典型纳米材料及制剂的毒理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究探讨了纳米四氧化三铁、碳纳米管、纳米二氧化钛和纳米制剂体内外的毒性作用,主要内容如下:
     一、纳米材料对A549细胞的毒性作用:本研究是为了探讨纳米四氧化三铁、不同性质的碳纳米管和纳米二氧化钛对体外培养的人肺上皮细胞A549的影响。细胞形态学的变化通过倒置相差显微镜观察,通过MTT法、CCK-8法和台盼蓝排斥法测定细胞的活性并测定不同纳米材料处理后细胞培养上清中LDH酶活性。试验结果表明,纳米四氧化三铁在100μg/ml的剂量下,对A549细胞的存活率没有明显的影响;纳米二氧化钛在200μg/ml的剂量下,对A549细胞的存活率也没有明显的影响;对碳纳米管的细胞毒性研究发现,上述几种评价细胞毒性的方法所得结果不完全一致,CCK-8法表明在高浓度下,细胞的存活率甚至低于20%,然而在光镜下却没有观察到细胞活性有明显的降低,LDH法和细胞计数也进一步证明了碳纳米管对细胞的存活率没有明显影响,所有结果提示:碳纳米管可能会与染料发生相互作用,导致假阳性结果。
     二、纳米材料对ICR小鼠的急性毒性作用:本部分实验是为了观察小鼠经口单次灌胃纳米材料后可能产生的急性毒性反应。纳米二氧化钛和单壁碳纳米管在5g/kg剂量下、多壁碳纳米管在1g/kg的剂量下单次经口灌胃,14天后,小鼠处死。检查指标包括体重、摄食量、血清生化、脏器系数和组织病理学。结果表明,纳米二氧化钛和碳纳米管对小鼠体重和脏器系数没有明显的影响,实验期间小鼠的摄食量逐渐增加。观察期间也未见动物出现明显毒性反应和死亡,尽管部分血清生化有明显的改变,但除纳米二氧化钛雄性动物CK值外,均在正常范围内波动,组织病理学观察未见明显异常。在本试验条件下,纳米材料属于低毒或无毒物质。
     三、纳米二氧化钛对SD大鼠的亚慢性毒性研究:本部分实验是为了探讨纳米二氧化钛对SD大鼠的亚慢性毒性,观察其引起的毒性反应,提供毒性反应的靶器官及其损害的可逆情况。纳米二氧化钛在1g/kg剂量下,连续染毒3个月,灌胃纳米二氧化钛后均无异常征状可见,观察期间也未见动物出现明显毒性反应和死亡。动物的摄食量、体重变化与空白对照相比,没有显著性改变。血液和生化检查结果显示,与空白对照组相比,部分参数差异显著,但除纳米二氧化钛组雌性大鼠染毒末BUN和CREA值、微米二氧化钛雌性大鼠染毒末M值外均在本实验室正常范围内波动,没有毒理学意义。对染毒末和恢复期末所有动物的组织学病理观察未见明显的病理学改变,骨髓涂片也均未见明显的骨髓细胞形态学改变及毒性病理变化。
     四、纳米二氧化钛组织分布学研究:本研究中,通过ICP-MS检测了纳米二氧化钛经口灌胃13周后在大鼠中的分布情况。所取样品包括肝、脾、肾、肠、脑和血液。钛浓度分析结果表明,大鼠经口重复染毒纳米二氧化钛后,可以通过胃肠道吸收而使纳米二氧化钛滞留在体内,并主要分布在肠、肝和脾中。提示纳米二氧化钛经口暴露后,可以通过胃肠道吸收并分布到体内其它组织和器官,但对生物体可能不会产生明显影响。
     五、纳米制剂对beagle犬的皮肤毒性及其可能机制:研究了beagle犬静脉给予纳米制剂的皮肤毒性和毒代动力学,给药12周,每4周1次。我们每周1次评价了beagle犬的皮肤毒性。发现空白对照组、赋形剂组和普通制剂(0.45mg/kg)组动物,整个试验期间均未见明显皮肤毒性反应。0.1、0.3和0.45mg/kg组皮肤毒性的主要表现为四肢、颌下、腹部的脱毛、红斑、渗出、焦痂、溃疡等征状,且有明显的剂量反应关系。毒代动力学结果显示:脂质体药物在犬体内的药代动力学行为符合线性动力学,多次给药后在犬体内不存在蓄积,在改变剂型后,提高了药物在血浆中的停留。普通制剂在血浆中具有极快消除的特性,普通制剂的犬血浆样品中基本未检测到药物,仅在达峰处检到血药浓度,相当于同剂量脂质体的1/100,证明脂质体注射液具有显著体内长循环的特性。对溃烂皮肤和正常皮肤药物浓度分析表明,溃烂皮肤药物浓度显著高于正常皮肤,提示脂质体制剂更易于分布在这些部位导致皮肤毒性。
     六、纳米材料对体外血脑屏障模型的影响:本部分实验通过原代培养分离得到大鼠脑毛细血管内皮细胞和星形胶质细胞,经形态学和免疫组化鉴定,表明细胞纯度高,可以用于体外血脑屏障模型的构建。然后,我们建立了非接触式体外共培养模型,该模型跨内皮细胞电阻值为373±41Ω·cm~2,荧光素钠的通透性为(0.34±0.14)×10~(-3)cm/min,这与文献报道一致。最后评价了几种纳米材料对BBB紧密连接的毒性作用,结果表明,这些纳米材料在100μg/ml的浓度下对BBB紧密连接没有明显的毒性作用。
     总之,在本试验条件下,无机纳米材料没有表现出明显的体内外毒性作用;可生物降解性纳米制剂由于分布的变化,可能会出现与普通制剂不同的毒性反应;常规物质毒性评价的方法可能不一定适合于纳米尺度下物质的评价。
This study explored toxic effects of nano-Fe_3O_4,carbon nanotube,nano-TiO_2 and nanoformulation in vitro and in vivo.Its main contents were as follows:
     First,studies on cytotoxicity of nanomaterials in A549 cells:The present study was to investigate the cytotoxicity effects of nano Fe_3O_4,different carbon nanotubes and nano-TiO_2 on human lung epithelial cell A549 in vitro.The change of the cell morphology was observed through inverted phase-contrast microscope,cell viability was determined by the MTT,CCK-8 and Trypan blue exclusion assays.Additionally,lactate dehydrogenase was determined in the medium supematant of A549 cells after treatment with different nanomaterials.The results showed that nano-Fe_3O_4 at the 100μg/ml had no obvious effects on cell viability,nano-TiO_2 at the 200μg/ml also had no obvious effects on cell viability.However,when cell toxicity of carbon nanotube was evaluated,we found that results of cell toxicity were not consistent among above methods.At the high concentration,CCK-8 method showed that cell viability was under 20%, however,cell viability had no obviously decrease under light microscope and LDH method and Trypan blue exclusion also demonstrated that carbon nanotube had no significant effects on cell viability.Taken together,nano Fe_3O_4,carbon nanotubes and nano-TiO_2 show no significant cytotoxicity in A549 cells.Conventional detecting methods of cytotoxicity can not be suitable to evaluate cytotoxicity of nanomaterials.
     Second,acute toxicity study of nanomaterials in ICR mice:The present study was to investigate the acute toxicity effects of nanomaterials by oral exposure in mice.The mice were treated by a single oral dose of nano-TiO_2 and single wall carbon nanotube at 5g/kg or multi-wall carbon nanotubes at 1g/kg body weight.After 14 days,the mice were sacrificed and the effects of body weight,food consumption,serum biochemistry,coefficients of organs and histopathology were measured.The results showed that nano-TiO_2 and carbon nanotubes had no obvious effects on body weight and coefficients of organs.Food consumption of the mice increased by gradually during the test.There were not obvious toxic reaction and death during observation.Although some serum biochemistry parameters had been significantly changed, these values were at the normal value except CK value which was in the male mice treated with nano-TiO_2,and there were not obvious changes by histopathology examination.Under the current conditions,nanomatierials were low toxicity or no toxicity.
     Third,subchronic toxicity study of nano-TiO_2 in SD rats:The present study was to explore subchronic toxicity study of nano-TiO_2 in SD rats,then observe toxic reaction and supply target organ of toxic reaction and its recovery.There were not any abnormal signs,toxic reaction and death in rats at the dose of 1g/kg during consecutive dosing 3 months.Compared with control group,there was no apparent change in food consumption and body weight.Hematology and serum biochemistry showed that some parameters had significant higher or lower than those of control group,but these values were at the normal values except BUN and CREA values in the female rats at the end of treatment with nano-TiO_2 and M value in the female rats at the end of treatment with micro-TiO_2,so changes of these values were not considered as treatment-related. Microscopy examination had no reveal any histopathology changes in all animals,there were not obvious changes of bone marrow cell morphology and pathology in bone marrow smears.
     Fourth,distribution study of nano-TiO_2 in SD rats:In the present study,we investigated distribution of nano-TiO_2 by ICP-MS method after a 13-week oral administration of nano-TiO_2 in SD rats.The samples included liver,spleen,kidney,intestine,brain and blood.The analysis of Ti concentration showed that nano-TiO_2 could be absorbed into circulation through gastrointestinal tract after nano-TiO_2 was administrated and its concentration was the most in the intestine,liver and spleen.The results revealed that nano-TiO_2 could be absorbed into circulation through gastrointestinal tract after nano-TiO_2 was administrated and distributed to tissue and organ,but it had no obvious effects on organism.
     Fifth,cutaneous toxicity of nanoformulation and its mechanism in beagle dogs:The cutaneous toxicity and toxicokinetics of nanoformulation were investigated in beagle dogs by intravenous administration once every 28 days for 12 weeks.We evaluated cutaneous toxicity once weekly in beagle dogs.The results showed that there was not cutaneous toxicity at control group,vehicle group and common formulation group.Cutaneous toxicity could be seen at the 0.1, 0.3 and 0.45mg/kg nanoformulation and there was a significant dose-dependence.Signs were mainly alopecia,erythema,exudation,eschar and ulcer in four limbs,jaw and ventral body.
     The results of toxicokinetics showed that pharmacokinetic of nanoformulation in beagle dogs was linear dynamics and had not to accumulate after repeated dosing.After changing formulation,drug could stay in plasma for a long time.For being eliminated quickly from plasma,common formulation almost could not be measured except for reaching peak concentration which was equal to 1/100 of nanoformulation at the same dose.Also it had been demonstrated that nanoformulation had a long circulation property in vivo.Analysis of concentration in the skin showed that drug concentration of ulcerate skin was higher than that of normal skin,it hinted that nanoformulation was easy to distribute to these places and resulted in cutaneous toxicity.
     Finally,the effects of nanomaterials on BBB model in vitro:Primary BCEC and astrocyte from rats were isolated and cultured and they were identified through cell morphology and immunohistochemistry.The results showed that cell purity was high,they could be used to establish BBB mode.Then,we established no-contact coculture model.Transendothelial electric resistance and permeability coefficient of fluorescein sodium were 373±41Ω·cm~2 and (0.34±0.14)×10~(-3)cm/min,respectively.These values were consistent with literature.Finally,we evaluated toxic effects of nanomaterials on tight junction of BBB.The results showed that these nanomaterials at the concentration of 100μg/ml had no obvious toxic effects.
     Taken together,under the current experiment condition,inorganic nanomaterials have no obvious toxic effects in vitro and in vivo.Biodegradable nanoformulation may lead to new toxicity which is different with common formulation because of distribution change. Conventional detecting methods of toxicity can not be suitable to evaluate toxicity of nanomaterials.
引文
[1]National Nanotechnology Initiative(NNI),FAQs:Nanotechnology.http://www.nano.gov/html/facts/faqs.html.
    [2]Drobne D.Nanotoxicology for safe and sustainable nanotechnology[J].Arh Hig Rada Toksikol,2007,58(4):471-478.
    [3]Suh WH,Suslick KS,Stucky GD,et al.Nanotechnology,nanotoxicology,and neuroscience [J].Prog Neurobiol,2009,87(3):133-170.
    [4]U.S.Environmental Protection Agency Nanotechnology White Paper,2007.http://es.epa.gov/ncer/nano/publications/whitepaper12022005.pdf.
    [5]David Malakoff.Nanotechnology research.Congress wants studies of nanotech's 'dark side'[J].Science,2003,301(5629):27.
    [6]Robert F.Service.Nanotoxicology.Nanotechnology grows up[J].Science,2004,304(5678):1732-1734.
    [7]Jim Giles.Size matters when it comes to safety,report warns[J].Nature,2004,430(7000):599.
    [8]Fiona Proffitt.Nanotechnology:Yellow light for nanotech[J].Science,2004,305(5685):762.
    [9]Thomas K,Sayre P.Research strategies for safety evaluation of nanomaterials,Part Ⅰ:evaluating the human health implications of exposure to nanoscale materials[J].Toxicol Sci,2005,87(2):316-321.
    [10]Service RF.Science policy.Report faults U.S.strategy for nanotoxicology research[J].Science,2008,322(5909):1779.
    [11]王强,郑萍,李海燕,等.纳米材料的应用进展[J].山东化工,2003,32(5):21-23.
    [12]张小琴,谭镜明.纳米材料的应用进展[J].河北化工,2006,29(10):55-57.
    [13]汪焕林,王建宁,张军.纳米材料的应用[J].青海大学学报(自然科学版),2002,20(1):34-36.
    [14]胡安正.纳米科技与纳米材料的应用研究[J].郧阳师范高等专科学校学报,2005,25(6):39-43
    [15]Oberdrrster G,Oberdrrster E,Oberd(o|¨)ster J.Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles[J].Environ Health Perspect,2005,113(7):823-839.
    [16]Nel A,Xia T,M(a|¨)dler L,Li N.Toxic potential of materials at the nanolevel[J].Science,2006,311(5761):622-627.
    [17]Oberdrrster G,Ferin J,Lehnert BE.Correlation between particle size,in vivo particle persistence,and lung injury[J].Environ Health Perspect,1994,102Suppl 5:173-179.
    [18]Bermudez E,Mangum JB,Wong BA,et al.Pulmonary responses of mice,rats,and hamsters to subchronic inhalation of ultrafine titanium dioxide particles[J].Toxicol Sci,2004,77(2):347-357.
    [19]Lam CW,James JT,McCluskey R,et al.Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation[J].Toxicol Sci,2004,77(1):126-134.
    [20]Nohynek G J,Lademann J,Ribaud C,et al.Grey goo on the skin? Nanotechnology,cosmetic and sunscreen safety[J].Crit Rev Toxicol,2007,37(3):251-277.
    [21]Alvarez-Roman R,Naik A,Kalia YN,et al.Skin penetration and distribution of polymeric nanoparticles[J].J Control Release,2004,99(1):53-62.
    [22]Ryman-Rasmussen JP,Riviere JE,Monteiro-Riviere NA.Penetration of intact skin by quantum dots with diverse physicochemical properties[J].Toxicol Sci,2006,91(1):159-165.
    [23]Florence AT,Hussain N.Transcytosis of nanoparticle and dendrimer delivery systems:evolving vistas[J].Adv Drug Deliv Rev,2001,50 Suppl 1:S69-89.
    [24]Hussain N,Jaitley V,Florence AT.Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J].Adv Drug Deliv Rev,2001,50(1-2):107-142.
    [25]于金刚,黄可龙,杨巧勤,等.碳纳米管作为药物载体的研究进展[J].药学学报,2008,43(10):985-991.
    [26]Meairs S,Alonso A.Ultrasound,microbubbles and the blood-brain barrier[J].Prog Biophys Mol Biol,2007,93(1-3):354-362.
    [27]Reese TS,Kamovsky MJ.Fine structural localization of a blood-brain barrier to exogenous peroxidase[J].J Cell Biol,1967,34(1):207-217.
    [28]L6scher W,Potschka H.Drug resistance in brain diseases and the role of drug efflux transporters[J].Nat Rev Neurosci,2005,6(8):591-602.
    [29]Rubin LL,Staddon JM.The cell biology of the blood-brain barrier[J].Annu Rev Neurosci,1999,22:11-28.
    [30]Chiba H,Osanai M,Murata M,et al.Transmembrane proteins of tight junctions[J].Biochim Biophys Acta,2008,1778(3):588-600.
    [31]Ballabh P,Braun A,Nedergaard M.The blood-brain barrier:an overview:structure,regulation,and clinical implications[J].Neurobiol Dis,2004,16(1):1-13.
    [32]Ikenouchi J,Furuse M,Furuse K,et al.Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells[J].J Cell Biol,2005,171(6):939-945.
    [33]Niessen CM.Tight junctions/adherens junctions:basic structure and function[J].J Invest Dermatol.2007,127(11):2525-2532.
    [34]Cecchelli R,Caroline Coisne,Lucie Dehouck,et al.Modeling the Blood-Brain Barrier.In:Rolf Dermietzel,David C.Spray,Maiken Nedergaard,eds.Blood-Brain Barriers[M].Wiley,2006:337-355.
    [35]Deli MA,Abraham CS,Kataoka Y,et al.Permeability studies on in vitro blood-brain barrier models:physiology,pathology,and pharmacology[J].Cell Mol Neurobiol,2005,25(1):59-127.
    [36]王建民,施永德,步燕芳等.大鼠脑血管内皮细胞的分离培养与形态学观察[J].解剖学杂志,1998,21(6):495-499.
    [37]Meresse S,Dehouck MP,Delorme P,et al.Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture[J].J Neurochem,1989,53(5):1363-1371.
    [38]Coisne C,Dehouck L,Faveeuw C,et al.Mouse syngenic in vitro blood-brain barrier model:a new tool to examine inflammatory events in cerebral endothelium[J].Lab Invest,2005,85(6):734-746.
    [39]Perriere N,Demeuse P,Garcia E,et al.Puromycin-based purification of rat brain capillary endothelial cell cultures.Effect on the expression of blood-brain barrier-specific properties [J].J Neurochem,2005,93(2):279-289.
    [40]Calabria AR,Weidenfeller C,Jones AR,et al.Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction[J].J Neurochem,2006,97(4):922-933.
    [41]Song L,Pachter JS.Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins[J].In Vitro Cell Dev Biol Anim,2003,39(7):313-320.
    [42]Wu Z,Hofman FM,Zlokovic BV.A simple method for isolation and characterization of mouse brain microvascular endothelial cells[J].J Neurosci Methods,2003,130(1):53-63.
    [43]Reichel A,Begley DJ,Abbott NJ.An overview of in vitro techniques for blood-brain barrier studies[J].Methods Mol Med,2003,89:307-324.
    [44]Gumbleton M,Audus KL.Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier[J].J Pharm Sci,2001,90(11):1681-1698.
    [45]McCarthy KD,de Vellis J.Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue[J].J Cell Biol,1980,85(3):890-902.
    [46]DeBault LE,Cancilla PA.Gamma-glutamyl transpeptidase in isolated brain endothelial cells:Induction by glial cells in vitro[J].Science,1980,207:653-655.
    [47]Dohgu S,Takata F,Yamauchi A,et al.Brain pericytes contribute to the induction and upregulation of blood-brain barrier functions through transforming growth factor-beta production[J].Brain Res,2005,1038(2):208-215.
    [48]Nicolazzo JA,Charman SA,Charman WN.Methods to assess drug permeability across the blood-brain barrier[J].JPharm Pharmacol,2006,58(3):281-293.
    [49]Prieto P,Blaauboer B J,de Boer AG,et al.Blood-brain barrier in vitro models and their application in toxicology.The report and recommendations of ECVAM Workshop 49[J].Altern Lab Anita,2004,32(1):37-50.
    [50]Yamagata K,Tagami M,Nara Y.Astrocyte-conditioned medium induces blood-brain barrier properties in endothelial cells[J].Clin Exp Pharmacol PhysioI,1997,24(9-10):710-713.
    [51]Nakagawa S,Deli MA,Nakao S,et al.Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells[J].Cell Mol Neurobiol,2007,27(6):687-694.
    [52]Nicolazzo JA,Charman SA,Charman WN.Methods to assess drug permeability across the blood-brain barrier[J].JPharm Pharmacol,2006,58(3):281-293.
    [53]Culot M,Lundquist S,Vanuxeem D,et al.An in vitro blood-brain barrier model for high throughput(HTS)toxicological screening[J].Toxicol In Vitro,2008,22(3):799-811.
    [54]Hallier-Vanuxeem D,Prieto P,Culot M,et al.New strategy for alerting central nervous system toxicity:Integration of blood-brain barrier toxicity and permeability in neurotoxicity assessment[J].Toxicol In Vitro,2009,23(3):447-453.
    [55]Oberd(o|¨)rster G,Maynard A,Donaldson K,et al.Principles for characterizing the potential human health effects from exposure to nanomaterials:elements of a screening strategy[J].Part Fibre Toxicol,2005,2:8.
    [56]崔升,沈晓冬,林本兰.四氧化三铁纳米粉的制备方法及应用[J].无机盐工业,2005,37(2):4-6.
    [57]Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
    [58]王江雪,李炜,刘颖,等.二氧化钛纳米材料的环境健康和生态毒理效应[J].生态毒理学报,2008,3(2):105-113.
    [59]Dockery DW,Arden Pope C,Xiping Xu,et al.An association between air pollution and mortality in six U.S.cities[J].N Engl J Med,1993,329(24):1753-1759.
    [60]Seaton A,MacNee W,Donaldson K,et al.Particulate air pollution and acute health effects [J].Lancet,1995,345(8943):176-178.
    [61]司徒镇强,吴军正,主编.细胞培养[M].第二版,世界图书出版社公司,2007:58-88.
    [62]Donaldson K,Stone V,Tran CL,et al.Nanotoxicology[J].Occup Environ Med,2004,61(9):727-728.
    [63]李桂荣,闫蕾,田申,等.铬盐与香烟烟雾溶液对A549细胞毒性和DNA断裂的影响[J]中国职业医学,2004,31(6):21-24.
    [64]张遵真,吴媚,张浩,等.汽油尾气对人肺腺癌A549细胞的氧化损伤效应研究[J].生态毒理学报,2006,1(1):25-29.
    [65]Lestari F,Green AR,Chattopadhyay G,et al.An alternative method for fire smoke toxicity assessment using human lung cells[J].Fire Safety Journal,2006,41(8):605-615.
    [66]Hussain SM,Hess KL,Gearhart JM,et al.In vitro toxicity of nanoparticles in BRL 3A rat liver cells[J].Toxicology in Vitro,2005,19(7):975-983.
    [67]张林,庞小峰.纳米二氧化钛的细胞增殖效应及其安全性[J].生命科学仪器,2007,5(7):54-56.
    [68]Wang J J,Sanderson B J,Wang H.Cyto- and genotoxicity of ultrafine TiO_2 particles in cultured human lymphoblastoid cells[J].Mutat Res,2007,628(2):99-106.
    [69]Worle-Knirsch JM,Pulskamp K,Krug HF.Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays[J].Nano Lett,2006,6(6):1261-1268.
    [70]Pulskamp K,Diabate S,Krug HF.Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants[J].Toxicology Letters,2007,168(1):58-74.
    [71]Casey A,Herzog E,Davoren M,et al.Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity[J].Carbon,2007,45(7):1425-1432.
    [72]Herzog E,Casey A,Lyng FM,et al.A new approach to the toxicity testing of carbon-based nanomaterials—the clonogenie assay[J].Toxicol Lett,2007,174(1-3):49-60.
    [73]Warheit DB.How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization[J]? Toxicol Sci,2008,101(2):183-185.
    [74]Fischer HC,Chan WC.Nanotoxieity:the growing need for in vivo study[J].Curt Opin Biotechnol,2007,18(6):565-571.
    [75]Warheit DB,Laurence BR,Reed KL,et al.Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats[J].Toxicol Sci,2004,77(1):117-125.
    [76]Warheit DB,Webb TR,Reed KL,et al.Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles:differential responses related to surface properties[J].Toxicology,2007,230(1):90-104.
    [77]Oberdorster G,Ferin J,Lehnert BE.Correlation between particle size,in vivo particle persistence,and lung injury[J].Environ Health Perspet,1994,102:173-179.
    [78]Renwick LC,Brown D,Clouter A,et al.Increased inflammation and altered macrophage chemotactic responses caused by two ultrafree particle types[J].Occup Environ Med,2004, 61(5):442-447.
    [79]Miyawaki J,Yudasaka M,Azami T,et al.Toxicity of single-walled carbon nanohorns[J].ACS Nano,2008,2(2):213-226.
    [80]Michael J.Derelanko.Hand book of Toxicology.2~(nd) Edition,2001:750-763.
    [81]Wang B,Feng WY,Wang TC,et al.Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice[J].Toxico! Lett,2006,161(2):115-123.
    [82]王天成,贾光,王翔,等.纳米TiO_2和纳米Al_2O_3对小鼠血清乳酸脱氢酶和羟丁酸脱氢酶活力的影响[J].现代预防医学,2007,34(3):405-406.
    [83]Wang J,Zhou G,Chen C,et al.Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration[J].Toxicol Lett,2007,168(2):176-185.
    [84]Fabian E,Landsiedel R,Ma-Hock L,et al.Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats[J].Arch Toxicol,2008,82(3):151-157.
    [85]Amantea M,Newman MS,Sullivan TM,et al.Relationship of dose intensity to the induction of palmar-plantar erythrodysesthia by pegylated liposomal doxorubicin in dogs[J].Hum Exp Toxicol,1999,18(1):17-26.
    [86]陆彬,主编.药物新剂型与新技术[M].人民卫生出版社,1998:107-163.
    [87]甘耀坤,李岩,杨旭.碳纳米管生物毒理作用的研究进展[J].玉林师范学院学报(自然科学),2006,27(5):116-121.
    [88]刘岚,唐萌,刘璐,等.Fe_2O_3-Glu纳米颗粒在小鼠体内的代谢动力学研究[J].环境与职业医学,2006,23(1):1-3.
    [89]Oberd(o|¨)rster E.Manufactured nanomaterials(fullerenes,C_(60)) induce oxidative stress in the brain of juvenile largemouth bass[J].Environ Health Perspect,2004,112(10):1058-1062.
    [90]Kreuter J.Nanoparticulate systems for brain delivery of drugs[J].Adv Drug Deliv Rev,2001,47(1):65-81.
    [91]Culot M,Lundquist S,Vanuxeem D,et al.An in vitro blood-brain barrier model for high throughput(HTS) toxicological screening[J].Toxicol In Vitro,2008,22(3):799-811.
    [92]Siflinger-Birnboim A,Del Vecchio P J,Cooper JA,et al.Molecular sieving characteristics of the cultured endothelial monolayer[J].J Cell Physiol,1987,132(I):111-7.
    [93]Hallier-Vanuxeem D,Prieto P,Culot M,et al.New strategy for alerting central nervous system toxicity:Integration of blood-brain barrier toxicity and permeability in neurotoxicity assessment[J].Toxicol In Vitro,2009,23(3):447-453.
    [94]Lu W,Tan YZ,Hu KL,et al.Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier[J].Int J Pharra,2005,295(1-2):247-260.
    [95]Deli MA,Abraham CS,Kataoka Y,et al.Permeability studies on in vitro blood-brain barrier models:physiology,pathology,and pharmacology[J].Cell Mol Neruobiol,2005,25(1):59-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700