均匀合金颗粒的制备及雾化液滴的凝固行为模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用自行研制的低温均匀液滴喷射(Uniform Droplet Spray–UDS)设备制备了Sn-37%Pb和Sn-3.0%Ag-0.5%Cu均匀合金颗粒,合金颗粒显示了较好的表面光洁度、球度和均匀度。通过五个对比实验清晰地展示了外加扰动、外加电场和环境氧浓度对射流断裂过程的显著影响。结果表明:氧浓度对射流断裂起着阻碍的作用;存在一临界氧浓度,当环境氧浓度超过这一临界值时射流将不发生断裂。
     提出了一种用于气雾化条件下雾化液滴凝固行为模拟和预测的理论方法,并将其用于雾化Sn-5%Pb合金液滴的凝固行为计算,定量的描述了不同初始雾化气体速度、不同氧浓度条件下不同直径液滴的运动、传热和传质行为。计算中,考虑了表面氧化催化引起的表面形核和内部杂质催化引起的内部形核这两种形核方式,得到了用于预测雾化液滴形核温度的连续冷却转变曲线。凝固计算得到了枝晶尖端曲率半径、固液界面迁移速率、分配系数和固相溶质浓度随着界面迁移距离的变化关系。结果表明:对于高雾化气体速度,表面氧化形核被抑制,进而发生内部形核;低雾化气体速度促进了表面氧化形核,进而使液滴过冷度降低;雾化气体速度越高、环境氧浓度越低,再辉过程所完成的凝固分数越高,最终颗粒中的亚稳相所占的比例就越大;相同条件下,液滴直径越小,其单位质量焓损失速率越高,冷却速率越快,最终颗粒中亚稳相的比例也越高。
A uniform droplet spray (UDS) apparatus has been constructed which has been used to produce uniform droplets for low melting point alloy. Uniform Sn-37%Pb and Sn-3.0%Ag-0.5%Cu droplets were prepared by using the self-developed apparatus. The good surface smoothness, sphericity and uniformity of the droplets were shown under optical microscopy. Five experimental results revealed the important influence of disturbance, induction electric field and oxygen concentration in the container on the UDS process. Calculation results proved that the oxygen concentration had impeditive effect on the jet break up. Above a critical oxygen concentration, the jet breaking up would not occur.
     A method for predicting the nucleation kinetics and the solidification behavior of gas-atomized droplets has been developed by combining models predicting the nucleation temperature of cooling droplets with a model simulating the free dentritic grows. Application to a Sn-5%Pb alloy has yielded continuous cooling transformation (CCT) diagrams. Both internal nucleation caused by a catalyst present in the melt and surface nucleation caused by oxidation are considered. The modeling has also yielded the following relationship: tip radius of curvature, tip velocity, partition coefficient and solid composition as a function of the radial distance from nucleation point. Droplets atomized at a high atomizing gas velocity get around surface oxidation and nucleate internally at high supercoolings. Low atomization gas velocities promote oxidation-catalyzed nucleation which leads to lower supercoolings. The higher the atomization gas velocities, and the lower the oxygen concentration in the container, the higher the solid fraction during the recalescence process. Under same conditions, the smaller the droplet in diameter, the higher the mass-specific enthalpy loss rate, and in final, the higher the proportion of metastable phase.
引文
[1] W. H. Cubberly, R. L. Stedfeld, K. Mills et al., Metals Handbook Ninth Edition Volume 7: Powder Metallurgy, Ohio: American Society for Metals, 1984, 7~9
    [2] J.Liu, L.Amberg, N.Backstrom, et al. Mass and heat transfer during ultrasonic gas atomization, Powder Metallurgy International, 1988, 20(2):17~22
    [3] U. Backmark, N.B?ckstr?m, L. Arnberg, Production of metal powder by ultra- sonic gas atomization, Powder Metallurgy International, 1986, 18(5):338~340
    [4] U. Backmark, N.B?ckstr?m, L. Arnberg, Production of metal powder by ultra- sonic gas atomization, Powder Metallurgy International, 1986, 18(6):422~424
    [5] W. H. Cubberly, R. L. Stedfeld, K. Mills et al., Metals Handbook Ninth Edition Volume 7: Powder Metallurgy, Ohio: American Society for Metals, 1984, 21~208
    [6] H. K. Joumaa, Development of a uniform-droplet spray apparatus for high melting temperature metals: M. S. thesis, MIT; Cambridge, MA, 2005
    [7]刘海霞,雷永平,夏志东等人,切丝重熔法制备的BGA焊球及其表面形貌,电子元件与材料,2005,24(5):21~23
    [8] W. R. Fortner. Construction of a Uniform Droplet Spray Apparatus for Mono Sized Brass Powder Production: M. S. thesis, Northeastern University; Boston, MA, 1998
    [9] P. Yim, J. H. Chun, T. Ando et al., Production and characterization of mono-sized Sn-38 wt.% Pb alloy balls, Int. J. Powder Metall., 1996, 32(2): 155~164
    [10] T. Ando, J. H. Chun, C. Blue, Uniform droplets benefit advanced particulates, Metal Powder Report, 1999, PM special feature(3): 30~34
    [11] H. Jones, A perspective on the development of rapid solidification and non- equilibrium processing and its future, Mater. Sci. Eng. A, 2001, 304-306: 11~19
    [12] C. Li, J. Saida, A. Inoue, Formation of quasicrystal in Zr70Ni10Mn20 alloy during rapid solidification, Scripta Materialia, 2000, 42(11): 1077~1081
    [13] L. M. Wang, L. Q. Ma, H. Kimura et al., Amorphous forming ability and mecha- nical properties of rapidly solidified Al–Zr–LTM (LTM=Fe, Co, Ni and Cu) alloys, Materials Letters, 2002, 52(1,2): 47~52
    [14] T. Mizoguchi, J. H. Perepezko, Nucleatin behavior during solidification of cast iron at high undercooling, Mater. Sci. Eng. A, 1997, 226-228: 813~817
    [15] J. H. Perepezko, Nucleation in undercooled liquids, Mater. Sci. Eng., 1984, 65(1): 125~135
    [16] J. H. Perepezko, Nucleation controlled phase selection during solidification, Mater. Sci. Eng. A, 2005, 413-414: 389~397
    [17] J. H. Perepezko, J. L. Sebright, P. G. H?ckel et al., Undercooling and solidi- fication of atomized liquid droplets, Mater. Sci. Eng. A, 2002, 326(1): 144~153
    [18] J. H. Perepezko, Kinetic processes in undercooled melts, Mater. Sci. Eng. A, 1997, 226-228: 374~382
    [19] R. I. Wu, G. wilde, J. H. Perepezko, Glass formation and primary nano- crystallization in Al-base metallic glasses, Mater. Sci. Eng. A, 2001, 301(1): 12~17
    [20] D. Isheim, D. N. Seidman, J. H. Perepezko, Nanometer-scale solute clustering in aluminum–nickel–ytterbium metallic glasses Mater. Sci. Eng. A, 2003, 353(1,2): 99~104
    [21] C. H. Passow, A Study of Spray Forming Using Uniform Droplet Sprays: M. S. thesis, MIT; Cambridge, MA, 1992
    [22] J. H. Chun, C. H. Passow, Production of charged uniformly sized metal droplets by vibrating liquid metal and forcing the liquid metal through an aperture and charge plate orifice, U. S. Patent, 5266098-A, 1993
    [23] S. Sahu, Thermal state of Sn-Pb droplets in the droplet-based manufacturing process: M. S. thesis, MIT; Cambridge, MA, 1994
    [24] G. K. Abel, Design and construction of high temperature uniform metal spray apparatus: B. S. thesis, MIT; Cambridge, MA, 1992
    [25] W. H. Williams, Production of Uniform Bronze Powders by the Uniform Droplet Spray Process: B. S. thesis, MIT; Cambridge, MA, 1996
    [26] Y. Abesi, Uniform droplet spraying of Aluminum alloys: M. S. thesis, Northeastern University; Boston, MA, 1999
    [27] M. Orme, Q. Liu, R. Smith,Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications, Aluminum Transactions, 2000, 3(1): 95-103
    [28] M. S. Beauregard, Multi-Orifice UDS Deposition of an Al-6%Cu-0.4%Zr Alloy: M. S. thesis, Northeastern University; Boston, MA, 2000
    [29] C. H. Passow, J. H. Chun, T. Ando, Spray deposition of a Sn-40wt. % Pb alloy with uniform droplets, Metall Trans. A, 1993, 24(5): 1187-1193
    [30] P. J. Aquaviva, Modeling of Deposit Solidification in Droplet Based Manu- facturing: M. S. thesis, MIT; Cambridge, MA, 1995
    [31] C. A. Chen, Droplet Solidification and its Effects on Deposit Microstructure in the Uniform Droplet Spray Process: Ph. D. thesis, MIT; Cambridge, MA, 1996
    [32] S. Chey, A Study of Surface Porosity Formation in Deposits Sprayed onto Flat Substrates by the Uniform Droplet Spray Process: Ph. D. thesis, MIT; Cambridge, MA, 1998
    [33] J. Shin, Rapid Prototyping using the Uniform Droplet Spray Process: B. S. thesis, MIT; Cambridge, MA, 1998
    [34] M. H. Lee, B. Zhao. Design and operation of a droplet deposition system for freeform fabrication of metal parts, J. Eng. Mater. Tech., 2001, 123(1): 74~84
    [35] Y. Yingxue, G. Shengdong, C. Chengsong, Rapid prototyping based on uniform droplet spraying, J. Mater. Proc. Tech., 2004, 146:389~395
    [36] G. K. Abel, Characterization of Droplet Flight Path and Mass Flux in Droplet-Based Manufacturing: M. S. thesis, MIT; Cambridge, MA, 1994
    [37] P. Yim, The Role of Surface Oxidation in the Break-Up of Laminar Liquid Metal Jets: Ph. D. thesis, MIT; Cambridge, MA, 1996
    [38] H. Y. Kim, Spreading Behavior of Molten Metal Microdroplets: Ph. D. thesis, MIT; Cambridge, MA, 1999
    [39] J. J. Cherng, The effects of deposit thermal history on microstructure produced by uniform droplet spray forming: Ph. D. thesis, MIT; Cambridge, MA, 2002
    [40] W. Hsiao, Effects of Surface Properties on Solder Bump Formation by Direct Droplet Deposistion: Ph. D. thesis, MIT; Cambridge, MA, 2003
    [41] C. D. Tuffile, Thermal study of in flight solidification of uniform spray droplets by using non-adiabatic calorimetry: M. S. thesis, Tufts University, 1997
    [42] C. D. Tuffille, A. G. DiVenuti, T. Ando et al., Calorimetric enthalpy measurement of traveling uniform droplets, J. Mater. Synthesis and Proc., 1997, 5(1): 31~37
    [43] X. T. Dong, C. D. Tuffile, and T. Ando, Continuous-Cooling-Transformation Curves for Heterogeneous Nucleation on the Surface of Sn-5mass-%Pb Droplet, Advanced Eng. Mater., 2000, 2(5): 284~289
    [44] P. Wu, T. Ando, Computation of continuous cooling transformation diagrams for the heterogeneous nucleation in Sn-5mass pct Pb droplets, Metallurgical and Materials Transaction A, 2005, 36(1): 35~41
    [45] Tian Ya-Li, Wu Ping, Jiang En-Yong et.al. Heterogeneous Nucleation and Solidification Prediction of Sn-5wt.%Pb Droplets, Chin. Phys. Lett, 2004, 21(1 ): 207~210
    [46] Y. J. Li, P. Wu, and T. Ando, Continuous cooling transformation diagrams for the heterogeneous nucleation of Sn-5mass%Pb droplets catalyzed by surface oxidation, Mater. Sci. and Eng. A., 2006, 419(1,2): 32~38
    [47] A. G. DiVenuti and T. Ando, A Dendrite Growth Model Accommodating Curved Phase Boundaries and High Peclet Number Conditions, Metall. Trans. A., 1998, 29(12): 3047– 3056
    [48] A. G. DiVenuti, Modeling of in-flight solidification of uniform droplets: M. S. thesis, Tufts University, 1997
    [49]张曙光,何礼君,朱学新等人,适用于先进电子封装的精密焊球制备技术,中国有色金属学报,2004,14(3):501~505
    [50]张曙光,何礼君,张少明等人,绿色五铅电子焊料的研究与应用进展,材料导报,2004,18(6):72~75
    [51]李流军,李益民,邓忠勇等人,金属粉末注射成形设备现状及其发展趋势,粉末冶金工业,2004,14(6):24~29
    [52] W. Q. Cao, G. F. Dirras, M. Benyoucef et al., Room temperature deformation mechanisms in ultrafine-grained materials processed by hot isostatic pressing, Mater. Sci. Eng. A, 2007, 462:100~105
    [53]陈松,康仕芳,辛振林,振动喷射造粒机理研究,化学反应工程与工艺,1999,15(3):301~306
    [54] Lord Rayleigh, On the stability of jets, Proc. London Math. Soc., 10:4~13
    [55] M. Orme, E. P. Muntz, New technique for producing highly uniform droplet streams over an extended range of disturbance wavenumbers, Rev. Sci. Instrum. 1987, 58(2): 279~284
    [56] J. M. Schneider, C. D. Hendricks, Source of Uniform-Sized Liquid Droplets, Rev. Sci. Instrum. 1964, 35(10): 1349-1350
    [57] C. Weber, The decomposition of a liquid jet, Z. Angew. Math. Mech., 1931, 11: 136~154
    [58] M. Orme, Rapid solidification materials synthesis with nano-liter droplets, SAE Trans. J. Aerospace, 1994, 102: 1876~1881
    [59] D. B. Harmon, Drop Sizes from Low Speed Jets, J. Franklin Inst., 1955, 259: 519-523
    [60] R. Clift, J. R. Grace, M. Weber, Bubble Drops and Particles, New York: Academic,1978: 333~340
    [61] M. J. McCarthy, N. A. Molloy, Revier of stability of liquid jets and the influence of nozzle design, Chem. Eng. J., 1974, 7:1~20
    [62] R. G. Miller, C. Q. Bowles, The oxidation of 63Sn/37Pb at typical soldering temperatures, Oxidation of Metals, 1990, 33(1,2): 95~101
    [63] D. Liu, J. Zhao, H. Ye, Modeling of the solidification of gas-atomized alloy droples during spary forming, Mater. Sci. and Eng. A, 2004, 372: 229~234
    [64] Q. Xu, E. J. Lavernia, Influence of nucleation and growth phenomena on microstructural evolution during droplet-based deposition, Acta Mater., 2001, 49:3489~3861
    [65] Q. Q. Lu, J. R. Fontain, G. Aubertin, Numerical study of the solid particle motion in grid-generated turbulent flows, Int. J. Heat. Mass. Transfer, 1993, 36(1): 79~87
    [66] E. S. Lee, S. Shn, Solidification progress and heat transfer analysis of gas atomized alloy droplets during spray forming, Acta Metall. Mater., 1994, 42(9): 3231~3243
    [67] W. E. Ranz, W. R. Marshall, Evaporation from drops, Chem. Eng. Prog., 1952, 48(3): 141~146
    [68] D. Turnbull, Under what conditions can a glass be formed?, Contemporary Physics, 1969, 10(5): 473-488
    [69] R. Trivedi, W. A. Tiller, Interface morphology during crystallization—II. Single filament, unconstrained growth from a binary alloy melt, Acta Metall., 1978, 26(5): 679~687
    [70] A. Karma, J. S. Langer, Impurity effects in dendritic solidification, Phys. Rev. A, 1984, 30(6): 3147~3155
    [71] J. Lipton, W. Kurz, R. Trivedi, Rapid dendrite growth in undercooled alloys, Acta Metall., 1987, 35(4): 957~964
    [72] R. Trivedi, J. Lipton, W. Kurz, Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts, Acta Metall., 1987, 35(4): 965~970
    [73] J. Lipton, M. E. Glicksman, W. Kurz, Dendritic growth into undercooled alloy metals, Mater. Sci. Eng., 1984, 65(1): 57~63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700