粉末注射成形铜基摩擦材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属粉末注射成型(MIM)因其制品具有高质量、高精度等优点成为近年来粉末冶金工业研究的热点。铜及铜基合金因具有导热率高、塑性好、延展率大、常温下与氧亲和力小、耐腐蚀性强等一系列优点,在现代导电导热材料、摩擦材料等方面占据了重要的地位。
     本文主要利用粉末注射成型技术制备铜基摩擦材料,优化了材料制备过程中的各工艺参数。在基本工艺研究的基础上,借助扫描电镜、X射线衍射仪及摩擦磨损试验机等仪器设备,对铜基粉末冶金摩擦材料的表面组织形貌、密度及互动摩擦磨损特性进行了较为系统的研究与分析。最后给出了其摩擦磨损性能。
     经工艺试验研究,注射成形最佳喂料工艺为:粉末装载量54%;粘结剂60%PW+25%LDPE+10%SA;混炼温度150℃;混炼时间2h。采用正交试验法系统研究了注射压力、注射温度、注射速度及其交互作用对注射预成形坯质量的影响,评价了各参数对成形坯质量的影响,获得了注射成形的优化注射工艺参数。最佳注射参数为:注射温度155℃,注射压力110 MPa,注射速度40m?s-1,锁模力90 MPa,保温时间10s。最佳脱脂工艺参数为:40℃脱脂6h。在560℃以下烧结时,升温速度应当控制在2℃·min-1以下;升温结束后,可采用快速降温的方式冷却。随着烧结温度的升高,试样的致密度逐渐提高;延长高温阶段的保温时间至10min有利于孔隙的消除,从而增加试样的致密度。
     摩擦磨损试验表明:采用粉末注射成形工艺制取的铜基摩擦材料,随着石墨含量的增加,材料的孔隙率增加,造成基体材料的密度及硬度均呈下降趋势。当石墨含量小于10%时,随着石墨含量的增加,减摩材料及对偶件的磨损率逐渐降低;当石墨含量处于10%~15%时,磨损率较小,摩擦系数能够稳定维持在较低水平,从而减少减摩材料的消耗,能够形成保护膜降低对偶件的磨损,保护对偶件;当石墨含量大于15%时,减摩材料的磨损率上升,摩擦系数增大。当石墨含量在10%~15%之间时,减摩材料既能获得较好的密度、硬度,又能充分发挥减摩效果,保护对偶件。
Metal Injection Molding (MIM) for its products with high quality, high-precision powder metallurgy industry and so become a hot research in recent years. For copper and copper alloy with high heat conductivity, good plasticity, extension rate, small oxygen affinity at room-temperature, high corrosion resistance and a series of advantages, in the modern thermal conductivity, friction materials, such as to occupy an important position.
     This article was prepared by Metal Injection Molding to produce friction material, optimize the parameters of material preparation process. On the basic of technology, the microstructure,density , friction and wear characteristics of the copper-based powder metallurgy friction material treated by surface transformation were systematically studied and analysised by means of scanning electron microscopy(SEM), X-ray diffraction (XRD),and wear tester and other equipment. Finally, given the comprehensive performance of friction and wear by comparative studies.
     Based technology test showed that the best injection molding feedstock preparation process: powder loading: 54%, adhesive formulations: 60% PW +25% LDPE +10% SA, mixing temperature: 150℃, mixing time: 2h. The injection pressure, injection temperature, injection speed and their interaction on the quality of preform injection were studied by orthogonal system to evaluate the various parameters on the forming blank quality, access the effection of injection molding process parameters optimization on injection .Optimal injection parameters were: injection temperature 155℃, injecting pressure of 110MPa, the injection speed 40 m?s-1 clamping force of 90MPa, holding time of 10s. The best skim process parameters were 40℃for degreasing 6h. The following sintering at 560℃, the heating rate should be controlled under the 2℃·min-1; rapid cooling can be a way to cool after the heating process. When Sintering, with the increasing of the temperature, the density of the sample gradually increase; extend the high temperature stage’s holding time conducive to 10min to eliminate porosity, thereby increasing the density of the sample.
     Friction and wear tests show that with the graphite content increases the metal powder injection molding preparation friction material increases the porosity, causing the density of the matrix material and hardness decreased. When the graphite content of less than 10%, with the increase of graphite content, reducing friction material and the wear rate of the coupled parts decreased. When the graphite content is 10% to 15%, the wear rate low and the friction coefficient can be stable at low levels, thereby reducing the friction-reducing material consumption to form a protective film reduces wear on the coupled parts, protection of the coupled parts; When the graphite content is more than 15%, the wear rate of friction increase, the friction coefficient increases. When the graphite content from 10% to 15% both anti-friction material to obtain better density, hardness, friction-reducing effect and can give full play to the protection of dual pieces.
引文
[1] (美)Randall M.German,著.曲选辉,译.粉末注射成形[M].长沙:中南大学出版社. 2001.
    [2]张弛.金属粉末注射成形技术[M].北京:化学工业出版社. 2008.
    [3] KULKANRNI K M. Future looking bright for PIM [J]. Metal Powder Report, 2000, 55(10): 40-42.
    [4]李益民,黄伯云,曲选辉,等.金属注射成形研究进展[J].稀有金属材料与工程. 1996,25(1):1-4.
    [5]黄培云.粉末冶金原理[M].北京:冶金工业出版社. 2008.
    [6] B.S.Zlatkov1, E. Griesmayer1, H. Loibl,O.S.Aleksi?, H.Danninger, C.Gierl, L.S.Luki?. Recent Advances in PIM Technology[J]. Science of Sintering,2008(40):79-88.
    [7]李益民,李云平.金属注射成形原理与应用[M].湖南:中南大学出版社. 2004.
    [8] M. Fujita, J. Y. Kwon, S. Washizu, et al. Synthesis and magnetic properties of a metallacryptate that behaves as a single-molecule magnet[J]. Angew. Chem. Int. Ed. 2003,42: 3763-3766.
    [9]尚峰. Fe-Ni-Cu-C合金粗粉注射成形件的组织和性能研究[D].江苏科技大学硕士学位论文. 2008.
    [10] ROSATO D V. Injection Molding Handbook [M]. New York: Van No strand Reinhold. 1986.
    [11]韩凤麟,马福康,曹勇家.中国材料工程大典第14卷-粉末冶金材料[M].北京:化学工业出版社. 2006.
    [12]乔斌,肖磊,常婧,等.粉末冶金在船舶业的应用研究[J].江苏船舶,2010,27(4):19-21.
    [13] Kim J C, Ryu S, Lee H, Metal injection of nanostructure W-Cu composite powder[J]. The International journal of Powder Metallurgy, 1999,35(4):47-55.
    [14] K.F .Hens, Lee D, Lin S T, etal. Integrity of complex shape products by powder injection molding[J]. Powder Metallurgy International, 1991, 23(1): 15-21.
    [15] Hauk P A. Powder injection molding: Current a long term outlook[J]. The International Journal of Powder Metallurgy, 2000, 36(30):29-33.
    [16] Hens K F, Grohwshi J A. Advanced quality control for precision PIM components[J]. Advances in Powder Metallurgy, 1995, 6:295-302.
    [17] German R M. Scientific status of metal powder injection molding [J]. International Journal of Powder Metallurgy, 2000, 36(3): 31-36.
    [18]王笑天.金属材料学[M].北京:机械工业出版社. 1987.
    [19] Grsnier S, Allaire F, Electrolytic Cu powders ready for the 21st century [J]. Metal Powder Report, 1997, 52(11):34.
    [20] Moon I H, Kim S H, Kim J C. The particle size effect of Cu-powders on the sintering of W-Cu MIM parts[J]. Advances in Powder Metallurgy, 1996, 5(19):147-156.
    [21]蓮井淳,高橋仙之助,福島貞夫,等.異種材料の摩擦圧接について(その2) :銅-アルミニウムの組合わせ[J].溶接学会誌,1966,35(9):884.
    [22] Hutchings M I. Tribology:Friction and Wear of Engineering Materials[M]. Great Britain:Edward Arnod. 1992.
    [23]何奖爱,王玉玮.材料磨损与耐磨材料[M].长春:东北大学出版社. 2001.
    [24]陈华辉,邢建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社. 2006.
    [25]翁立军,刘维明,孙嘉奕,等.空间摩擦学的机遇和挑战[J].摩擦学报,2005,25(1):92-95.
    [26]曲选辉,颜寒松,黄伯云.金属粉末注射成形粘结剂的发展[J].粉末冶金技术, 1997,12(1):61-65.
    [27]李新军,吕海波,古国榜. PIM热脱脂工艺过程的SEM分析及机理探讨[J].华南理工大学学报,2000,28(10):112-116.
    [28]李流军,李益民,邓忠勇,等.金属粉末注射成形生产设备现状及其发展趋势[J].粉末冶金工业,2004,14(6):24-29.
    [29]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社. 1990.
    [30]詹添印,庄明勋,林舜天.还原铜粉之注射成形[J].粉末冶金技术,2005,23(2):129-133.
    [31]周作平,申小平.粉末冶金机械零件实用技术[M].北京:化学工业出版社,2006.
    [32] B. M. Ginzburg, O. F. Kireenko, M. V. Baidakova, act. Formation of a protective film on a copper friction surface in the presence of fullerene C60[J]. Technical Physics, 2006,2:1367-1370.
    [33]廖寄乔.粉末冶金实验技术[M].长沙:中南大学出版社. 2003.
    [34] Bogan L, Amoroso N, Enborm R. Novel feedstock for PIM[J]. Advances in Powder metallurgy and Particulate materials, 1996, 5(19):265-271.
    [35]李益民,曲选辉,颜寒松,等.金属注射成形石蜡基粘结剂体系的性质[J].中南工业大学学报,1998,29(1):46-50.
    [36] Kulkarni K M. Affecting dimensional precision of MIM parts under production conditions[J]. Advances in Powder Metallurgy, 1996, 5(19):157-167.
    [37]梁叔全,黄伯云.粉末注射成形流变学[M].湖南:中南大学出版社. 2001.
    [38]李益民,曲选辉,黄伯云.金属注射成形喂料的流变学性能评价[J].材料工程,1999,7:32-35.
    [39] Supati R, Loh N H, Khor K A, Tor S B. Mixing and Characterization of Feedstock for Powder Injection Molding [J]. Materials Letters, 2000(46): 109-114.
    [40] Dihoru L V, Smith L N, German R M. Experimental analysis and neural network modeling of the theoretical behavior of powder injection molding feedbacks formed with bimodal powder mixtures[J]. Powder metallurgy, 2000, 43(1):31-38.
    [41] Yang Mu-Len, German R M. The interaction between the Cemented Carbide Powder and the Binder of Powder Injection Molding Feedstock[J]. Advances in Powder Metallurgy, 1995,6:179-189.
    [42] Kishor M Kulkarni. Future looking bright for PIM [J]. Metal Powder Report, 2000 , 55 (10): 40-42.
    [43]乔斌,姬祖春,李映平,等.金属注射成形新型混炼机的设计与制造[J].热加工工艺,2006,35(21):63-64.
    [44]卢仁伟,李笃信,赵志刚,等.铜粉末注射成形工艺[J].粉末冶金材料科学与工程,2006,11(2):104-108.
    [45]韩波,史庆南,张国亮,等.成型参数对纯铜粉末注射生坯密度的影响[J].新技术新工艺,2009(5):74-76.
    [46] Petzoldt F, Eifert H, Hartwig I. Binder design and process control for high performance MIM materials[J]. Advances in Powder Metallurgy and Particulate Materials, 1995, 2(6):3-13.
    [47]肖磊,乔斌,李化强,等.纯铜粉末注射成形缺陷分析[J].热加工工艺,2010,21(39):181-183.
    [48] Yang M J, German R M. Nanophase and superfine cemented carbides processed by powder injection molding[J]. International Journal of Refractory Metals and Hard Materials, 1998, (16):107-117.
    [49]郭世柏,曲选辉,段柏华,等.注射成形Ti-6Al-4V合金的显微组织和力学性能[J].北京科大大学学报,2005,27(3):307-311.
    [50]梁叔全,黄伯云,曲选辉,等.粉末注射成形中的流变学原理及其应用分析[J].稀有金属材料与工程,1996,25(3):5-8.
    [51]王玉会,曲选辉,何新波,等.粉末注射成型过程的双流体数学模型[J] .机械工程材料,2008,32(5):74-77.
    [52] Bankovic D R, German R M. Optimization of debinding cycles in powder injection molding[J]. Advances in Powder Metallurgy, 1990: 223-232.
    [53] Ebenhoch J, Trubenbach P, Weinand D. Process parameters for a fast catalytic debinding system[J]. Powder Injection Molding Symposium, 1992: 285-392.
    [54]果世驹.粉末烧结理论[M].北京:冶金工业出版社. 2007.
    [55]汤潇,李益民,李流军.不同粒度粉末注射成形试样的烧结性能[J] .粉末冶金材料科学与工程,2006,11(6):354-358.
    [56] Kiyotaka Kato. Effect of Sintering Temperature on Density and Tensile Properties of Titanium Compacts by Metal Injection Molding [J].Journal of the Japan Society of Powder and Powder Metallurgy, 1999, 46(8): 865-869.
    [57]章林,曲选辉,段柏华,等. SiCp/Cu复合材料的SPS烧结及组织性能[J] .稀有金属,2008,32(5):614-619.
    [58]赵祖德.复合材料固-液成形理论与工艺[M].北京:冶金工业出版社. 2008.
    [59]加藤清隆,朝比奈正,園田勉,等. MIM-Alの焼結特性に及ぼす元素粉末添加の効果[J],粉体および粉末冶金,2008,55(4):233-238.
    [60]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社. 2003.
    [61]高惠民.矿物复合摩擦材料[M].北京:化学工业出版社. 2007.
    [62]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社. 2002.
    [63] (美)Bharat Bhushan,著.葛世荣,译.摩擦学导论[M].北京:机械工业出版社. 2007.
    [64]于鹤龙,许一,史佩京,等.纳米铜颗粒的摩擦学性能研究及其减摩润滑机理探讨[J].材料工程,2007,10:35-48.
    [65]邵建敏,刘建秀,李蔚.冲击载荷下铜基粉末冶金材料性能及本构关系研究[J].机械科学与技术,2005,24(6):690-692.
    [66]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社. 1998.
    [67]尹健,张红波,熊翔,等.不同速度下C/C-Cu复合材料的摩擦磨损性能[J].华中科技大学学报,2009,37(12):112-115.
    [68]徐滨士.纳米表面工程[M].北京:化学工业出版社. 2004.
    [69] A. G. Kostornov, O. I. Fushchich, T. M. Chevychelova, Yu. M. Simeonova, act. Friction, wear, and targeted synthesis of rubbing surfaces of self-lubricating composites[J]. Powder Metallurgy and Metal Ceramics,2007,8:111-117.
    [70] Y.S. Zhang, K. Wang, Z. Han, act. Dry sliding wear behavior of copper with nano-scaled twins[J]. Wear,2007,262:1463-1470.
    [71] H.R. Pasaribu, K.M. Reuver, D.J. Schipper, act. Environmental effects on friction and wear of dry sliding zirconia and alumina ceramics doped with copper oxide[J]. International Journal of Refractory Metals & Hard Materials, 2005, 23:386-39.
    [72]刘建秀. Study of Copper-matrix Friction Materials by Powder Metallurgy and Its High Temperature Fatique Wear Properties and Dynamic Behaviors[D] .中国工程物理研究院博士学位论文.2004.
    [73]石岩. Cu基粉末冶金摩擦材料激光表面改性研究[D].长春理工大学博士学位论文. 2007.
    [74]邱孙青,董俊修,陈国需.分散介质对铜纳米粒子润滑油添加剂摩擦学性能的影响[J].润滑与封装,1999,3:14-16.
    [75]冉丽萍,易茂中,王朝胜. C/C-Cu复合材料的组织和摩擦磨损性能[J].中国有色金属学报,2007,174:530-535.
    [76]乔玉林.纳米微粒的润滑和自修复技术[M].北京:国防工业出版社. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700