东北春大豆抗蚜关键酶活性测定、遗传分析及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆蚜(Aphis glycines Matsumura)隶属于同翅目,是大豆产区的主要害虫之一,苗期危害严重时可使大豆整株死亡。严重年份轻则减产20%~30%,重则减产达到50%以上。除降低种子产量,大豆蚜危害还会降低种子质量及传播某些植物病毒。大豆蚜分布广泛,在中国大豆产区基本都有分布,尤其东北地区发生较为严重。近年来已经由亚洲扩散到欧洲、美洲等地,成为一种全球性的农业害虫。长期来采用化学方法来防治大豆蚜,但随着大量杀虫剂的使用既污染环境又使其抗药性逐渐增加,而防治效果却逐渐降低,防治费用不断增加。因此,选育和利用抗蚜品种将是今后控制大豆蚜发生的一种经济有效的途径。
     长期以来中国大豆抗蚜育种工作主要在抗蚜资源筛选上,但稳定的、可利用的优良高抗大豆蚜种质资源仍然极少,常规育种田间直接选择抗蚜材料难度大,难以满足大豆抗蚜育种的需要。本研究利用3种已知不同抗蚜性大豆材料(高抗蚜材料野生豆85-32、抗蚜品种国育98-4和感蚜品种东农49)为试验材料,研究3种大豆材料中茉莉酸途径(JA)和水杨酸途径(SA)的4种关键酶(脂氧合酶(LOX)、丙二烯氧化物合成酶(AOS)、苯丙氨酸解氨酶(PAL)和β-l,3葡聚糖酶)活性,明确茉莉酸途径(JA)和水杨酸途径(SA)关键酶与大豆抗蚜性的关系,为大豆抗蚜性鉴定进一步提供依据,为深入了解大豆抗蚜理化防御机制提供理论支持;以高抗蚜品种野生85-32、抗蚜品种国育98-4和感蚜品种东农49分别组配多世代群体,应用盖钧镒先生提供的多世代联合的数量性状分析方法,进行抗性遗传分析,明确现有抗源的遗传规律,为培育抗大豆蚜品种提供遗传基础;以东农49和野生85-32杂交F2群体为试验材料,采用SSR分子标记技术,对大豆蚜抗性基因进行QTL(quantitative traitloci)定位,为大豆抗蚜分子育种提供理论依据,对今后抗大豆蚜基因图位的克隆、选育高抗大豆蚜新品种具有重要理论价值和科学意义。具体研究结果如下:
     1.不同品种接蚜处理与未接蚜对4种酶活性的影响及接蚜后酶活性变化的种内比较:无论是高抗蚜品种野生豆85-32、抗蚜品种国育98-4还是感蚜品种东农49,其对照(未接蚜虫)在各个时间4种酶活性变化均不大,而接种蚜虫的处理4种酶活性与对照相比均有明显的提高。LOX、AOS和PAL活性达到峰值后又迅速下降,而β-l,3葡聚糖酶在72h内其活性始终缓慢增加。接蚜后不同品种酶活性变化显著性比较,发现3个大豆品种接蚜前后种内酶活性在各个时间基本上都表现出在0.05水平上差异显著,在0.01水平上差异极显著。
     2.接蚜后不同抗蚜品种4种酶活性变化的品种间比较:接蚜后3种不同抗蚜大豆品种的4种酶活性均升高,且无论在种间还是种内活性差异都很大,接蚜后LOX、AOS和PAL活性均出现峰值,而后均有下降,但下降幅度不同;高抗品种85-32和抗蚜品种国育98-4的β-l,3葡聚糖酶活性变化趋势与其余3种酶不同,在接蚜后12h内β-l,3葡聚糖酶活性增加缓慢,12h后迅速增加,之后活性缓慢上升,抗蚜品种国育98-4的β-l,3葡聚糖酶活性虽在48h时有所下降,但在72h时又迅速增加,感蚜品种东农49在接蚜后72h内虽有所增加,但变化幅度不大。不同品种间在0h、12h、24h、48h和72h,4种酶活性总体上都表现出在0.05水平上差异显著,在0.01水平上差异极显著,抗蚜品种在接种蚜虫前的4种酶活性就明显高于感蚜品种。
     3.利用筛选出的高抗蚜品种野生85-32、抗蚜品种国育98-4和感蚜品种东农49,组配了东农49×野生85-32(DY)、东农49×国育98-4(DG)2个杂交组合,构建了P1、F1、P2、F2和F2:3,采用主基因+多基因混合遗传模型多世代联合分析方法,对每个杂交组合的各世代的单株大豆蚜数量进行调查,用来分析两个组合的遗传群体抗大豆蚜的遗传模式。结果表明,不同组合抗大豆蚜的遗传均符合一对主基因十多基因的混合遗传模式,即同时受主基因和多基因影响,且组合DG和DY的主基因的遗传率分别为58.03%、31.80%和68.88%、38.43%,多基因的遗传率相对较低,应着重利用主基因改良大豆品种对大豆蚜的抗性,同时还应该考虑多基因的积累。
     4.本研究采用800对SSR引物,共有190对SSR引物表现出了良好的多态性,具有较高的检测效率。利用Mapmaker3.0软件进行遗传图谱的构建,其中186对SSR引物被分配到2004年Song定义的20条连锁群(linkage group,LG)上。这些标记覆盖整个染色体组的8681.46cM。在LG C1、LG D1b、LG D2、LG E、LG G和LG K六个连锁群上标记分布较多,每个连锁群上都具有13个以上的SSR标记。
     5.对大豆蚜抗性进行QTL分析,发现属于连锁群F的2个与大豆蚜抗性相关的QTL位点为qRAP_F_4(Satt144—sct_033)和qRAP_F_5(Sct_033—satt335),贡献率分别为26.29%和13.15%;另外有2个QTL位点,位于B1连锁群,即qRAP_B1_1(Sat_123—satt415)和qRAP_B1_(2Satt332—sat_095);1个QTL位于D2连锁群,即qRAP_D2_3(Sat_086—satt135),贡献率分别为7.64%,7.00%和11.26%。
Soybean aphid, Aphis glycines Matsumura (Homoptera), was an important pest of soybean[Glycine max (L.) Merr.]. At seedling stage, severely infested plants could die. Heavy aphidinfestation on soybean could decrease20%~30%of yield, and severely up to50%in China. Inaddition to reducing seed-yield, the aphid could reduce seed quality and transmit some plantviruses. The soybean aphid widely distributed in soybean producing areas in China, and especiallythe northeast area was more serious. In recent years, it had spread from Asia to Europe, Americaand so on. The soybean aphid had become a kind of world agricultural pests. Producers haddepended on insecticides for controlling the aphid for a long time. Spraying soybean fields withinsecticides could not only cause environmental pollution, but also make its resistance increasinggradually, and control effect gradually reduced, and prevention cost continued to increase. Hence,breeding and utilization varieties with resistance to soybean aphid would be more effective andeconomical to control soybean aphid.
     Screening germplasm with resistance to aphid has been investigated for a long time, whilestable and available soybean cultivars are rare at present. Conventional breeding, directlyselection of materials with resistance to aphid in field, was very difficult, so it was difficult tomeet the need of soybean aphid resistance breeding. In the study3soybean materials withdifferent resistance to soybean aphid (high resistant wild soybean85-32, resistant Guoyu98-4and susceptible Dongnong49) as the test materials,4key enzyme activities (lipoxygenase (LOX),allene oxide synthase (AOS), phenylalanine ammonia lyase (PAL), β-l,3glucanase) of jasmonateacid pathway (JA) and salicylic acid pathway (SA) were measured to clear the relationshipsbetween them and soybean resistance to aphid. That further provided the basis for theidentification of soybean resistance to aphid and theory to understand the defense mechanism. Toidentify the resistance inheritance and provide genetic basis of breeding varieties, the inheritanceof resistance to soybean aphid was estimated by using the major gene and polygene genetic model (provided by Gai) with multiple generation populations from Dongnong49×Guoyu98-4andDongnong49×85-32. The aim was to identify the quantitative trait loci (QTL) associated withresistance to soybean aphid by SSR through a F2population, which was derived from a crossbetween Dongnong49and85-32. That provided the basis, important theory and sciencesignificance for molecular breeding, cloning and breeding varieties with high resistance tosoybean aphid. The major results were as follows:
     1. The effect of soybean aphid on4enzymes in different varieties and comparison of enzymeactivity changing in each variety infested by aphids:4enzyme activities in85-32, Guoyu98-4andDongnong49(all not infested by aphid) did not obviously change, while them in3varieties(infested) obviously rised. The activities of LOX, AOS and PAL rised to peak value and thendecreased rapidly, whileβ-l,3glucanase activity always increased slowly in72hours. It wasshown that significance comparison of enzyme activities in3varieties reached0.05significantlevel and0.01extremely significant level at each time.
     2. Comparison of4enzyme activities in different infested varieties:4enzyme activities in3different infested varieties rised, and the differences of enzyme activity were apparent not only inthe same variety, but also in different varieties. The activities of LOX, AOS and PAL reached peakvalue, and then all descented with different extent. The change tendency of β-l,3glucanase activitywas different from that of other3enzyme activities in85-32and Guoyu98-4. β-l,3glucanaseactivity increased slowly in12hours after infested, while it rised rapidly after12hours, and then itincreased slowly. β-l,3glucanase activity in Guoyu98-4declined at48hour after infested, and thenit increased rapidly at72hour. Though that in Dongnong49had increased in72hours, thevariation was small. As a whole, differences of4enzyme activities were significant at0.05leveland extremely significant at0.01level in different varieties at0hour,12hour,24hour,48hourand72hour. In addition,4enzyme activities in resistance varities were significantly higher thanthat in the susceptible varieties before infested.
     3.2hybrid combinations (Dongnong49(susceptible to soybean aphid)×85-32(high resistanceto aphid)(DY) and Dongnong49×Guoyu98-4(resistance to aphid)(DG)) were selected toconstruct P1, F1, P2, F2and F2:3populations. The numbers of soybean aphid per plant of eachgeneration were investigated to analyze the genetic pattern of resistance to soybean aphid indifferent combinations by the major gene and polygene mixed genetic model with multiplegeneration populations of plant quantitative traits. The results showed that resistance to soybeanaphid was controlled by a major gene and polygenes, with the inheritabilities of major gene,68.88%,38.43%in DY, and58.03%,31.80%in DG, respectively. The heritabilities of polygeneswere lower. Through comprehensive analysis, soybean resistance to soybean aphid was not onlycontolled by a major gene, but also there were polygenes effect. Hence, the major gene should bemainly utilized; meanwhile the polygene accumulation should be taken into account to improve soybean varieties with resistance to soybean aphid.
     4. In this study, a total of800SSR markers were used to detect polymorphisms between thetwo parents, and190SSR markers were polymorphic in the parents and used for linkage analysis.There was high detecting efficiency. Linkage map was constructed by Mapmaker/EXP version3.0,and186SSR markers were mapped onto20linkage groups designed by Song (2004). The mapreached a total about8681.46cM with an average distance of46.67cM between markers. Therewere more than13SSR markers on each of6linkage groups including more markers, LG C1, LGD1b, LG D2, LG E, LG G and LG K.
     5. The analysis result of QTLs associated with resistance to soybean aphid showed that therewere5QTLs detected. There were2QTLs on LG F,2QTLs on LG B1and1QTL on LG D2,qRAP_F_4(Satt144—sct_033), qRAP_F_5(Sct_033—satt335), qRAP_B1_1(Sat_123—satt415),qRAP_B1_2(Satt332—sat_095) and qRAP_D2_3(Sat_086—satt135), respectively, which couldexplain26.29%,13.15%,7.64%,7.00%and11.26%of phenotypic variance, respectively.
引文
[1]王春荣,陈继光,郭玉人,等.黑龙江省大豆蚜虫发生规律与防治方法[J].大豆通报,1998,(6):15.
    [2]李长锁.哈尔滨地区大豆蚜越冬和迁飞扩散习性的研究[D].哈尔滨:东北农业大学农学院,2008.
    [3]王承伦,相连英,张广学,等.大豆蚜的研究[J].昆虫学报,1962,11(1):31-44.
    [4]高峻峰.日本豆蚜茧蜂控制豆蚜的作用及其生物学特性的观察[J].中国生物防治,1992,(2):91-92.
    [5]Blackman R L,Eastop V F.Aphids on the world’s crops:an identification and informationguide[M].2nd ed.Wiley,New York,2000.
    [6]Daniel R L,Nicholas J M.Quantifying aphid predation:the mealy plum aphid Hyalopteruspruni in California as a case study[J].J.Appl.Ecol,2010,40(1):200-208.
    [7]Raychaudhuri D N. Aphids of northeast India and Bhutan[R]. Zoological Society ofIndia.Calcutta,India,1980.
    [8]中国科学院动物研究所.中国农业昆虫(上册)[M].北京:农业出版社,1986:252.
    [9]Singh S R,Van Emden H F.Insect pests of grain legumes[J].Annu.Rev.Entomol,1979,24:255-278.
    [10]Craig G,Bryan J,Scott M,et al.Team grains publication[J/OL].2003,(1):2-5.http://ipcm.wisc.edu/news/pest/soybean-aphid-2002.
    [11]David W R.Soybean aphid biology in North America[R].Special feature on soybean aphid,March,2004.
    [12]Murray J F, Petter D. The soybean aphid, aphis glycines, present in Australia
    [EB/OL].2002.http://www.agric.new.gov.au/Hort/ascu/insects/aglycin.htm.
    [13]Venette R C, Ragsdale D W.Assessing the invasion by soybean aphid(Homoptera:Aphididae):where will it end [J].Ann.Entomol.Soc.Am,2004,97:219-226.
    [14] Liu J,Wu K M,Hopper K R,et al. Population dynamics of aphis glycines(Homoptera:Aphididae)and its natural enemies in soybean in northern China[J].Ann.Entomol.Soc.Am.,2004,97(2):235-239.
    [15]刘惕若,辛惠普,李庆孝.大豆病虫害[M].北京:北京农业出版社,1978.
    [16]陈其瑚,俞水炎.蚜虫及其防治[M].上海:上海科学技术出版社,1988.
    [17]黄珊珊,李长锁,杨明亮,等.水杨酸、茉莉酸途径4种关键酶与大豆抗蚜性的研究[J].作物杂志,2012,5:54-58.
    [18]卜慕华,潘铁夫.中国大豆栽培区域探讨.第二次中美大豆学术研讨会论文集[C].1984,38-49.
    [19]马振泉,张金明.鲁北豆田害虫治理策略的探讨.第二次中美大豆学术研讨会论文集
    [C].1984,301-302.
    [20]韩新才.大豆蚜虫及其天敌田间消长规律[J].湖北农业科学,1997,(2):22-24.
    [21]林存蜜,李令堂,王延鹏,等.蚜虫数量对大豆主要经济性状的影响[J].大豆科学,1993,12(3):252-254.
    [22]尚佑芬,赵玖华,杨崇量,等.黄淮地区大豆花叶病研究进展[J].山东农业科学,1997,(5):47-50.
    [23]刘伟.大豆花叶病毒病[J].大豆通报,1998,(2):29.
    [24]郑翠明,常汝镇,邱丽娟.大豆花叶病毒病研究进展[J].植物病理学报,2000,30(2):97-105.
    [25]尚佑芬,罗瑞梧,杨崇良,等.影响大豆花叶病毒种子传毒有关因素的研究[J].山东农业科学,1989,(5):34-36.
    [26]罗瑞梧,尚佑芬,杨崇良,等.大豆花叶病毒的流行因素和发生预+测研究[J].植物保护学报,1991,18(3):267-271.
    [27]侯病树.大豆花叶病经济损害测定法及运用[J].江苏农业科学,1985,(6):19-20.
    [28]许志刚,Polston J E,Goodman R M.侵染大豆的三种病毒病的鉴定[J].大豆科学,1986,(1):161-165.
    [29]罗瑞梧,杨崇良,尚佑芬,等.大豆花叶病防治研究[J].山东农业科学,1990,(4):21-24.
    [30]柏立新,陈春泉,曹雁平,等.棉花病虫草害综合治理[M].南京:江苏科技出版社,1995.
    [31]范遗恒.大豆抗蚜品种的筛选[J].大豆科学,1988,7(2):167-169.
    [32]岳德荣,郭守桂,单玉莲.野生大豆抗大豆蚜虫研究[J].吉林农业科学,1989,39(3):15-19.
    [33]颜范悦,何富刚,辛万民,等.大豆品种的抗蚜类型与耐蚜类型研究[J].辽宁农业科学,1993,6:14-16.
    [34]何富刚.大豆抗蚜虫研究[J].辽宁农业科学,1995,(4):30-34.
    [35]杨振宇,本多健一郎,王曙明,等.中国东北抗蚜野生大豆重复鉴定的研究[J].吉林农业科学,2004,29(5):3-6.
    [36]武天龙,马晓红,姚陆明,等.大豆抗性资源抗性的鉴定分析[J].中国农业科学,2009,42(4):1258-1263.
    [37]孟凡立,李文滨,段玉玺,等.大豆蚜虫抗性鉴定技术及抗性资源筛选[J].大豆科学,2010,29(3):457-460.
    [38]蹼祖芹.大豆品种(系)对大豆花叶病毒6个株系的抗性反应[J].南京农学院学报,1983,(3):41-45.
    [39]吴宗璞.大豆品种对SMV不同毒株抗性反应与种粒斑驳关系的研究[J].大豆科学,1986,(2):153-160.
    [40]杨崇良.北方大豆品种资源抗大豆花叶病毒筛选[J].植物病理学报,1997,(1):27-28.
    [41]胡奇,赵建伟,崔德文.大豆植株内次生化合物木质素含量与大豆抗蚜性的的关系[J].植物保护,1993,19(1):8-9.
    [42]胡奇,张为群,姚玉霞,等.大豆叶片氮素含量与大豆蚜(Aphis glycines Mutsumura)发生量的关系[J].吉林农业大学学报,1992,14(4):103-104.
    [43]韩心丽,严福顺.大豆蚜在寄主与非寄主植物上的口针刺吸行为[J].昆虫学报,1995,38(3):278-283.
    [44]韩心丽,严福顺.大豆蚜触角嗅觉感器结构及其功能[J].昆虫学报,1995,3(30):278-282.
    [45]Hill C B,Li Y,Hartman G L.Resistance to the soybean aphid in soybean germplasm [J].CropScience,2004b,44:98-106.
    [46]Hill C B,Li Y,Hartman G L.Resistance of glycine species and variouse ultivated legumes tothe soybean aphid(Homoptera:Aphididae)[J].J.Econ.Entomol,2004a,97(3):1071-1077.
    [47]Mensah C,Difonzo C,Nelson R L,et al.Resistance to soybean aphid in early maturingsoybean germplasm[J].Crop Science,2005,45(6):2228-2233.
    [48]Hesler L S,Dashiell K E,Lundgren J G.Charaeterization of resistance to aphis glycines insoybean accessions[J].Euphytica,2007,154:91-99.
    [49]孙志强,田佩占,王继安.野生大豆抗蚜性的利用研究[J].大豆科学,1991,10(2):98-103.
    [50]Curtis B H,Yan L,Glen L H.Resistance to the soybean aphid in soybean germplasm[J].CropSci,2004,44(1):98-106.
    [51]Curtis B H,Yan L,Glen L H J.Resistance of glycine species and various cultivated legumesto the soybean aphid(Homoptera:Aphididae)[J].Econ.Entomol,2004,97(3):1071-1072.
    [52]孙祖东,盖钧镒.大豆对食叶性害虫抗性的研究[J].中国农业科学,1999(增):81-88.
    [53]詹秋文,盖钧镒.大豆种质资源对斜纹夜蛾(Prodenia litura)抗性的鉴定[J].应用与环境生物学报,2000,6(1):18-23.
    [54]王慧.大豆对食叶性害虫抗性的遗传及其相关基因的SSR标记和定位的研究[D].南京:南京农业大学硕士学位论文,2003.
    [55]吴巧娟,吴娟娟,吴业春,等.大豆资源对斜纹夜蛾的抗性鉴定[J].大豆科学,2006,25(4):409-413.
    [56]崔章林,盖钧镒.南京地区大豆食叶害虫重要种类分析与抗源鉴定[J].大豆通报,1996,(1):11.
    [57]Lambert L R M,Beaeh T C,Kilen.Soybean pubeseenee and it is influence on larvaldevelopment and oviposition perforence of lepidopterous insects[J].Crop sci,1992,32:463-466.
    [58]Antonio C S, Lima,Femando M,et al.Oviposition preference of Bemisia tabaci(Genn.)B biotype(Hemiptera:Aleyrodidae)on soybean genotypes in fleld conditions[J].NeotropicalEntomology,2002,31(2):297-303.
    [59]Giuliana E D V,Andre L L.Resistance of soybean genotypes to Bemisia tabaci(Genn.)biotype B(HemiPtera:Aleyrodidae)[J].Neotropical Entomology,2002,31(2):285-295.
    [60]Sridhar Y,Khalid H,Siddiqui,Trimohan.Field evaluation of soybean germplasm foridentifying resistance to stemfly,Melanagromyza sojae and whitefly,Bemisia tabaci[J].IndianJ. Ent.,2003,65(2):222-227.
    [61]徐冉,张礼凤,王彩洁.抗烟粉虱大豆种质资源筛选及抗性机制初探[J].植物遗传资源学报,2005,6(l):56-62.
    [62]张子金.大豆抗食心虫性的遗传[C].中美大豆科学讨论会论文集,1982,84-89.
    [63]郭守桂.大豆品种抗大豆食心虫研究初报[J].大豆科学,1983,2(3):200-206.
    [64]郭守桂,岳德荣,吕景良,等.大豆品种抗大豆食心虫研究Ⅱ,大豆品种资源抗食心虫鉴定及抗源筛选结果[J].大豆科学,1986,5(3):233-238.
    [65]岳德荣,郭守桂,吕景良,等.大豆品种抗大豆食心虫研究Ⅱ,大豆高抗食心虫材料的筛选结果[J].吉林农业科学,1986,2:57-60.
    [66]孙志强,阎日红,王继安,等.大豆抗食心虫性的遗传及抗虫育种方法的研究Ⅱ,开花期和成熟期与虫食率的关系[J].大豆科学,1993,12(2):113-121.
    [67]赵爱莉,王陆玲,王晓丽,等.大豆食心虫抗性品种鉴定及抗性性状分析[J].华北农学报,1992,4:218-223.
    [68]赵爱莉,王陆玲,王晓丽,等.大豆品种抗大豆食心虫性与其形态学和生物学因子关系的研究[J].吉林农业大学学报,1994,16(11):43-48.
    [69]徐庆丰,郭守桂,韩玉梅,等.大豆食心虫的研究[J].昆虫学报,1965,14(5):13-16.
    [70]徐庆丰,郭守桂,韩玉梅,等.大豆品种抗食心虫的初步研究[J].植物保护学报,1965,4(2):111-117.
    [71]薛俊杰.大豆品种抗食心虫机制的研究[J].河南农业科学,1989,(12):封3.
    [72]薛俊杰,程红梅.大豆抗大豆食心虫机制研究初报[J].华北农学报,1992,7(4):91-98.
    [73]薛俊杰,程红梅.大豆食心虫鉴定和利用研究[J].植物保护,1992,18(4):21-23.
    [74]庄炳昌,顾京,惠东威,等.对大豆食心虫抗性不同的大豆品种的RFLP的初步分析(简报)[J].吉林农业科学,1993,(1):75-77.
    [75]王继安.大豆食心虫抗源新种质拓建及抗性原因分析[J].大豆通报,1999,2:28-29.
    [76]王继安,罗秋香.大豆食心虫抗性品种鉴定及抗性性状分析[J].中国油料作物学报,2001,23(2):57-59.
    [77]王克勤,李新民,刘春来.黑龙江省大豆品种对大豆食心虫抗性评价[J].大豆科学,2006,25(2):153-157.
    [78]赵桂云,李文滨,韩英鹏,等.杂交F2代大豆食心虫抗性性状分析[J].大豆科学,2006,25(1):38-41.
    [79]聂翠琴,蒋惠兰,李群,等.山东省大豆育种研究进展及趋势[J].山东农业科学,1995,(5):26-28.
    [80]吕明春,王光杰,史荣贞,等.抗虫高产夏大豆新品种─鲁豆13号[J].山东农业科学,1996,(3):44.
    [81]崔章林,盖钧镒.大豆抗豆秆黑潜蝇研究进展[J].中国油料,1996,18(3):79-81.
    [82]Chang H S,Talekar N S.Identification of sources of resistance to the beanfly and two otheragromyzid flies in soybean and mungbean[J].J.Econ.Entomol,1980,73:197-199.
    [83]盖钧镒,夏基康,崔章林,等.我国南方大豆资源对豆秆黑潜蝇抗性研究[J].大豆科学,1989,8(2):115-119.
    [84]苗保河.黄淮夏大豆品种资源抗豆秆黑潜蝇特性鉴定与抗性机制研究[J].大豆通报,1996,(6):11-12.
    [85]邢光南,赵团结,盖钧镒.大豆资源的筛豆龟蜷[Megacopta cribraria(Fabricius)]抗性鉴定[J].作物学报,2006,32(4):491-496.
    [86]毕明娟.B型烟粉虱诱导的烟草防御信号途径及B型烟粉虱和烟蚜对烟草防御反应的生理适应性差异[D].山东农业大学博士学位论文,2010.
    [87]Paiva N L. An introduction to the biosnythesis of chemicals used in plant-microbecommunication[J].J Plant Growth Regul,2000,19:131-143.
    [88]Maunricio R,Rausher M D,et al.Variation in the defense strategies of plant:a reresistanceor tolerance mutually exelusive[J].Ecology,1997,78:1301-1311.
    [89]Maleck K,Dietrid R A.Defense on multiplefronts:how do plants cope with diverseenemies[J].Trends in Plant Science,1999,4:215-219.
    [90]Baldwin I T,Preston C A.The eco-physiological complexity of plant responses to insectherbivores[J]. Planta,1999,208:137-145.
    [91]娄永根,程家安.植物的诱导抗虫性[J].昆虫学报,1997,40(3):320-331.
    [92]Rojo E,Solano R,Sánchez-Serrano J J.Interactions between signaling compounds involvedin plant defense[J].Journal of Plant Growth Regulation,2003,22(1):82-98.
    [93]Thompson G A,Goggin F L.Transcriptomics and functional genomics of plant defenceinduction by phloem-feeding insects[J].Journal of Experimental Botany,2006,57(4):755-766.
    [94]Engelberth J,Koch T,et al.On channel-forming alamethicin is a potent elicitor of volatilebiosynthesis and tendril coiling.Cross talk between Jasmonate and Salicylate signaling in limabean[J].Plant Physiology,2001,125:369-377.
    [95]Gen-ichiro A,Ozawa R,Shimoda T,et al.Herbivory-induced volatiles elicit defence genesin lima bean leaves[J].Nature,2000,406:512-515.
    [96]Creelman R A,Mullet J E.Biosynthesis and action of jasmonates in plants[J].Plant Mol Biol,1997,48:355-381.
    [97]Schaller F,Schaller A,Stintzi A.Biosynthesis and metabolism of jasmonates[J].Journal ofPlant Growth Regulation,2004,23(3):179-199.
    [98]Dhondt S,Geoffroy P,Stelmach B A,et al.Soluble phospholipase A2activity is inducedbefore oxylipin accumulation in tobacco mosaic virus infected tobacco leaves and iscontributed by patatin-like enzymes[J].Plant Journal,2000,23:431-440.
    [99]Halitschke R,Baldwin I T.Antisense LOX expression increases herbivore performance bydecreasing defense responses and inhibiting growth-related transcriptional reorganization inNicotiana attenuata[J].Plant Journal,2003,36:794-807.
    [100]Stenzel I,Hause B,Miersch O,et al.Jasmonate biosynthesis and the allene oxide cyclasefamily of Arabidopsis thaliana[J].Plant Molecular Biology,2003,51:895-911.
    [101]Mei C,Qi M,Sheng G,et al.Inducible overexpression of a rice allene oxide synthase geneincreases the endogenous jasmonic acid level,PR gene expression,and host resistance tofungal infection[J].Mol Plant Microbe Interact,2006,19:1127-1137.
    [102]Tani T, Sobajima H, Okada K, et al. Identification of the OsOPR7gene encoding12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid inrice[J].Planta,2007,227:517-526.
    [103]石延霞,于洋,傅俊范,等.病原菌诱导后黄瓜叶片中脂氧合酶活性与茉莉酸积累的关系[J].植物保护学报,2008,35(6):486-490.
    [104]Ziegler J,Keinanen M,Baldwin I T.Herbivore-induced allene oxide synthase transcripts andjasmonic acid in Nicotiana attenuata[J].Phytochemistry,2001,58:729-738.
    [105]Wasternack C,Stenzel I,Hause B,et al.The wound response in tomato role of jasmonicacid[J].Plant Physiology,2006,163:297-306.
    [106]白朕卿,张少英,石力伟,等.茉莉酸与甜菜抗丛根病的关系[J].作物杂志,2012,4:58-61.
    [107]Constabel P C. A survey of herbivore inducible defensive proteins andphytochemical[J].Biochemistry,Ecology and Agriculture,1999,137-166.
    [108]赵丽艳.麦长管蚜取食诱导小麦防御反应的生理生化及分子机制[D].北京:中国农业科学院硕士学位论文,2006.
    [109]Fidantsef A L,Stout M J,Thaler J S,et al.Signal interactions in pathogen and insect attack:expression of lipoxygenase,proteinase inhibitor II,and pathogenesis-related protein P4in thetomato,Lycopersicon esculentum[J].Physiological and Molecular Plant Pathology,1999,54:97-114.
    [110]Harms K. Expression of a flax allene oxide sunthase cDNA leads to increased endogenousJasmonic acid levels in transgenic potato plants but no a corresponding activation ofJA-responding genes[J].Plant Cell,1995,7:1645-1654.
    [111]Cui J,Georg R,Lisa R R,et al.Signals involved in arabidopsis resistance to trichoplusiain caterpillars induced by virulent and avirulent strains of the phytopathogen pseudomonassyringae[J].Plant Physiology and Biochemistry,2002,129:551-564.
    [112]薛应龙,欧阳光察.植物抗病的物质代谢基础[M].北京:科学出版社,1998,770-783.
    [113]江昌俊,余有本.苯丙氨酸解氨酶的研究进展[J].安徽农业大学学报,2001,28(4):425-430.
    [114]Shadle G L,Wesley S V,Korth K L,et al.Phenylpropanoid compounds and diseaseresistance in transgenic tobacco with altered expression of L-phenylalanineammonialyase[J].Phytochemistry,2003,64(1):153-161.
    [115]李进步,方丽平,等.杨荣志棉花抗蚜性与苯丙氨酸解氨酶活性的关系[J].昆虫知识,2008,45(3):422-425.
    [116]Zhang S Z, Zhang F, Hua B Z. Enhancement of phenylalanine ammonialyase,polyphenoloxidase,and peroxidase in cucumber seedlings by Bemisia tabaci(Gennadius)(Hemiptera:Aleyrodidae) infestation[J].Agricultural Sciences in China,2008,7(1):82-87.
    [117]姜涛,褚栋,姜德锋,等.烟粉虱刺吸诱导转Bt+CpTI基因棉苯丙氨酸解氨酶和氧保护酶系活性变化[J].山东农业科学,2009,10:48-53.
    [118]程璐,贺春贵,胡桂馨,等.苜蓿斑蚜为害对5种苜蓿品种(系)PAL、POD、PPO酶活性的影响[J].植物保护,2009,35(6):87-90.
    [119]Chaman M E,Copaja S V,Argandona V H.Relationships between salicylic acid content,phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphidinfestation[J].Journal of Agricultural and Food Chemistry,2003,51(8):2227-2231.
    [120]Moran P J,Thompson G A.Molecular responses to aphid feeding in Arabidopsis in relationto plant defense pathways[J].Plant Physiology,2001,125(2):1074-1085.
    [121]贾贞,宋占午,等.山檀叶瞒危害对海棠叶片PoD的影响[J].西北植物学报,2004,24(11):2136-2139.
    [122]Forslund K,Pettersson J,Bryngelsson T,et al.Aphid infestation induces PR-proteinsdifferently in barley susceptible or resistant to the birdcherry-oat aphid(Rhopalosiphum padi)[J]. Physiologia Plantarum,2000,110(4):496-502.
    [123]Ni X,Quisenberry S S,Heng-Moss T,et al.Oxidative responses of resistant and susceptiblecereal leaves to symptomatic and nonsymptomatic cereal aphid(Hemiptera:Aphididae)feeding[J].Journal of Economic Entomology,2001,94(3):743-751.
    [124]Huang Y.Phloem feeding regulates the plant defense pathways responding to both aphidinfestation and pathogen infection.In:Xu et al.eds.Biotechnology and sustainable agriculture2006and beyond[C].Springer,New York,2007,215-219.
    [125]Leszczynski B.Changes in phenols content and metabolism in leaves of susceptible andresistant wheat cultivars infested by Rhopalosiphum padi (L.)(Hom.: Aphididae)[J].Zeitschrift fuer Angewandte Entomologie,1985,100(4):343-348.
    [126]Mayer R T,Inbar M,McKenzie CL,et al. Multitrophic interactions of the silverleafwhitefly,host plants,competing herbivores,and phytopathogens[J].Archives of InsectBiochemistry and Physiology,2002,51(4):151-169.
    [127]Puthoff D P,Holzer F M,Perring T M,et al.Tomato pathogenesis-related protein genes areexpressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype Bfeeding[J].Journal of Chemical Ecology,2010,36(11):1271-1285.
    [128]Broadway R M.Are insects resistant to plant proteinase inhibitors[J].Journal of InsectPhysiology,1995,41:107-116.
    [129]Chico J M,Raices M,Tellez-Inon M T,et al.A calcium-dependent protein kinase issystemically induced upon wounding in tomato plants[J].Plant Physiology,2002,128:256-270.
    [130]De Moraes C M,Mescher M C,Tumlinson J H.Caterpillar-induced nocturnal plant volatilesrepel nonspecific females[J].Nature,2001,410:577-580.
    [131]Degenhardt J,Gershenzon J.Demonstration and characterization of (E)-nerolidol synthasefrom maiz: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis[J].Planta,2000,210:815-822.
    [132]Haile F J,Higley LG,Ni X Z,et al.Physiological and growth tolerance in wheat to Russianwheat aphid(Homoptera:Aphididae)injury[J].Environmental Entomology,1999,28(5):787-794.
    [133]Reymond P,Farmer E E.Jasmonate and salicylate as global signals for defense geneexpression[J].Curr Opin Plant Biol,1998,1:404-411.
    [134]Madhusudhan V V,Miles P W.Mobility of salivary components as a possible reason fordifferences in the responses of alfalfa to the spotted alfalfa aphid and peaaphid[J].Entomologia Experimentalis et Applicata,1998,86(1):25-39.
    [135]Gao L L,Anderson J P,Klingler J P,et al.Involvement of the octadecanoid pathway inbluegreen aphid resistance in Medicago truncatula[J].Molecular Plant Microbe Interactions,2007,20(1):82-93.
    [136]Alagar M,Suresh S,Saravanakumar D,et al.Feeding-induced changes in defence enzymesand PR proteins and their implications in host resistance to Nilaparvata lugens[J].Journal ofApplied Entomology,2010,134(2):123-131.
    [137]胡奇,崔德文,莫秀玲,等.影响大豆抗蚜性的生化因子初析[J].中国油料,1993,(3):67.
    [138]姜伊娜,王彪,武天龙.蚜虫侵害对不同基因型大豆酶活性及次生代谢物含量的影响[J].大豆科学,2009,28(1):103-107.
    [139]Nilsson Ehle H. Kreuzunguntersuchungen an hafer and weisen[D]. Lund, LundsUniv.Aerskr,NF,1909.
    [140]Fisher R.A. The correlation between relatives on the supposition of Mendelianinheritance[J].Trans.Roy.Soc.Edinb.,1918,52:399-433.
    [141]盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003.
    [142]Elston R,Stewart J.The analysis of quantitative traits for simple genetic models fromparental,F1and backcross data[J].Genetics,1973,73:695-711.
    [143]Morton N E,C J MacLean.Analysis of family resemblance. Ⅲ.Complex segregation ofquantitative traits[J].Am J Hum Genet,1974,26:489-503.
    [144]Elkind Y,Cahaner A. A mixed model for the effects of single gene,polygenes and theirinteraction on quantitative traits.1. The model and experimental design[J]. Theor ApplGenet,1986,72:377-383.
    [145]Elkind Y,Cahaner A. A mixed model for the effects of single gene,polygenes and theirinteraction on quantitative traits.2. The effects of the major gene and polygenes on tomatofruit softness[J]. Heredity,1990,64:205-213.
    [146]莫惠栋.质量一数量性状的遗传分析1.遗传组成和主基因基因型鉴别[J].作物学报,1993a,19(l):l-6.
    [147]Loisel P, Goffinet B, Monod H, et al. Detecting a major gene in an F2population[J].Biometrics,1994,50:512-516.
    [148]姜长鉴,莫惠栋.质量—数量性状的遗传分析Ⅳ极大似然法的应用[J].作物学报,1995,21(6):641-648.
    [149]王建康.数量性状主基因—多基因混合遗传模型的鉴别和遗传参数估计的研究[D].南京农业大学博士学位论文,1996.
    [150]盖钧镒,王建康.利用回交世代或F2:3家系世代鉴定数量性状主基因—多基因混合遗传模型[J].作物学报,1998a,24(4):402-409.
    [151]盖钧镒,王建康.大豆对豆秆黑潜蝇抗性的主基因+多基因混合遗传[C].王连铮,戴景瑞主编,全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998b,241-248.
    [152]盖钧镒,章元明,王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析[J].作物学报,2000,26(4):385-391.
    [153]章元明,盖钧镒.利用DH或RIL群体鉴定QTL体系并估计其遗传效应[J].遗传学报,2000b,27(7):634-640.
    [154]章元明.植物数量性状遗传分离分析法的改进和拓展[D].南京:南京农业大学博士学位论文,2001.
    [155]莫惠栋.质量—数量性状的遗传分析Ⅱ世代平均数和遗传方差[J].作物学报,1993b,19(3):193-200.
    [156]王建康,盖钧镒.利用杂种F2世代鉴定数量性状主一多基因混合遗传模型并估计其遗传效应[J].遗传学报,1997a,24(5):398-404.
    [157]高力,陈飞,周立人,等.小麦品种望水白的抗赤霉病性遗传分析[J].麦类作物学报,2005,25:5-9.
    [158]王竹林,刘曙东,王辉,等.“百农64”慢白粉性的遗传分析[J].西北植物学报,2006,26:332-336.
    [159]张勇,张伯桥,高德荣,等.小麦抗病新材料542抗赤霉病性的主基因+多基因遗传分析[J].江苏农业科学,2005,21:272-276.
    [160]周宝良,朱协飞,郭旺珍,等.异常棉渐渗的陆地棉高品质种质系纤维特性遗传[J].棉花学报,2006,18:60-62.
    [161]王淑芳,石玉真,刘爱英,等.陆地棉纤维品质性状主基因与多基因混合遗传分析[J].中国农学通报,2006,22:157-161.
    [162]李纪锁,沈火林,石正强.鲜食番茄果实中番茄红素含量的主基因一多基因混合遗传分析[J].遗传,2006,28:458-462.
    [163]肖静,胡治球,汤在祥,等.多个相关数量性状主基因的联合分析方法[J].中国农业科学,2005,38:1717-1724.
    [164]何昆燕,易斌,傅廷栋,等.甘蓝型油菜菌核病抗性的遗传分析[J].作物学报,2005,31:1495-1499.
    [165]张书芬,马朝芝,朱家成,等.甘蓝型油菜含油量的主基因+多基因遗传效应分析[J].遗传学报,2006,33:171-180.
    [166]金文林,白璐,文自翔.小豆百粒重性状遗传体系分析[J].作物学报,2006,32(9):1410-1412.
    [167]高文瑞,陈晨,王红铃,等.大豆籽粒大小的遗传及SSR标记分析[J].中国油料作物学报,2007,29(2):1-8.
    [168]刘莹,盖钧镒,吕慧能,等.大豆耐旱种质鉴定和相关根系性状的遗传与QTL定位[J].遗传学报,2005,32(8):856-863.
    [169]王贤智.大豆产量相关性状的遗传与稳定性分析及QTL定位研究[J].中国农业科学院博士学位论文,2008.
    [170]孙石,赵晋铭,武晓玲,等.大豆对大豆疫霉根腐病抗性的遗传分析[J].中国农业科学,2009,42(2):492-498.
    [171]李侠,常玮,韩英鹏,等.大豆种子脂肪酸含量的遗传分析[J].大豆科学,2009,28(3):403-408.
    [172]姜振峰.大豆油分和蛋白质含量遗传效应及与环境互作效应QTL分析[D].东北林业大学博士学位论文,2010.
    [173]李海燕.大豆维生素E含量的遗传分析及QTL定位[D].东北林业大学博士学位论文,2010.
    [174]郭建秋,张向召,马雯,等.夏大豆瘪荚率的遗传分析[J].河南农业科学,2012,2:3-5.
    [175]Sisson V A,Milier P A,Campbell W V,et al.Evidence of in heritsance of reisitance to theMexican bean beetle in soybeans[J].Crop Science,1976,16:835-837.
    [176]Kilen T C,Hatchett J H,Hartwig E E. Evaluation of early generation soybeans forresistance to soybean looper[J].Crop Science,1977,17:397-398.
    [177]Kenty M M,Hinson K,Quesenberry K H,et al.Inheritance of resistance to the soybeanlooper in soybean[J].Crop Science,1996,36(6):1532-1537.
    [178]Kilen T C,Lambert L.Evidence for different genes controlling insect resistance in threesoybean genotypes[J].Crop Scienee,1986,26:869-871.
    [179]孙祖东,盖钧镒.大豆对食叶性害虫抗性的研究[J].中国农业科学,1999,81-88.
    [180]詹秋文,盖钧镒,章元明,等.大豆对斜纹夜蛾幼虫抗性遗传的发展表达过程[J].遗传学报,2001,28(10):956-963.
    [181]詹秋文,盖钧镒,章元明,等.大豆对食叶性害虫的抗性遗传[J].中国农业科学,2002,35(8):1016-1020.
    [182]吴业春.大豆对食叶性害虫抗性的鉴定及对斜纹夜蛾抗生性的遗传研究[D].南京:南京农业大学硕士学位论文,2003.
    [183]Komatsu K,Okuda S,Takahashi M,et al.Antibiotic effect of insect一resistant soybeanon common cutworm(Spodoptera litura)and its inheritance[J].Breeding Science,2004,54:27-32.
    [184]刘华,王慧,李群,等.大豆对斜纹夜蛾抗性的遗传分析及相关QTL的定位[J].中国农业科学,2005,38(7):1369-1372.
    [185]邢光南,赵团结,盖钧镒.大豆对豆卷叶螟Lamprosema indicata(Fabricius)抗性的遗传分析[J].作物学报,2008,34(l):8-16.
    [186]李广军,程利国,张国政,等.大豆对豆卷叶螟抗性的主基因十多基因混合遗传[J].大豆科学,2005,27(1):33-36.
    [187]徐冉,李伟,张礼凤,等.大豆抗烟粉虱的遗传分析[J].大豆科学,2009,28(6):954-958.
    [188]孙志强,田佩占,岳德荣.大豆抗食心虫性的遗传及抗虫育种方法的研究I:人工接虫条件下F2代的抗虫性[J].大豆科学,1989,8(2):177-183.
    [189]刘洋,王继安,赵奎军.大豆抗食心虫性遗传研究[J].东北农业大学学报,2005,36(2):138-141.
    [190]Hill C B,Li Y,Hartman G L.A single dominant gene for resistance to the soybean aphid inthe soybean cultivar Dowling[J].Crop Science,2006a,46:1601-1605.
    [191]Hill C B,Li Y,Hartman G L.Soybean aphid resistance in soybean Jackson is controlled bya single dominant gene[J].Crop Science,2006b,46:1606-1608.
    [192]Curtis B Hill,Yan Li,Glen L Hartman.A singie dominant gene for resistance to the soybeanaphid in the soybean cultivar Dowling[J].Crop Science,2006,46:1601-1605.
    [193]Apuya N R. Restriction fragment length polymorphism as genetic marker in soybean[J].Theor Appl Genet,1988,75:889-901.
    [194]Keim P.RFLP mapping in soybean:association between marker loci and variation inquantitative traits[J].Genetics,1990,126:735-742.
    [195]Shoemaker R C, Olson T C. Molecular linkage map of soybean (Glycine maxL.Merr.). p6.139-6.148[M]//In S.J.O’Brien(ed.)Genetic Maps:Locus maps of complexgenomes.Cold Spring Harbor Laboratory Press,New York,1993.
    [196]Lark K G.A genetic map of soybean using intraspecific cross of two cultivars:“Minsoy”and“Noir1”[J].Theor Appl Genet,1993,86:901-906.
    [197]Akkaya M S,Shoemaker R C,Specht,et al.Integration of simple sequence repeats DNAmarkers into a soybean linkage map[J].Crop Science,1995,35:1439-1445.
    [198]Webb D M,Baltazar B M,Rao-Arelli A P,et al.QTL affecting soybean cystnematodeResistance[J].Theor Appl Genet,2009,91:574-581.
    [199]Cregan P B,Jarvik,Bush A L,et al.An integrated genetic1inkage map of the soybeangenome[J].Crop Sci,1999,39:1464-1490.
    [200]Ferreira A R,Foutz K R,Keim R.Soybean genetic map of RAPD markers assigned to anexisting scaffold RFLP map[J].J.Hered,2000,91:392-396.
    [201]Iqbal M J,Meksem V N,Njiti M,et al.Microsatellite makers identify three additionalquantitative trait loci for resistance to soybean sudden-death syndrome(SDS)in Essex×Forrest RILs[J].Theoretical and Applied Genetics,2001,102:187-192.
    [202]Narvel J M,David R W,Brian G R,et al.A retrospective DNA marker assessment of thedevelopment of insect resistant soybean[J].Crop Science,2001,41:1931-1939.
    [203]Song Q J,Marek L F,shoemarker R C,et al. A new integrated genetic linkage map of thesoybean[J].Theor Appl Genet,2004,109:122-128.
    [204]张德水,董伟,惠东威,等.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图[J].科学通报,1997,42(12):1326-1330.
    [205]刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析[J].遗传学报,2000,27(l):1018-1026.
    [206]吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051-1061.
    [207]宛煌篙.大豆遗传图谱的构建及若干农艺性状的QTL定位分析[D].中国农业科学院博士学位论文,2002.
    [208]王永军,吴晓雷,喻德跃,等.重组自交系群体的检测调整方法及其在大豆NJIUKY群体的应用[J].作物学报,2004,30(5):413-418.
    [209]王珍.大豆SSR遗传图谱构建及重要农艺性状QTL分析[D].广西大学硕士学位论文,2004.
    [210]Zhang W K,Wang Y J,Luo G Z,et al.QTL mapping of ten agoronomic traits on the soybean(Glycine max L.Merr.)genetic map and their association with EST markers[J].Theoreticaland Applied Genetics,2004,108:1131-1139.
    [211]关荣霞.大豆重要农艺性状的QTL定位及中国大豆与日本大豆的遗传多样性分析[R].中国农科院博士后研究工作报告,2004.
    [212]杨喆.大豆遗传图谱的构建和若干农艺性状的QTL定位及应用分析[D].东北农业大学硕士学位论文,2004.
    [213]陈庆山,张忠臣,刘春燕,等.应用charleston×东农594重组自交系群体构建SSR大豆遗传图谱[J].中国农业科学,2005,38(7):1312-1316.
    [214]巩鹏涛,木金贵,赵金荣,等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316.
    [215]徐冉.大豆抗烟粉虱的鉴定与遗传研究[D].南京农业大学博士学位论文,2009.
    [216]Komatsu K, Okuda S,Takahashi M,et al.QTL mapping of antibiosis resistance to commoncutworm(Spodoptera litura Fabricius)in soybean[J].Crop Science,2005,45(5):2044-2048.
    [217]Zhao Guiyun,Wang Jian,Han Yingpeng,et al.Identification of QTL underlying theresistance of soybean to pod borer,Leguminivora glycinivorella(Mats.)obraztsov,andcorrelations with plant,pod and seed traits[J].Euphytica,2008,164(1):275-282.
    [218]邢光楠.大豆抗豆卷叶螟和筛豆龟蜷的鉴定、遗传和QTL分析[D].南京农业大学博士学位论文,2007.
    [219]Li Y,Hill C B,Carlson S R,et al.Soybean aphid resistance genes in the soybean cultivarsDowling and Jackson map to linkage group M[J].Mol Breed,2007,19:25-34.
    [220]Mian M A R,Hammond R B,St Martin SK.New plant introductions with resistance to thesoybean aphid[J].Crop Science,2008a,48:1055-1061.
    [221]Mian M A R,Kang S T,Beil S E,et al.Genetic linkage mapping of the soybean aphidresistance gene in PI243540[J].Theor Appl Genet,2008b,117:955-962.
    [222]Kang S T,Mian M A R,Hammond R B.Soybean aphid resistance in PI243540is controlledby a single dominant gene[J].Crop Science,2008,48:1744-1788.
    [223]Hill C B,Kim K S,Crull L,et al.Inheritance of resistance to the soybean aphid in soybeanPI200538[J].Crop Science,2009,49:1193-1200.
    [224]Zhang G,Gu C,Wang D.Molecular mapping of soybean aphid resistance genes in PI567541B[J].Theor Appl Genet,2009,118:473-482.
    [225]Zhang G,Gu C,Wang D.A novel locus for soybean aphid resistance[J].Theor Appl Genet,2010,120:1183-1191.
    [226]Kim K S,Hill C B,Hartman G L,et al.Fine mapping of the soybean aphid-resistance geneRag2in soybean PI200538[J].Theor Appl Genet,2010,121:599-610.
    [227]Jun T H,Mian M A R,Michel A P.Genetic mapping revealed two loci for soybean aphidresistance in PI567301B[J].Theor Appl Genet,2012,124:13-22.
    [228]宋淑云,张伟,刘影,等.大豆品种抗病虫性评价及多抗性抗源筛选[J].吉林农业大学学报,2010,32(1):17-23.
    [229]Axelrod B,Cheesbrough T M,Leakso S.Lipoxygenase from soybeans:EC1.13.11.12linoleate:oxygen oxidoreductase[J].Methods in Enzymology,1981,71:441-451.
    [230]Zimmeraman D C, Vick B A. Hydroperoxide isomerase: a new enzyme of lipidmetabolism[J].Plant Physiology,1970,46:445-453.
    [231]Koukol J, Conn E E. The metabolism of aromatic compounds in higher plants IV.Purification and properties of the phenylalanine deaminase of Hordeum vulgare[J].Journal ofBiology Chemistry,1961,236:2692-2698.
    [232]徐涛,周强.茉莉酸信号传导途径参与了水稻的虫害诱导防御过程[J].科学通报,2003,48(13):1442-1446.
    [233]Agrawal A A.Induced responses to herbivory and increased plant performance[J].Science,1998,279(5354):1201-1202.
    [234]Baldwin I T,Halitschke R,Kessler A,et al.Merging molecular and ecological approachesin plant–insect interactions[J].Current Opinion in Plant Biology,2001,4:351-358.
    [235]潘学彪,张亚芳,左示敏,等.作物重要数量性状基因鉴定与应用的若干问题[J].扬州大学学报(农业与生命科学版),2005,26(2):50-55.
    [236]Brown G R,Bassoni D L,Gill G P,et al.Identification of quantitative trait loci influencingwood property traits in loblolly pine(Pinus taeda L.).111.QTL verification and candidategene mapping [J].Genetics,2003,164:1537-1546.
    [237]莫惠栋.数量性状遗传基础研究的回顾与思考一后基因组时代数量遗传领域的挑战[J].扬州大学学报(农业与生命科学版),2003,24(2):24-31.
    [238]Paterson A H,Deverna J W,Unini B,et al.Fine mapping of quantitative trait loci usingselected overlapping recombinant chromosomes, in an interspecies cross oftomato[J].Genetics,1990,124:735-742.
    [239]万向元,刘世家,王春明,等.利用CSSLs群体研究稻米粒型QTL的表达稳定性[J].遗传学报,2004,31(11):1275-1283.
    [240]何风华,席章营,曾瑞珍,等.利用单片段代换系定位水稻抽穗期QTL[J].中国农业科学,2005,38(8):1505-1513.
    [241]王永军,吴晓雷,贺超英,等.大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36(11):1254-1260.
    [242]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001,7-10.
    [243]方宣钧,吴为人.分子选择[J].分子植物育种,2003,(l)l:1-5.
    [244] Peleman J D,Voort J R.Breeding by design[J].Trends in Plant Science,2003,8(7):330-334.
    [245]刘志文,傅廷栋,刘雪平,等.作物分子标记辅助选择的研究进展、影响因素及其发展策略[J].植物学通报,2005,22(增刊):82-90.
    [246]Varshney R K, Graner A, Sorrells M E. Genomics-assisted breeding for cropimprovement[J].Trends in Plant Science,2005,10(12):621-630.
    [247]Huang S S,HAN Y P,LI C S,et al.Identification of QTLs associated with total soyasaponincontent in soybeans [Glycine max (L.) Merr.].Journal of Integrative Agriculture,2012,11(12):1976-1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700