6):983-987
    [30]陈震.海洋结构物入水砰击载荷与响应研究[D].上海:上海交通大学,2005:26-78
    [31]曹正林.高速三体船砰击强度研究[D].武汉:武汉理工大学,2008:69-93
    [32]曹正林,吴卫国.空气层对高速三体船连接桥砰击压力峰值影响二维仿真研究[J].船舶力学,2008,12(2):237-242
    [33]曹正林,吴卫国.影响高速三体船连接桥砰击压力峰值因素研究[J].武汉理工大学学报,2008,32(1):5-8
    [34]Tanizawa K., Naito S. A study on parametric roll motions by fully nonlinear numerical wave tank[C]. In:Proceedings of 11th ISOPE conference,1997:69-75
    [35]Tanizawa K. The state of the art on numerical wave tank[C]. In:Proceedings of 4th Osaka Colloquium on Sea keeping Performance of Ships,2000,95-114
    [36]Madsen O. S. Waves generated by a piston-type wave maker[C]. In:Proceedings of 12th coastal engineering conference,1970:589-607
    [37]Longuet-Higgins, M. S., Cokelet, E. D. The deformation of steep surface waves on water I A numerical method of computation[C]. In:Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences.1976,350:1-26
    [38]Nakayama T. Boundary element analysis of nonlinear water wave problem [J]. International Journal for Numerical Methods in Engineering,1983,19(7): 953-970
    [39]Brorsen M., Larsen J. Source generation of nonlinear gravity waves with the boundary integral equation method [J]. Coastal Engineering,1987,11(2):93-113
    [40]Ohyama T., Nadaoka K. Development of a numerical wave tank for analysis of nonlinear and irregular wave field [J]. Fluid Dynamics Research,1991,8(5): 231-251
    [41]王永学.无反射数值渡浪水槽[J].水动力学研究与进展,1994,9(2):205-214
    [42]Grilli S. T., Horrillo J. Numerical generation and absorption of fully nonlinear periodic waves [J]. Journal of engineering mechanic, ASCE,1997,123 (10): 1060-1069
    [43]Chih-Ming Dong, Ching-Jer Huang. Generation and Propagation of Water Waves in a Two-Dimensional Numerical Viscous Wave Flume [J]. Journal of Waterway, port, coast and ocean engineering,2004,130(3):143-153
    [44]Hsu T. W., Hsieh C. M., Hwang R. R. Using RANS to simulate vortex generation and dissipation around impermeable submerged double breakwaters [J]. Coastal Engineering,2004,51(7):557-579
    [45]贺五洲,姜鹏.论推摇混合的造波方式[J].清华大学学报,1998,38(1):45-49
    [46]Kim M. S., Lee W. I. A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part 1:new free surface-tracking algorithm and its verification [J]. International Journal for Numerical Methods in Fluids,2003, 42(7):765-790
    [47]周勤俊,王本龙,兰雅梅等.海堤越浪的数值模拟[J].力学季刊,2005,26(4):629-633
    [48]刘亚男,郭晓宇,王本龙等.基于RANS方程的海堤越浪数值模拟[J].水动力学研究与进展,2007,22(6):682-688
    [49]李凌,林兆伟,尤云祥等.基于动量源方法的黏性流数值波浪水槽[J].水动力学研究与进展,2007,22(1):76-82
    [50]朱仁传,缪国平,林兆伟等.运动船体甲板上浪的三维数值模拟[J].水动力学研究与进展,2008,23(1):7-14
    [51]董志,詹杰民.基于VOF方法的数值波浪水槽以及造波、消波方法研究[J].水动力学研究与进展,2009,24(1):15-21
    [52]Choi J. W., Sung B. Y. Numerical simulations using momentum source wave-maker applied to RANS equation model [J]. Coastal Engineering,2009, 56(10):1043-1060
    [53]Contento Giorgio. Nonlinear phenomena in the motions of unrestrained bodies in a numerical wave tank[C]. In:Proceedings of the International Offshore and Polar Engineering Conference,1996,(3):18-22
    [54]Li Chi-Wai, Lin Pengzhi. A numerical study of three-dimensional wave interaction with a square cylinder [J]. Ocean Engineering,2001,28(12): 1545-1555
    [55]Hur Dong-Soo, Mizutani Norimi, Kim Do-Sam. Direct 3-D numerical simulation of wave forces on asymmetric structures [J]. Coastal Engineering,2004,51(5): 407-420
    [56]Lin Pengzhi. A numerical study of solitary wave interaction with rectangular obstacles [J]. Coastal Engineering,2004,51(1):35~51
    [57]Greco M., Colicchio G., Faltinsen O. M. Bottom slamming for a Very Large Floating Structure:Coupled global and slamming analyses [J]. Journal of Fluids and Structures,2009,25(2):420-430
    [58]Hamn-Ching Chen, Kai Yu. CFD simulations of wave-current-body interactions including green-water and wet deck slamming [J]. Computers & Fluids,2009, 38(5):970-980
    [59]Sethian J. A. Level Set Methods:Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences [M]. New York:Cambridge University Press,1996:56-91
    [60]Liu P. L. Free surface tracking methods and their applications to wave hydrodynamics [J]. Advances in coastal and ocean engineering,1999,5(7): 213-240
    [61]Scardovelli R., Zaleski S. Direct numerical simulation of free surface and interfacial flow [J]. Annual Review of Fluid Mechanics,1999,(31):567-603
    [62]Enright D., Fedkiw R., Ferziger J., Mitchell I. A hybrid particle level set method for improved interface capturing [J]. Journal of computer physics,2002,183(1): 83-116
    [63]Sussman M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles [J]. Journal of computer physics, 2003,187(1):110-136
    [64]Harlow F. H., Welch J. E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J]. Physics of Fluids,1965,(8): 2182-2189
    [65]Amsdon A. A., Harlow F. H. The SMAC method:a numerical technique for calculation incompressible fluid flows[R]. Los Alamos:Los Alamos National Laboratory LA-4370,1971:10-23
    [66]Chan R.K.C, Street R.L. A computer study of finite-amplitude water waves [J]. Journal of computer physics,1970,(6):68-94
    [67]Unverdi S. O., Tryggvason G. T. A front-tracking method for viscous incompressible multi-fluid flows [J]. Journal of computer physics,1992,100(1): 25-37
    [68]Hirt C. W, Nichols B.D. Volume of Fluid (VOF) method for the dynamics of free boundaries [J]. Journal of computer physics,1981,39(1):201-225
    [69]Noh W. F., Woodward P. R. SLIC (simple line interface calculation) [C]. In: Proceedings of Fifth International Conference on Fluid Dynamics, In lecture Notes in Physics 59,1976:330-340
    [70]Ashgriz N., Poo J. Y. Flux line-segment model for advection and interface reconstruction [J]. Journal of Computer physics,1991,93(2):449-468
    [71]Wu Jong-Shyong, Hsieh Mang. An experimental method for determining the frequency-dependent added mass and added mass moment of inertia for a floating body in heave and pitch motions [J]. Ocean Engineering,2001,28(4):417-438
    [72]于洋,洪碧光.码头系泊船水动力特性的研究[J].大连海事大学学报,1999,25(3):36-39
    [73]杨松林,王太舒.直水道中细长体附加质量的计算和试验研究[J].水动力学研究与进展,1990,5(3):60-66
    [74]David Clarke. Calculation of the added mass of circular cylinders in shallow water [J]. Ocean Engineering,2001,28(9):1265-1294
    [75]David Clarke. Calculation of the added mass of elliptical cylinders with vertical fins in shallow water [J]. Ocean Engineering,2003,30(1):1-22
    [76]吴巍.立柱式平台的锚泊系统动力分析[D].大连:大连理工大学,2006:18-50
    [77]金占礼,王宗利,李红云,等.结构在无限流体域中振动时附连水质量的数值计算方法[J].上海交通大学学报,2000,34(8):1078-1081
    [78]王赤忠.浮体摇荡运动的水动力研究及其有限元数值解法[D].武汉:华中科技大学,1999:23-49
    [79]苏玉民,曹庆明,赖伟成.仿胸鳍推进系统的水动力分析[J].哈尔滨工程大学学报,2007,28(7):727-733
    [80]王飞.水下机器人在潜艇附近运动时的水动力计算[D].哈尔滨:哈尔滨工程大学,2003:41-67
    [81]刘树魁.随浪运动中船舶水动力的时域模拟[D].哈尔滨:哈尔滨工程大学,2006:17-34
    [82]林超友,朱军.潜艇近海底航行附加质量数值计算[J].船舶工程,2003,25(1):26-29
    [83]刘丹,王晓亮,单雪雄.平流层飞艇的附加质量及其对飞艇运动的影响[J].计算机仿真,2006,23(6):52-56
    [84]肖昌润,刘巨斌,毕毅.椭球体水动力数值计算[J].武汉理工大学学报,2007,34(5):842-845
    [85]周云龙,洪文鹏,王光培等.垂直上升通道内气液两相绕圆柱流动旋涡脱落频率和脉动升力的数值模拟[J].水动力学研究与进展,2007,22(2):194-201
    [86]谭伟.基于模态参数的水下航行器附加质量识别方法的研究[D].西安:西北 工业大学,2005:6-19
    [87]Lin Ming-chung, Shieh Li-der. Simultaneous measurements of water impact on two-demensional body [J]. Fluid Dynamics Research,1997,19(3):125-148
    [88]Smith N. J., Stansby P. K. The slam force on a flat plate in free flight due to impact on a wave crest [J]. Journal of Fluids and Structures,1998,12(2):183-196
    [89]Engle A., Lewis R. A comparison of hydrodynamic impacts prediction methods with two dimensional drop test data [J]. Marine structures,2003,16(2):175-182
    [90]Carcaterra A., Ciappi E. Hydrodynamic shock of elastic structures impacting on the water:theory and experiments [J]. Journal of sound and vibration,2004, 271(1):411-439
    [91]Ding Zhao-qiang, Ren Bing. Experimental study of unidirectional irregular wave slamming on the three-dimensional structure in the splash zone [J]. Ocean Engineering,2008,35(16):1637-1646
    [92]“十五”采矿海试系统总师组.大洋多金属结核中试采矿系统1000m海上试验总体系统技术设计[R].北京:中国大洋协会研究报告,2004:11-24
    [93]唐达生.扬矿硬管及管接头的研制[R].长沙:长沙矿冶研究院研究报告,2004:23-36
    [94]徐亦元.中间舱的研制[R].马鞍山:马鞍山矿山研究院研究报告,2004:45-56
    [95]金星.1000m海试软管研制及应用[R].长沙:长沙矿山研究院研究报告,2004:9-17
    [96]Anderson J. D.计算流体力学基础及其应用[M].北京:机械工业出版社,2007:35-67
    [97]J. N. Newman. Marine Hydrodynamics[M]. Massachusetts:MIT Press,1977: 28-45
    [98]Myers J. J., Holm C. H., McAllister R. H. Handbook of Ocean and Underwater Engineering[M]. New York:McGraw-Hill,1969:123-325
    [99]王福军.计算流体动力学分析——CFD软件原理及应用[M].北京:清华大学出版社,2004:1-30
    [100]Orlanski I. A simple boundary condition for unbounded hyperbolic flows [J]. Journal of Computer Physics,1997,21(3):251-269
    [101]Jagannathan S. Nonlinear free surface flows and an application of the Orlanski boundary condition [J]. International Journal of Numerical Methods in Fluids, 1988,8(9):1051-1070
    [102]Jagannathan S. Energy flux equalization:An open boundary condition for nonlinear free surface flows[J]. International Journal of Numerical Methods in Fluids,1992,14(7):793-815
    [103]Isaacson M., Cheung K. F. Second order wave diffraction around two-dimensional bodies by time-domain method [J]. Applied Ocean Research, 1991,13(4):175-186
    [104]Milgram J. S. Active water-wave absorbers [J]. Journal of Fluid Mechanics, 1970,43(4):845-859
    [105]Baker G. R., Meiron D. I., Orszag S. A. Applications of a generalized vortex method to nonlinear free surface flows[C]. In:Proceedings of the 3rd International Conference on Numerical Ship Hydrodynamics,1981:179-191
    [106]Baker G. R., Meiron D. I., Orszag S. A. Generalized vortex methods for free surface flow problems [J]. Journal of Fluid Mechanics,1982,(123):447-501
    [107]Faltinsen O. M著,崔维成、刘应中等译.海上高速船水动力学[M].北京:国防工业出版社,2007:1-100
    [108]戴仰山,沈进威,宋竞正.船舶波浪载荷[M].北京:国防工业出版社,2007:10-22
    [109]Yu Kai. Level-set RANS method for sloshing and green water simulations [D]. Texas:Texas A&M University,2007:12-67
    [110]Wehausen J. V., Laitone E. V. Surface Waves [M]. Berlin and New York: Springer-Verlag,1960:36-70
    [111]Michael R. Davis, James R. Whelan. Computation of wet deck bow slam loads for catamaran arched cross sections [J]. Ocean Engineering,2007,34(17):2265-2276
    [112]Huang K., Chen Hamn-Ching, Chen Chia-Rong. Vertical riser VIV simulation in uniform current [J]. Journal of Offshore Mechanics and Arctic Engineering, 2010,132(3):1-10
    [113]戴遗山,段文洋.船舶在波浪中运动的势流理论[M].北京:国防工业出版社,2008:1-200
    [114]王刚.深海采矿作业过程扬矿管线系统空间构型与动态特性研究[D].长沙:中南大学,2009: 53-69
    [115]杨楠.船舶运动的理论预报与研究[D].大连:大连理工大学,2005:1-65
    [116]兰姆主编.游镇雄,牛家玉译.理论流体动力学[M].北京:科学出版社,1990:57-68
    [117]陈材侃.计算流体力学[M].重庆:重庆出版社,1992:32-78
    [118]李艳.基于三维离散元管线模型的深海采矿1000m海试系统整体联动动力学研究[D].长沙:中南大学,2009:1-70
    [119]Buckham J. B. Dynamics modeling of low-tension tethers for submerged remotely operated vehicles [D]. Canada:University of Victoria,2003:1-80
    [120]Yettou E. M., Desrochers A., Champoux Y. A new analytical model for pressure estimation of symmetrical water impact of a rigid wedge at variable velocities [J]. Journal of Fluids and Structures,2007,23(3):501-522

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700