用户名: 密码: 验证码:
可注射性骨修复材料不饱和聚磷酸酯的合成与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过非侵害和微创方式修复骨缺损,具有组织损伤小、操作简单、手术并发症少等优点。聚磷酸酯具有良好的生物相容性和生物可降解性能,而且其主链中柔软的磷酸酯键赋予聚磷酸酯较低的玻璃化转变温度,常温下具有可注射性。因此,本文首次探索将聚磷酸酯应用于可注射性骨修复材料的可行性。
     本文以富马酸二(1,2-丙二醇)酯与二氯磷酸乙酯为单体,首次设计并制备了新型主链重复结构单元中含双键的不饱和聚磷酸酯,并改进了单体富马酸二(1,2-丙二醇)酯的合成方法,显著提高了单体的纯度与产率,同时缩短了反应时间,减少了环氧丙烷的用量。GC-MS以及NMR分析表明单体富马酸二(1,2-丙二醇)酯中具有三种异构体导致聚磷酸酯主链中存在三种链接顺序。所制备的三种分子量( M w=3198 g/mol,4044 g/mol,5956 g/mol)的聚磷酸酯具有较低的玻璃化温度,在100℃下热稳定性能较好。
     不饱和聚磷酸酯主链中的双键可以与N-乙烯基吡咯烷酮(NVP)、甲基丙烯酸2-羟乙酯等乙烯基单体通过热引发共聚交联,形成三维交联网络,也可通过光引发交联,但光引发交联深度受到限制。不饱和聚磷酸酯、N-乙烯基吡咯烷酮以及与β-磷酸钙复合后的浆料具有良好的可注射性能,以过氧化苯甲酰/N,N-二甲基对甲基苯胺氧化还原体系引发浆料的交联反应,原位构建了骨组织工程支架材料。由交联反应温度曲线的测定,确定交联体系原位固化时的最高交联温度为46.49~93.07℃,固化时间为1.7~10.3 min。固化后复合物的最大压缩强度以及最大压缩模量分别为94.36±6.96 MPa及2096.93±92.86 MPa,力学强度在松质骨和密质骨之间。交联固化时间、最高交联温度与复合物的力学强度可以通过改变交联体系中各组分的含量以及聚磷酸酯的分子量来调节。
     交联固化后复合物的体外降解分为两个阶段,第一阶段(48小时内)以N-乙烯基吡咯烷酮以及聚N-乙烯基吡咯烷酮的快速溶出为主,材料的力学性能、质量保持率迅速降低,而体积由于溶胀作用快速增大;第二阶段的降解主要由聚磷酸酯的水解作用引起,降解较平缓。增加聚磷酸酯的分子量以及用量有助于保持材料在降解中的力学性能并减小失重率。β-磷酸钙能够减小材料在降解过程中的体积变化以及失重率,同时提高材料的力学稳定性。降解120天后,复合物的最大压缩强度与压缩模量分别为1.21 MPa和15.10 MPa,低于松质骨强度。不饱和聚磷酸酯/N-乙烯基吡咯烷酮交联网络的药物释放性能受药物溶出行为以及材料的降解共同控制,减少交联反应时N-乙烯基吡咯烷酮的用量以及使用较高分子量的聚磷酸酯都能够减缓药物释放的速度。
     在聚合物基材上制备了钙-磷涂层以提高交联聚磷酸酯的成骨活性,同时得到了一种中空结构的管状钙-磷纤维,管壁由磷酸钙片状晶体聚集而成,纤维直径在2~50μm之间,纤维的生长发生在纤维的顶端。
     采用鼠肌肉内植入硬组织材料的动物模型,进行了组织形态学的观察,对交联聚磷酸酯/β-磷酸钙复合材料的生物相容性能的初步研究表明:复合材料具有良好的生物相容性能,在体内可降解,并具有一定的异位成骨活性。
     通过对不饱和聚磷酸酯的原位交联反应特性、光引发交联反应性能、可注射性能,交联后复合物的机械性能、降解性能、释药性能以及生物相容性等性能的初步评价,不饱和聚磷酸酯可以应用于可注射性骨修复材料。
Injectable bone repair biomaterials have been developed because they can fill irregularly shaped defects and may allow bone augmentation, both with minimal surgical intervention. These injectable biomaterials could crosslink in situ to form a three dimensional network with suitable properties. Polyphosphoesters are analogs of nucleic and teichoic acids with excellent biodegradability and biocompatibility. The phosphoester bond in the polyphosphoester backbone can be cleaved by water and possibly enzymatic digestion under physiological conditions. The flexible P-O-C bonds in the backbone make polyphosphoesters commonly with low glass transition temperature and show poor mechanical strength in physiological temperature. In this work, in order to improve mechanical property of polyphosphoesters and meet the demand of bone repair materials, a novel crosslinkable polyphosphoester based on bis(1,2-propylene glycol) fumarate(BPGF) and ethyl dichlorophosphate was designed which contained unsaturated double bonds in backbone.
     The monomer BPGF was synthesized by a new method without any solvent. Purity and yield of BPGF were both rose remarkably comparing with the reported method. Three possible bonding models in polyphosphoester chain resulting from three isomers of bis(1,2-propylene glycol) fumarate was confirmed by NMR and GC-MS spectra. Unsaturated polyphosphoester(UPPE) can be crosslinked through the double bonds along with its backbone. Vinyl monomer, such as N-vinyl pyrrolidone(NVP) and 2-hydroxyethyl methacrylate can be used as crosslink agent. Polymer network formed by UPPE and NVP through in situ crosslinking reaction initiated by BPO-DMT system. For all formulations, the maximum crosslinking temperature was between 46.49 to 93.07℃which was lower than that of 97℃for poly(methyl methacrylate) bone cement. The setting time was between 1.7 to 10.3 minutes, and strongly affected by BPO/UPPE ratio. Maximum compressive strength and compressive modulus values of crosslinked UPPE/β-tricalcium phosphate composite were 94.36±6.96 MP and 2096.93±92.86 MPa, which were higher than those of human trabecular bone.
     In order to control polymerization exotherm and facilitate the operating conditions, the crosslinking reaction of UPPE and NVP initiated by UV light has also been investigated. Results show that the gel content of curing product was remarkably improved by addition of photoinitiators The gel content of crosslinked network obtained from UPPE with Mw=4040 g/mol is lower than that of with higher molecular weight when the irradiation time was less than 2 minutes, but an opposite results would obtained by extending irradiation time. The surface layer of sample absorbed the UV light and decreased the photocrosslink reaction rate of the deep layer.
     Weight and mechanical strength of all formulations were decreased rapidly within the first two days during degradation experiment. Following the first stage, very slowly decreased in weight and mechanical strength was observed during the remaining degradation time. Increasing UPPE molecular weight andβ-tricalcium phosphate incorporation resulted in an increase in both compressive strength and compressive modulus, and a decrease in weight loss.
     In order to improve the osteoconductivity, a simple process was developed to deposit a mineral layer on the surface of crosslinked UPPE. It was found that mineral fibrous grown upwards from the surface of crosslinked UPPE. Composition of fibre was calcium deficient carbonated apatite with low crystallinity. SEM micrograph indicated that the fibre had a hollow tubing structure and the tube wall was a flakelike assembly. The growth was at the tip of the fibre at a rate about 0.5mm/min and reached several centimeters in length after 2 hours.
     Crosslinked UPPE/β-tricalcium phosphate composites exhibited good biocompatibility and no deleterious long-term inflammatory response when be implanted subcutaneously in rats.
引文
1. Kiberstis P., Smith O., Norman C. Bone health in the balance. Science, 2000, 289:1497.
    2. 奚廷斐. 生物材料产业现状及发展战略. 新材料产业, 2004, 133:24-38.
    3. Brownlee C. Boning up. Science News, 2005, 168:68-69.
    4. Langer R., Vacanti J.P. Tissue engineering. Science, 93, 260:920-926.
    5. 郑磊, 王前. 骨组织工程基质材料的现状及展望. 生物医学工程学杂志, 2001, 18:470-474.
    6. Stock U.A., Vacanti J.P. Tissue engneering: Current state and prospects. Annual Review of Medicine, 2001, 52:443-451.
    7. Service R.F. Tissue engineers build new bone. Science, 2000, 289:1498-1500.
    8. 俞耀庭, 张兴栋. 生物医用材料. 天津: 天津大学出版社, 2002,12.
    9. Service R.F. Technique uses Body as "bioreactor" to grow new bone. Science, 2005, 309 :683.
    10. Cohen S., Bano M.C., Cima L.G., et al. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clinical Materials, 93, 13:3-10.
    11. Tabata Y. Recent progress in tissue engineering. Drug Discovery Today, 2001, 6:483-487.
    12. Temenoff J.S., Mikos A.G. Review: Tissue engineering for regeneration of articular cartilage. Biomaterials, 2002, 21:431-440.
    13. Rose F.R.A.J., Oreffo R.O.C. Breakthroughs and views bone tissue engineering: hope vs hype. Biochemical and Biophysical Research Communications, 2002, 292:1-7.
    14. 裴国献. 骨组织工程研究现状与趋势. 解放军医学杂志, 2002, 27:471-474.
    15. Babensee J.E., McIntire L.V.,Mikos A.G. Growth factor delivery for tissue engineering. Pharmaceutical Research, 2000, 17:497-504.
    16. Bonn D. The application of cell biology to broken bones. The Lancet, 99, 353:9153.
    17. Katoh T., Sato K., Kawamura M., et al. Osteogenesis in sintered bone combined with bovine bone morphogenetic protein. Clinical Orthopaedics, 93, 287:266.
    18. Yang X.B., Bhatnagar R.S., Li S., et al. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Engineering, 2004, 10:1148-1160.
    19. Mizuno M., Shindo M., Kobayashi D., et al. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone, 97, 20:101-107.
    20. 杨 洪, 宁黔冀. 生物硬组织材料羟基磷灰石-从天然到人工合成. 生物学通报, 2004, 39:6-7.
    21. Roy D.M. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 74, 247:220.
    22. Gross K.A., Berzina L., Cimdins R., et al. Calcium phosphate bioceramics research in Latvia. Ceramics International, 99, 25:231-237.
    23. Hattori T., lwadate Y. Hydrothermal preparation of calcium hydroxyapatite powders. Journal of American Ceramic Society, 90, 73:1803-1805.
    24. Jarcho M., Bolen C.H. Hydroxyapatite synthesis and characterization in dense polycrystalline form. Journal of Material Science, 76, 11:227-235.
    25. Osaka A., Miura R., Taeuchi K., et al. Calcium apatite prepared from calcium hydroxide and orhophosphoric acid. Journal of Material Science in Medicine, 91, 2:51-55.
    26. Burg K.J.L., Porter S., Kellam J.F. Biomaterials developments for bone tissue engineering. Biomaterials, 2000, 21:2347-2359.
    27. 李朝阳, 杨德安,徐廷献. 可降解β-磷酸三钙的制备及应用. 硅酸盐通报, 2002, 3:30-34.
    28. K1ein C.P.A.T., Driessen A.A.,De G.K. Relationship between degraduation behavior of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry. Biomaterials, 84, 5:157-166.
    29. Lu J.X., Flautre B., Gallur A., et al. Study of porous interconnetions of bioceramic on cellular rehabitation in vitro and in vivo. Bioceramics, 97, 7 :583-586 .
    30. Lu J.X., Flautre B., Gallur A., et al. Role of interconnection inporous bioceramlcs on bone recolonization in vitro and vivo. Journal of Material Science:Material Medicine, 99, 10:lll-120.
    31. Gunatillake P.A. , Adhikari R. Biodegradable syntheticpolymers for tissue engineering. European Cells and Materials, 2003, 5:1-16.
    32. Agrawal C.M., Ray R.B. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Material Research, 2001, 55:141-150.
    33. Kulkarni R.K., Moore E.G., Hegyelli A.F., et al. Biodegradable poly(lactic acid)polymers. Journal of Biomedical Material Research, 71, 5:169-174.
    34. Karp J.M., Shoichet M.S.,Davies J.E. Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering scaffolds in vitro. Journal of Biomedical Material Research, 2003, 64A:388–396.
    35. Ishaug-Riley S.L., Crane-Kruger G.M., Yaszemski M.J., et al. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials, 1998, 19 :1405-1412.
    36. Thomson R.C. , Mikos A.G., Beahm E., et al. Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials, 99, 20:2007-2018.
    37. Suganuma J., Alexander H. Biological response of intramedullary bone to poly-L-lactic acid. Journal of Applied Biomaterials, 93, 4 :13-27.
    38. Pouton C.W., Akhtar S. Biosythetic hydroxyalkanoates and their potential in drug delievery. Advanced Drug Delievery Reviews, 96, 18:133-162.
    39. Sudesh K., Abe H., Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 2000, 25 :1503-555.
    40. Kose G.T., Korkusuz F., Korkusuz P., et al. In Vivo Tissue Engineering of Bone Using Poly (3- hydroxybutyric acid-co-3-hydroxyvaleric acid) and Collagen Scaffolds. Tissue Engineering, 2004, 10:1234-1250.
    41. Gleria M., Jaeger R.D. Aspects of Phosphazene Research. Journal of Inorganic and Organometallic Polymers, 2001, 11:1-45.
    42. Gumusderelioglioglu M., Gur A. Synthesis, characterization, in vitro degradation and cytotoxicity of poly[bis(ethyl 4- aminobutyro)phosphazene]. Reactive & Functional Polymers , 2002, 52:71-80.
    43. Allcock H.R., Robert W.A., John P.B. Synthesis of platinum derivatives of polymeric and cyclic phosphazenes. Journal of American Chemistry Society, 77, 99: 3984-3987.
    44. Ibim S.M., Ambrosio A.A., Larrier D., et al. Controlled macromolecule release frompoly(phosphazene) matrices. Journal of Controlled Release, 96, 40:31-39.
    45. Qiu L.Y., Zhu K.J. Design of a core-shelled polymer cylinder for potential programmable drug delievery. International Journal of Phamaceutics, 2001, 219:151-160.
    46. Luten J., Steenis J.H.v., Someren R.v., et al. Water-soluble biodegradable cationic polyphosphazenes for gene delivery. Journal of Controlled Release , 2003, 89:483-497.
    47. Veronese Francisco M., Marsilio F., Lora S., et al. Polyphosphazene memberanes and microspheres in periodontal diseases and implant surgery. Biomaterials, 99, 20:91-98.
    48. Laurencin C.T, El-Amim S.F., Ibim S E., et al. A highly porous 3-dimentional polyphosphazene polymer mareix for skeletal tissue regeneration. Journal of Biomedical Material Research, 96, 30:133.
    49. Pinchuk L. A review of the biostability and arcinogenicity of polyurethanes in medicine and the new gneration of biostable polyurethanes. Journal of Biomaterial Science Polymer Edition, 94, 6:225-267.
    50. Storey R.F., Wiggins J.S.,Puckett A.D. Hydrolyzable poly(ester-urethane) networks from l-lysine diisocyanate and D,L-lactide/ε-caprolactone homo and copolyester triols. Journal of Polymer Science, Part A:Polymer Chemistry, 94, 32:2345-2363.
    51. Zang J.Y., Beckman E.J., Piesco N.P., et al. A new peptide-based urethane polymer: synthesis, biodegradation,and potential to support cell growth in-vitro. Biomaterials, 2000, 21:1247-1258.
    52. Spaans C.J., Belgraver V.W., Rienstra O., et al. Solvent-free fabrication of micro-porus polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials, 2000, 21:2453-2460.
    53. Tangpasuthadol V., Pendharkar S.M., Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates,a class of new biomaterials.Part I: Study of model compounds. Biomaterials, 2000, 21:2371-2378.
    54. Tangpasuthadol V., Pendharkar S.M., Peterson R.C., et al. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II:Study of model compounds. Biomaterials, 2000, 21:2379-2387.
    55. Muggli D.S., Burkoth A.K., Keyser S.A., et al. Reaction behaviour of biodegradable, photocross-linkable polyanhydrides. Macromolecules, 98, 31:4120-4125.
    56. Pulapura S., Kohn J. Tyrosine derived polycarbonates: backbone modified pseudo-poly(amino acids) designed for biomedical applications. Biopolymers, 92, 32:411-417.
    57. Einmahl S., Schwach-Abdellaoui K., Heller J., et al. Poly(ortho esters):recent developments for biomedical applications. Chimia, 2001, 55:218-222.
    58. Ng S., Vandamme T., Tayler M.S., et al. Synthesis and erosion studies of self-catalysed poly(orthoester)s. Macromolecules, 97, 30:770-772.
    59. Andriano K.P., Tabata Y., Ikada Y., et al. In vitro and In vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. Journal of Biomedical Material Research (Applied Biomaterial) , 99, 48:602-612.
    60. Lemmouchi Y., Schacht E., Lootens C. In vitro release of trypanocidal drugs from biodegradable implants based on poly(epsilon-caprolactone) and poly(D,L-lactide). Journal of Controlled Release, 98, 55:79-85.
    61. Lowry K.J., Hamson K.R., Bear L., et al. Polycaprolactone/glass bioabsorbable implant in a rabbit humerus fracture model. Journal of Biomedical Material Research, 97, 36:536-541.
    62. Kellomaki M. , Niiranen H., Puumanen K., et al. Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials, 2000, 21:2495-2505.
    63. Serre C.M., Papillard M., Chavassieux P., et al. Influence of magnesium substitution on a collagen-patite biomaterial on the production of a calcifying matrix by human osteoblasts. Journal of Biomedical Material Research, 98, 42:626-633.
    64. Garcia A.J., Ducheyne P., Boettiger D. Effect of surface reaction stage on fibronectin-mediated adhension of osteoblast-like cells to bioactive glass. Journal of Biomedical Material Research, 98, 40:48-56.
    65. Agrawal C.M., Athanasiou K.A. Technique to controle pH in vicinity of biodegrding PLA-PGA implants. Journal of Biomedical Material Research, 97, 38:105-114.
    66. Du C., Cui F.Z., Zhang W., et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of Biomedical Material Research, 2000, 50:518-527.
    67. Zhang W., Liao S.S., Cui F.Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemisty Material, 2003, 15:3221-3226.
    68. Kikuchi M., Itoh S., Ichinose S., et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 2001, 22:1705-1711.
    69. Kikuchi M., Matsumoto H.N., Yamada T., et al. Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites. Biomaterials, 2004, 25:63-69.
    70. Chang M.C., Ko C. C.,Douglas W.H. Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials, 2003, 24:2853–2862.
    71. Zhang R., Ma P.X. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. Journal of Biomedical Material Research, 99, 45 :285-293.
    72. Gough J.E., Arumugam M., Blaker J., et al. Bioglass coated poly(DL-lactide) foams for tissue engineering scaffolds. Werkstofftech, 2003, 34 :654-661.
    73. Song J., Malathong V., Bertozzi C.R. Mineralization of synthetic polymer scaffolds: a bottom-up approach for the development of artificial bone. Journal of American Chemistry Society, 2005, 127:3366-3372.
    74. Song J., Saiz E., Bertozzi C.R. A new approach to mineralization of biocompatible hydrogel scaffolds:An efficient process toward 3-dimensional bonelike composites. Journal of American Chemistry Society, 2003, 125:1236-1243.
    75. Oyane A., Uchida M., Yokoyama Y., et al. Simple surface modification of poly(ε-caprolactone) to induce its apatite-forming ability. Journal of Biomedical Material Research, 2005, 75A:138-145.
    76. Hosoya K., Ohtsuki C., Kawai T., et al. A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite. Journal of Biomedical Material Research, 2004, 71A:596-601.
    77. 李保强, 胡巧玲, 汪 茫, 等. 原位复合法制备层状结构的壳聚糖/羟基磷灰石纳米材料. 高等学校化学学报, 2004, 25:1949-1952.
    78. 杨健, 贝建中, 王身国. 组织工程细胞支架及其细胞亲和性改进研究进展. 功能高分子学报,2000, 13:455-460.
    79. 王身国, 杨健, 蔡晴, 等. 组织工程用生物材料及细胞支架研究进展. 中华整形外科杂志, 2000, 16:328-330.
    80. Freed L.E., Vunjak-Novakovic G., Biron R.J., et al. Biodegradable polymer scaffolds for tissue engineering. Biotechnology, 94, 12:689-693.
    81. Ishaug-Riley S.L., Crane-kruger G.M., Yaszemski M.J., et al. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Biomaterials , 98, 19:1405-1412.
    82. Ma P.X. Scaffold for tissue fabrication. Materials Today, 5:30-41.
    83. Burdick J.A., Peterson A.J., Anseth,Kristi S. Conversion and temperature profiles during the photoinitiated polymerization of thick orthopaedic biomaterials. Biomaterials, 2001, 22:1779-1786.
    84. Jefferiss C.D., Lee A.J.C., Ling R.S.M. Thermal aspects of self curing poly(methyl methacrylate). Journal of Bone Joint Surgery , 75, 57B:511-518.
    85. 李海丰. 可注射性材料防治骨质疏松性骨折. 国外医学.骨科学分册, 2001, 22:209-211.
    86. Fernandez E., Gil F.J., Ginebra M.P., et al. Calcium phosphate bone cements for clinical applications. Part I: solution chemistry . Journal of Materials Science: Materials in Medicine , 99, 10:169-176.
    87. Kalashina K., Kurila H., Hirano M., et al. In vivo study of calcium phosphatecements:implantation of an alpha-trilcalclum phosphate/dicalcium phosphate dibasic/tetracalclum phosphate monoxide cement paste. Biomaterials , 97, 18:539.
    88. Dos S.L.A., Oliveira L.C., Rigo E.C.S., et al. Influence of polymeric additives on the mechanical properties ofScience A:Polymer Chemistry, 2001, 39 :683-692.
    99. Burdick J.A., Mason M.N., Anseth K.S. In situ forming lactic acid based orthopaedic biomaterials: Influence of oligomer chemistry on osteoblast attachment and function. Journal of Biomaterial Science. Polymer Edition, 2001, 12:1253-1265.
    100. Burdick J.A., Padera R.F., Huang J.V., et al. An Investigation of the Cytotoxicity and Histocompatibility of In Situ Forming Lactic Acid Based Orthopedic Biomaterials. Journal of Biomedical Material Research (Applied Biomaterials) , 2002, 63:484-491.
    101. Burdick J.A., Frankel D., Dernell W.S., et al. An initial investigation of photocurable three-dimensional lactic acid based scaffolds in a critical-sized cranial defect. Biomaterials, 2003, 24:1613-1620.
    102. Bucher J.E., Slade W.C. The anhydrides of isophthalic and terephthalic acids . Jounal of American Chemical Society , 9, 31:1319-1321.
    103. Langer R. The developmentof polyanhydrides for drug delivery application. Journal of biomaterial science polymer edition, 92, 3:315-335.
    104. Teomim D., Domb A.J. Fatty acid terminated polyanhydrides. Journal of Polymer Science, Part A: Polymer Chemistry, 99, 37:3337-3344.
    105. Anseth K.S., Quick D.J. Polymerizations of multifunctional anhydride monomers to form highly crosslinked degradable networks . Macromolecule Rapid Communication, 2001, 22:564-572.
    106. Burkoth A.K., Anseth K.S. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials, 2000, 21:2395-2404.
    107. Anseth K.S., shastri V.R., Langer R. Photopolymerizable degradable polyanhydrides with osteocompatibility. Nature Biotechenology, 99, 17:156-159.
    108. Muggli D.S., Burkoth A.K., Anseth K.S. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. Journal of Biomedical Material Research, 99, 46:271-278.
    109. McCann D.L. , Heatley F.,Demanuelec A. Characterization of chemical structure and morphology of eroding polyanhydride copolymers by liquid-state and solid-state 1H n.m.r. Polymer , 99, 40:2151-2162.
    110. Shastri V.R., Marini R.P., Padera R.F., et al. Osteocompatibility of photopolymerizable anhydride networks. Materials Research Society Symposium Proceedings, 98, 530: 93-98.
    111. Burkoth A.K., Burdick J.,Anseth K.S. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. Journal of Biomedical Material Research, 2000, 51:352-359.
    112. Poshusta A.K., Burdick J.A., Mortisen D.J., et al. Histocompatibility of photocrosslinked polyanhydrides: a novel in situ forming orthopaedic biomaterial. Journal of Biomedical Material Research, 2003, 64A:62-69.
    113. Shastri V., Padera R., Marini R., et al. Osteocompatibility of photoplymerizable anhydrides. Materials Research Society Symposium Proceedings, 98, 530:258-262.
    114. Sanderson J.E. Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone. US Patent 4, 722, 948, 88, 114.
    115. Gerhart T.N., Hayes W.C. Bioerodible implant composition . US Patent 4, 843,112. 89, 116.
    116. Gresser J.D., Hsu S.H., Nagaoka H., et al. Analysis of a vinyl pyrrolidone/PPF resorbable bone cement. Journal of Biomedical Materials Research, 95, 29:1241-1247.
    117. Domb A.J. Poly(propylene glycol fumarate) composition for biomedical applications . US Patent 4, 888, 413. 89, 132.
    118. Domb A.J., Laurencin C.T., Israeli O., et al. The formation of propylene fumarate oligomers for use in bierodible bone cement composites. Journal of Polymer Science,Part A: Polymer Chemistry , 90 , 8:973-985.
    119. Peter S.J., Yaszemski M.J., Suggs L.J., et al. Characterisation of partially saturated poly(propylene fumarate) for orthopaedic applications . Jounal of Biomaterials Science Polymer Edition , 97, 8:893-904.
    120. Szmerczanyi I.V., Marcos L.K., Greger K., et al. Investigation of maleate-fumarate isomerisation during esterification with various glycols. Journal of Polymer Science , 61, 53:242-248.
    121. Peter S.J., Kim P., Yasko A.W., et al. Crosslinking characteristics of an injectable poly(propylene fumarate)/
    131. Fisher J.P., Holland T.A., Dean D., et al. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. Journal of Biomaterials Science Polymer Edition, 2001, 12:673-687.
    132. Fisher J.P., Timmer M.D., Holland T.A., et al. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure. Biomacromolecules, 2003, 4:1327-1334.
    133. Fisher J.P., Dean D., Mikos A.G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 2002, 23:4333-4343.
    134. Timmera M.D., Ambroseb C.G., Mikos A.G. In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate . Biomaterials, 2003, 24:571-577.
    135. Peter S.J., Nolley J.A., Widmer M.S., et al. In vitro degradation of a poly(propylene fumarate)/β-tricalcium phosphate composite orthopedic scaffold. Tissue Enggineering, 97, 3:207-215.
    136. Kharas G.B., Kamenetsky M., Simantirakis J., et al. Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cement composites. Journal of Applied Polymer Science, 97, 66:1123-1137.
    137. Yaszemski M.J., Payne R.G., Hayes W.C., et al. In vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials, 96, 17:2127-2130.
    138. Peter S.J., Miller M.J., Yasko A.W., et al. Polymer concepts in tissue engineering. Journal of Biomedical Material Research (Applied Biomaterials), 98, 43:422-427.
    139. Peter S.J., Miller S.T., Zhu G., et al. In vivo degradation of a poly(propylene fumarate)/ β-tricalcium phosphate injectable composite scaffold . Journal of Biomedical Materials Research, 98, 41:1-7.
    140. Yaszemski M.J., Payne R.G., Hayes W.C., et al. The ingrowth of new bone tissue and initial mechanical properties of a degrading polycapacity to form bone as an alternative to autologous bone meric composite scaffold. Tissue Engineering, 95, 1:41-52.
    141. Behravesh E., Shung A.K.,Jo S. Synthesis and Characterization of Triblock Copolymers of Methoxy Poly(ethylene glycol) and Poly(propylene fumarate). Biomacromolecules, 2002, 3:153-158.
    142. Jo S., Engel P.S.,Mikos A.G. Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide . Polymer, 2000, 41:7595-7604.
    143. Jo S., Shin H.,Mikos A.G. Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks. Biomacromolecules, 2001, 2:255-261.
    144. Kaluzynski K., Libiszowski J., Penczek S. A new class of synthetic polyelectrolytes. acidic polyesters of phosphoric acid, (poly(hydroxyalkylene phosphates)). Macromolecules, 76, 9:365-367.
    145. Leong k.w., Mao H.,Zhuo Renxi . Biodegradible polymers with a phosphoryl-containing backbone:tissue engineering and controlled drug delivery applications. Chinese Journal of Polymer Science, 95, 13:289-314.
    146. 汪朝阳, 赵耀明. 聚磷酸酯医用材料. 高分子通报, 2003, 6:19-27.
    147. He F., Zhuo R.X., Liu L.J., et al. Immobilized lipase on porous silica beads: preparation andapplication for enzymatic ring-opening polymerization of cyclic phosphate. Reactive and Functional Polymers, 2001, 47:153-158.
    148. Feng J., Zhuo R., He F. Enzymatic ring-opening copolymerization of trimethylene carbonate and ethylene ethyl phosphate. Science in China (Series B), 2003, 46:160-167.
    149. 范昌烈, 李兵, 刘振华, 等. DL-丙交酯与2-氢-2-氧-1,3,2-二氧磷杂环己烷的开环共聚合研究. 高等学校化学学报, 95, 16:971-973.
    150. 柯天一, 卓仁禧. 生物可降解磷酸酯-碳酸酯共聚物的合成及性能研究. 高分子学报, 97, 573-577.
    151. Hu B., Zhuo R., Fan C. Synthesis of Copolymer of 1,3-Dioxan-2-one and 2-Hydro-2-oxo-1,3,2-dioxaphosphorinane. Polymers for Advanced Technologies, 98, 9:145-149.
    152. 陈冬平, 蔡璐, 王均. 磷酸酯与ε-己内酯的嵌段共聚物的合成与表征. 2005全国高分子学术年会. 674.
    153. 范昌烈, 胡斌, 卓仁禧. 主链含酪氨酸聚磷酸酯药物控制释放材料的研究. 高等学校化学学报, 95, 16: 1802-1805.
    154. Gupta A.S., Lopina S.T. Synthesis and characterization of L-tyrosine based novel polyphosphates for potential biomaterial applications. Polymer , 2004, 45 :4653-4662.
    155. 卓仁禧, 崔竞舟, 刘立建. 主链含茜草双酯亚结构单元的聚磷酸酯的合成、降解及释药性能研究. 合成化学, 97, 5:385-389.
    156. 傅杰, 卓仁禧, 范昌烈. 含磷二羧酸与二对羧基苯氧基丙烷的共聚及其药物释放性能研究. 武汉大学学报, 97, 43:467-470.
    157. 卓仁禧, 王均, 毛海泉. 聚磷酸酯-聚氨酯药物释放材料的合成. 高等学校化学学报, 97, 18:1207-1211.
    158. 刘振华, 曾春龙, 范昌烈, 等. 含双疏水侧链聚磷酸酯脂质体膜材的合成. 高分子学报, 97, 194-197.
    159. 刘振华, 陈懋, 范昌烈, 等. 磷脂酰乙醇胺型聚磷酸酯脂质体膜材的合成. 高等学校化学学报, 97, 18:1556-1559.
    160. Wang J., Mao H.Q., Leong K.W. A novel biodegradable gene carrier based on polyphosphoester. Jouranl of American Chemistry Society, 2001, 123:9480-9481.
    161. Wang J., Zhang P.C., Lu H.F., et al. New polyphosphoramidate with a spermidine side chain as a gene carrier. Journal of Controlled Release , 2002, 83 :157
    167. Wang D. A., Williams C.G., Yang F., et al. Bioresponsive Phosphoester Hydrogels for Bone Tissue Engineering. Tissue Engineering, 2005, 11:201-213.
    168. Wan A.C.A., Mao H. Q., Wang S., et al. Poly(Phosphoester) Ionomers as Tissue-Engineering Scaffolds. Jornal of Biomedical Material Research Part B:Applied Biomaterials, 2004, 70B :91-102.
    169. 俞开潮, 卓仁禧. 含稳定氮氧自由基聚磷酸酯的合成及其弛豫性能研究. 波谱学杂志, 96, 13:417-422.
    170. 俞开潮, 卓仁禧, 刘午阳. DTPA-多甘醇-磷酸酯三元共聚物钆(Ⅲ ) 配合物的合成与表征. 合成化学, 98, 6:166-170.
    171. 罗毅, 卓仁禧, 范昌烈. 交联聚磷酸酯的合成及其释药性能研究. 高等学校化学学报, 95, 16:1633-1636.
    172. 罗毅, 卓仁禧, 范昌烈. 交联聚磷酸酯的合成. 中国医药工业杂志, 96, 27:6-7.
    173. Wang J., Zhuo R. Synthesis and characterization of phosphoester linkage-containing hydrogels. European Polymer Journal, 99, 35:491-497.
    174. Temenoff J.S., Mikos A.G. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 2000, 21:2405-2412.
    175. 复旦大学高分子科学系, 高分子科学研究所. 高分子试验. 上海: 复旦大学出版社, 1996,8. 374.
    176. Saunders B.C., Stacey G.J., Wild F. Esters containing phosphorus. Part Ⅴ . Esters of substituted phosphonic and phosphonous acids. Journal of Chemistry Society, 48, 1:699-703.
    177. Wygant J.C., Coeur C., Prill E.J.et al. Purification of hydroxyalkyl fumarate esters. United States, 3,360,546. 1967.
    178. 杨承宗. 第二次全国质谱学会议资料选编. 北京: 原子能出版社, 1982年10月第1版. 183-186.
    179. Chaubal M.V., Wang B., Su G., et al. Composition analysis of biodegradable polyphosphoester copolymers using NMR spectroscopic methods. Journal of Applied Polymer Science, 2003, 90:4021-4031.
    180. 何毅, 刘孝波, 杨德娟, 等. 纳米级β-磷酸钙的合成. 合成化学, 2000, 8:96-99.
    181. Pascual B., Vazquez B., Gurruchuaga M., et al. New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements. Biomaterials, 96, 17:509-516.
    182. Peter S.J., Kim P., Yasko A.W., et al. Crosslinking characteristics of an injectable poly(propylene fumarate)/ β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. Journal of Biomedical Materials research , 99, 44:314-321.
    183. 马德柱, 何平笙, 徐种德, 等. 高聚物的结构与性能. 北京: 科学出版社, 1999,1. 335-336.
    184. Young J.S., Gonzales K.D.,Anseth K.S. Photopolymers in orthopedics: characterization of novel crosslinked polyanhydrides. Biomaterials, 2000, 21:1181-1188.
    185. 陈用烈, 曾兆华, 杨建文. 辐射固化材料及其应用. 北京: 化学工业出版社, 2003,10. 36-37.
    186. Richter E., Fuhr G., Dell C., et al. Growth of anchoragedependent mammalian cells on microstructures and microperforated silicon membranes. Journal of Material Science:Material in medicine, 96, 7:85-97.
    187. Murphy W.L., Mooney D.J. Bioinspired Growth of Crystalline Carbonate Apatite on Biodegradable Polymer Substrata. Journal of American Chemical society, 2002, 124:1910-1917.
    188. Milev A.S., Kannangara G.S.K., Ben-Nissan B., et al. Temperature Effects on a Hydroxyapatite Precursor Solution. 2004, 108:5516-5521.
    189. Rehman I., Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. Journal of Material Science:Material in Medicine, 97, 8:1-4.
    190. Zhang R., Ma P.X. Porous poly(L-lactic acid)/apatite composites created by biomimetic process. Journal of Biomedical Material Research, 99, 45:285-293.
    191. 赵汇川, 冯建清, 张兴栋. 羟基磷灰石粉料相关特性与烧结动力学研究. 四川大学学报(自然科学版), 96, 33:266-271.
    192. Brauer G.M., Termini D.J.,Dickson G. Analysis of the ingredients and determination of the residual components of acrylic bone cements . Journal of Biomedical Material Research, 77, 11:577-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700