用户名: 密码: 验证码:
浅水湖泊沉积物磷素迁移转化特征与生物作用影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊富营养化严重破坏水生生态系统并危害人类饮用水安全,是全球性的环境问题。在外部污染源逐步受到控制的情况下,浅水湖泊沉积物中磷素的释放是引起湖泊富营养化发生、蓝藻水华形成的重要因素。然而,对于内源营养盐在湖泊水-沉积物界面间迁移转化特征以及影响磷素形态转变的生物地球化学过程,尤其是化学环境与微生物的作用,目前依然缺乏研究。因此,本文以典型城市浅水湖泊——杭州西湖作为研究对象,系统调查了西湖沉积物中不同形态磷素和解磷微生物分布的时空变化特征,并借助欧盟推荐的SMT方法分析了沉积物中磷素的可能来源,继而深入分析了生物作用与物理化学作用对于水-沉积物界面磷素迁移转化过程的影响程度和机制,并分离鉴定了几株具有较强解磷能力的解磷细菌。本文研究成果可为同类型湖泊营养元素控制和富营养化治理研究提供理论依据,具体研究成果如下:
     调查了西湖水体中磷素含量的季际变化以及沉积物中不同形态磷素的时空变化特征。西湖水体全年总磷(TP)含量在0.10 mg L-1附近波动,小南湖最低而外湖和北里湖则一直保持较高水平,季节分布上冬夏季高春秋季低。在全年的大部分时间里,难以被浮游植物直接利用的颗粒态磷是水体TP的主要组成部分。采用SMT磷素分级方法分析了西湖沉积物不同形态磷素的含量,结果发现西湖七个采样点沉积物中TP含量变化范围为0.21 mg g-11到1.48 mg g-1,该水平与其他同类型湖泊相比处于中游。TP的垂向分布总体上呈现出自上而下减少的趋势,而季节性变化则体现出冬高夏低、春秋两季含量接近的特征。HCl-P是西湖沉积物中磷素的主要成分,并且与TP含量呈现极显著相关,有机磷(OP)次之,而NaOH-P所占比例最低。西湖沉积物中磷素的富集与人类活动关系密切,主要来源于其流域内的生活污水和农业径流,几条主要的入湖溪流充当了传递媒介。
     明确了西湖沉积物对于磷素的吸附特征。西湖沉积物吸附磷素的过程分为快吸和慢吸两步,吸附反应主要是在前12h内完成的。利用修正的Langmuir吸附模型能够较好地拟合西湖沉积物对于磷素的吸附过程,根据模型拟合结果,不同采样点沉积物的最大吸附量(Smax)的变化范围为0.61mg g-1至1.13mg g-1,该参数与沉积物中粒径较小的粘土和粉砂所占比例呈现正相关关系。沉积物平衡磷素浓度(EPC0)的变化范围为0.038mg L-1至0.193mg L-1,均明显高于各自上覆水中正酸盐浓度,说明西湖沉积物更倾向于扮演“源”的角色,向上覆水体中不断地释放磷素。
     分析了西湖沉积物中微生物多样性和解磷细菌分布情况,从西湖沉积物中分离筛选出12株解磷菌并测定了其解磷能力。采用DGGE分析了西湖不同样点沉积物间的微生物多样性与种群分布,结果发现差异不显著,但是与西溪湿地沉积物的微生物多样性相比则存在明显的地域差异。位于西溪湿地滩涂处沉积物的Shannon指数最低,而西湖沉积物的Shannon指数呈现出由北向南递减的趋势。西湖沉积物中解磷细菌丰度高,解有机磷菌数量比解无机磷菌大一个数量级,并且具有明显的空间差异性,具有中间层高,底层次之,表层最低的分布特征,但是解磷菌数量与相应形态的磷素组分含量之间并不存在明显的相关关系。利用纯培养的方式从西湖沉积物中分离获得8株解有机磷菌和4株解无机磷菌。解有机磷菌分属于5个不同的属,其中巴赛尔亲铜菌(Cupriavidus basilens)首次被发现具有降解有机磷的能力,而分离获得的4株解无机磷菌均属于长杆菌属(Enterobacter sp.).解磷能力测定结果表明,在孤立体系中解有机磷菌不仅生长速度较慢,而且解磷能力也大大弱于解无机磷菌。
     揭示了生物作用在水-沉积物界面磷素迁移转化过程中的重要性。生物作用由生物量和生物活性两部分组成,生物作用的强弱不仅取决于生物量的大小,生物体分解磷素活性的大小也在磷素迁移转化过程中起着极其重要的作用。在适宜的环境条件下,由生物作用引起的沉积物TP减少量可达到由物理化学作用引起TP减少量的四倍以上。温度是影响微生物量和生物分解磷素活性的最直接因素光照是藻类生长的必要条件,有光下藻类的大量增殖会增强微生物解磷活性。pH对生物作用的影响不显著,但是偏碱性环境能够促进碱性磷酸酶活性并且有利于藻类捕获CO2继而大量繁殖,从而增加TP的损失量。
Lake eutrophication, a global environmental problem, is harmful for the aquatic ecosystems and drinking water safety. When the external sources are gradually being controlled, the eutrophication and algal blooms were mainly caused by the release of phosphorus (P) from the sediments. However, the characteristics of internal P transformation at the water-sediment interface and the knowledge of biogeochemical effects on P transition process, especially concerning the role of chemical environment and microorganisms, are still lacking. In this thesis, a typical shallow city lake, West Lake, was chosen as the study area. The spatial and temporal variations in forms of P fractions and compositions of phosphate releasing bacteria (PSBs) were investigated, and the possible source of P was estimated by the Standards Measurements and Testing Program (SMT protocol). We also studied the significance of physic-chemical and biological effect on P transformation process at the water-sediment interface, and the variations of biological effect under different conditions of pH, light, and temperature conditions were discussed. Moreover, some PSBs strains had been isolated and identified, and laboratory tests on P release ability by these PSBs were also conducted. The purpose of this study lied in providing theoretic basis for effectively control of nutrients and clarification of the mechanisms of eutrophication. The main results were as follows:
     The seasonal variations of phosphorus contents in water and the temporal and spatial variations of different P fractions in sediments were investigated by SMT method. The concentrations of total P (TP) in water were around 0.10 mg L-1 in four seasons. The lowest value was observed in the Lake Xiaonan, while water TP in the Lake Outer and Beili had maintained relatively high levels throughout the year Moreover, TP contents were relatively high in spring and summer, but low in autumn and winter. Particulate P, which was hardly utilized by phytoplankton, was the main form of TP in lake water in most time of the year. The concentrations of TP in seven sediments ranged from 0.21 mg g-1 to 1.48 mg g-1,which was moderate compared to other lakes. In general, TP contents showed a downward variation with sediment depth within each season, and were high in winter and low in summer. HCl-P was the main component of TP in sediments and it showed significant correlation with TP. Organic P (OP) was the secondary component while NaOH-P was the smallest proportion of TP. P in sediment of the West Lake was mainly of anthropogenic origin, such as domestic effluents and agricultural runoff, and the inflow streams were the main medium of nutrients transfer.
     The characteristic of P sorption by sediment was studied. The sorption process was divided into fast step and slow step, and the reaction was almost completed in the first 12 hours. Using the modified Langmuir adsorption model could fit well with the P sorption process, and according to the fitting results, the maximum P adsorption capacity (Smax) in different sediments were ranged from 0.61 mg g-1 to 1.13 mg g-1, and this capacity was positively correlated with the proportion of smaller particles size in surface sediment. The zero equilibrium P concentration values (EPC0), ranging from 0.038 mg L-1 to 0.193 mg L-1, were significantly higher than concentrations of orthophosphate in overlying water, which indicated that sediments in the West Lake tended to act as "source" and kept the release of P to the overlying water
     The microbial diversity and the distribution of PSBs in sediments were analyzed. The differences in microbial diversity and population among seven sampling sites in the West Lake were not obvious, but it showed significant spatial differences between the West Lake and Xixi Wetland. The lowest value of Shannon index was appeared in W1 site, and the index showed a decreasing trend from north to south in lake. Enumeration and molecular identification of PSB strains indicated that these bacterial groups were abundant in the lake ecosystem and various kinds of bacteria participated in P release process. Twelve PSBs, including eight organic P-solubilizing bacteria (OPBs) and four inorganic P-solubilizing bacteria (IPBs), which belonged to three different families, were isolated and identified. Cupriavidus basilensis was found for the first time to have the ability to mineralize OP. Laboratory tests on P release ability revealed that IPBs were more effective at releasing P than OPBs.
     The biological effect on P transformation process at the water-sediment interface was revealed, and the variations of biological effect under different conditions of pH, light, and temperature were discussed. A customized integrated equipment was designed and employed in study in order to maintain the samples in situ. The results showed that the decrements of TP in sediment in the non-sterilized systems were 2-6 times higher than those in the systems sterilized by Co60y-ray, which indicated that the biological activities strongly stimulated P release and its intensity could reach to over 4 times higher than that from the physico-chemical effect. The extent of biological effect did not only depend on extremely enrichment of biomass, strong bacterial activity could also play a significant role in P bio-transformation at the interface. The increasing temperature could enhance organism biomass and biological effect. Light was essential for the growth of algae and with the excessive absorption of P by algae, more P was released from the sediment. pH was detected to have no major effect on bacterial biomass and P cycling, but higher pH was propitious to the decomposition of OP and benefited algae to capture CO2.
引文
Ahlgren J., Reitzel K., Danielsson R., Gogollc A., Rydind E.2006. Biogenic phosphorus in oligotrophic mountain lake sediments:Differences in composition measured with.NMR spectroscopy. Water Research,40:3705-3712.
    Ahlgren J., Tranvik L, Gogoll A., Waldeback M., Markides K., Rydin E.,2005. Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR. Environmental Science & Technology,39:867-872.
    Aller R.C.,1994. Bioturbation and remineralization of sedimentary organic matter:Effects of redox oscillation. Chemical Geology,114:331-345.
    Anthony C.,2004. The quinoprotein dehydrogenases for methanol and glucose. Archives of Biochemistry and Biophysics,428:2-9.
    Appan A., Wang, H.,2000. Sorption isotherms and kinetics of sediment phosphorus in a tropical reservoir. Journal of Environmental Engineering,126:993-998.
    Babu-Khan S., Yeo T.C., Martin W.L., Duron M.R., Rogers R.D., Goldstein A.H.,1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology,61,972-978.
    Bachmann R.W., Hoyer M.V.,Canfield Jr D.E.,2000. The potential for wave disturbance in shallow Florida Lakes. Lake and reservoir management,16:281-291.
    Bai X.L., Ding S.M., Fan C.X., Liu T., Shi D., Zhang L.,2009. Organic phosphorus species in surface sediments of a large, shallow, eutrophic lake, Lake Taihu, China. Environmental Pollution,157:2507-2513.
    Bassamboo A., Juneja S., Zeevi A.J.,2007. On the inefficiency of state independent importance sampling in the presence of heavy tails. Operation Research Letter.2007,35:251-260.
    Berg U., Neumann T., Donnert D., Nuesch R., Stuben D.,2004. Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus. Applied Geochemistry,19:1759-1771.
    Bonzongo J.C., Bertru G, Martin G,1989. Speciation phosphorus techniques in the sediments: discussion and propositions to evaluate inorganic and organic phosphorus. Archiv fur Hydrobiologie,116:61-69.
    Brigault S., Ruban V.,2000. External phosphorus load estimates and P-budget for the hydroelectric reservoir of Bort-Les-orgues, France. Water, Air and Soil Pollution,119:91-103.
    Brinkman A.G.,1993. A double-layer model for ion adsorption onto metal oxides, applied to experimental data and to natural sediments of Lake Velume, The Netherlands. Hydrobiologia, 253:31-45.
    Buanuam J., MiroM., Hansen E.H., Shiowatana J., Estela J.M., Cerda V.,2007. A multisyringe flow-through sequential extraction system for on-line monitoring of orthophosphate in soils and sediments. Talanta,71:1710-1719.
    Bubba D.M., Arias C.A., Brix H.,2003. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Research,37:3390-3400.
    Bunemann E.K., mernikR.J. S, Doolette A.L., Marschner P., Stonor R., Wakelin S.A., McNeill A.M.,2008. Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and Biochemistry,40:1908-1915.
    Cade-Menun B.J.,2005. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta,66:359-371
    Cade-Menun B.J., Liu C.W., Nunlist R., McColl J.G,2002.. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy:Extractants, metals, and phosphorus relaxation times. Journal of Environmental Quality,31:457-465.
    Cade-Menun B.J., Preston C.M.,1996. A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Science,161: 770-785.
    Carpenter S.R., Caraco N.F., Correll D.L., Howarth R.W., Sharpley, A.N., Smith V.H.,1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8:559-568.
    Chang S.C., Jackson M.L.,1957. Fractionation of soil phosphorus. Soil Science,84:133-144.
    Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A., Young C.C.,2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology,34:33-41.
    Chowdhury I., Watier D., Hornez J.P.,1995. Variability in Survival of Pectinatus cerevisiiphilus, strictly Anaerobic Bacteria, under Different Oxygen Conditions. Anaerobe,1:151-156.
    Chrost R.J., Overback J.,1987. kinetics of alkaline phosphatase activity and phosphorus availability for phytoplanton and bacterioplankton in lake B see (North German eutrophic lake). Microbial Ecology,13:229-248.
    Chung H.Y, Park M.S., Madhaiyan M.S., Seshadri S.H., Song J.K., Cho.H.S., Sa T.M.,2005. Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry,37:1970-1974.
    Curticapean M.C., Dragan-Bularda M.,2007. The enzymatic activity from the sediment of the Gilau dam reservoir-Cluj county. Journal of Biochemical and Biophysical Methods,69: 261-272.
    Cyr H.,McCabe S.K.,Nurnberg G.K., 2009. Phosphorus sorption experiments and the potential for internal phosphorus loading in littoral areas of a stratified lake.Water Research,43: 1654-1666.
    Danen-Louwerse H., Lijklema L., Coenraats M.,1993. Iron content o sediment and phosphorus adsorption properties. Hydrobiologia,253:311-317.
    Davelaat D.,1993. Ecological significance of bacteria polyphosphate in sediments. Hydrobiologia, 253:179-192.
    De Groot C.J., Golterman H.L.,1990. Sequential fractionation of sediment phosphate. Hydrobiologia,192:143-148.
    Dierberg F.E., DeBusk T.A., Larson N.R., Kharbanda M.D., Chan N., Gabriel M.C.,2011. Effects of sulfate amendments on mineralization and phosphorus release from South Florida (USA) wetland soils under anaerobic conditions. Soil Biology and Biochemistry,43:31-45
    Duff R.B., Webley D.M., Scott R.O.,1963. Solubilization of minerals and related materials by 2-ketogluconic acid-produced bacteria. Soil Science,95:105-114.
    Duhamel S., Jacquet S.,2006. Flow cytometric analysis of bacteria-and virus-like particles in lake sediments. Journal of Microbiological Methods,64(3):316-332.
    Dunne E.J., Culleton N., O'Donovan G., Harrington R., Daly K.,2005. Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland. Water Research,39:4355-4362.
    Emil R.,2000. Potentially mobile phosphorus in Lake Erken sediment. Water Research,34: 2037-2042.
    Evans D.J., Johnes P.J., Lawrence D.S.,2004. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2-The sediment phase. Science of the Total Environment, 329:165-182.
    Fox I., Malati M.A., Perry R., 1989. The adsorption and release of phosphate from sediments of a river receiving sewage effluent. Water Research, 23: 725-732.
    Froelich P.N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography, 33: 649-668.
    Fujimoto N., Sudo R., Sugiura N., Sugiuri Y.,1997. Nutrient limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures. Limnology and oceanography,42:250-256.
    Gachter R:, Meyer J.S., Mares A.,1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnology and Oceanography,33:1542-1558.
    Garban B., Ollivon D., Poulin M., Gaultierc V, Chesterikoffa A.,1995. Exchanges at the sediment-water interface in the River Seine, downstream from Paris. Water Research,129: 473-481.
    Gautier A., Lopin C., Garipova G, Dubert O., Kalinina I., Salcedo C., Balieu S., Glatigny S., Valnot J., Gouhier G, Piettre S.R.,2005. The preparation of new phosphorus-centered functional groups for modified oligonucleotides and other natural phosphates. Molecules,10: 1048-1073.
    Gilbin R., Gomez E., Picot B.,2000. Phosphorus and organic matter in wetland sediments: analysis through gel permeation chromatography (GPC). Agronomie,20:567-576.
    Goldstein A.H.,1994. Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In:Torriani-Gorini A., Yagil E, Silver S, eds. Phosphate in Microorganisms:Cellular and Molecular Biology. ASM Press, Washington DC, pp.197-203
    Goldstein A.H., Rogers R.D., Mead G.,1993. Mining by microbe. Bioresource Technology,11: 1250-1254.
    Golterman H.L.,1996. Fractionation of sediment phosphate with chelating compounds:a simplication and comparison with other methods. Hydrobiologia,335:87-95.
    Golterman H.L., Booman A.,1988. The sequential extraction of Ca-and Fe-bound phosphates. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie,23:904-909.
    Gonsiorczyk C.,1997. Variations of phosphorus release from sediments in stratified lakes. Water, Air & Soil Pollution,99(14):427-434.
    Gonsiorczyk T., Casper P., Koschel R.,1998. Phosphorus binding forms in the sediment of an oligotrophic and an eutrophichardwater lake of the Baltic district (Germany). Water Science and Technology,37(3):51-58.
    Gonzalez J.M., Simo R., Massana R., Covert J.S., Casamayor E.O., Pedros-Alio C., Moranl M.A., 2000. Bacterial community structure associated with a dimethylsulfonio-propionate-producing north atlantic algal bloom. Applied and Environmental Microbiology,66: 4237-4246.
    Goris J., De Vos P., Coenye T., Hoste B., Janssens D., Brim H., Diels L., Mergeay M., Kersters K., Vandamme P.,2001. Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al.1998 emend. International Journal of Systematic and Evolutionary Microbiology, 51:1773-1782.
    Haggard B.E.,Smith D.R.,Brye K.R.,2007 Variation in stream water and sediment phosphorus among select Ozark catchments,Journal of Environmental Quality,36:1725-1734.
    Halder A.K., Mishra A.K., Bhattacharyya P., Chakrabartty P.K.,1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. The Journal of General and Applied Microbiology,36:81-92.
    Harrison W.G. Nutrient regeneration and primary production in the sea. In:Flakowski P.G ed. Primary production in the sea. New York:Plenum Press,1980.
    He Z.L., Zhu L.,1998. Microbial utilization and transformation of phosphate adsorbed by variable charge minerals. Soil Biology and Biochemistry.30:917-923.
    Healey F.P., Hendzel L.L.,1979. Fluorometric measurement of alkaline phosphatase activity in algae. Freshwater Biology,9:429-439.
    Hecky R.E., Kilham P.,1988. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment. Limnology and oceanography,33:796-822.
    Henning S.J., Fred O.A.,1992. Importance of temperature, nitrate, and pH for phosphorus release from aerobic sediments of four shallow, eutrophic lakes. Limnology Oceanography,37(3): 557-589.
    Hieltjes A.H.M., Lijklema, L.,1980. Fractionation of inorganic phosphates in calcareous sediments. Journal of Environmental Quality,9:405-407.
    Holdren G.C., Armstrong D.E.,1980. Factors affecting phosphorus release from intact lake sediments cores. Environmental Science & Technology,14:79-87.
    Holland R.E.,1993. Changes in Planktonic Diatoms and Water Transparency in Hatchery Bay, Bass Island Area, Western Lake Erie Since the Establishment of the Zebra Mussel. Journal of Great Lakes Research,19:617-624.
    Hopkins M.J., Macfarlane G.T., Furrie E., Fite A., Macfarlane S.,2005. Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiology Ecology,54:77-85.
    Horppila J., Nurminen L.,2003. Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland). Water Research,37: 4468-4474.
    House W.A.,Denison F.H.,2002 Exchange of inorganic phosphate between river waters and bed-sediment.Environmental Science and Technology,36,4295-4301.
    Huang Q.H., Wang Z.J., Wang D.H., Wang C.X., Ma M., Jin X.C.,2005. Origins and mobility of phosphorus forms in the sediments of lakes Taihu and Chaohu, China. Journal of Environmental Science and Health, Part A,40:91-102.
    Hupfer M., Gachter R., Giovanoli R.,1995. Transformation of phosphorus in settling seston and during early diagenesis. Aquatic Sciences,57:305-324.
    Hupfer M., Gachter R., Ruegger H.,1995. Polyphosphate in lake sediments:31P NMR spectroscopy as a tool for its identification. Limnology and Oceanography,40:610-617
    Illmer P., Schinner F.,1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry,24:389-395.
    Ingall E.D., Schroeder P.A., Berner R.A.,1990. The nature of organic phosphorus in marine sediments:New insights from 31P NMR. Geochimica et Cosmochimica Acta,54:2617-2620.
    Ishii K., Muβmann M., MacGregor B.J., Amann R.,2004. An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiology Ecology,50(3):203-212.
    Istvanovics V.,1994. Fractional composition, adsorption and release of sediment phosphorus in the Kis-Balaton reservoir. Water Research,28:717-726.
    Jansson M., Olsson H., Pettersson K.,1988. Phosphatases:origin, characteristics and function in lakes. Hydrobiologia 170:157-175.
    Jean N., Boge G, Jamet J., Richard S., Jamet D.,2003. Seasonal changes in zooplanktonic alkaline phosphatase activity in Toulon Bay (France):the role of Cypris larvae. Marine Pollution Bulletin,46:346-352.
    Jeppesen E., S(?)ndergaard M., Jensen J.P., Havens K.E.,2005. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshwater Biology,50:1747-1771.
    Jiang X., Jin X.C., Yao Y, Li L.H., Wu F.C.,2006. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition. Environmental Pollution, 141:482-487.
    Jiang X., Jin X.C., Yao Y, Li L.H., Wu F.C.,2008. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Research,42:2251-2259.
    Jin X.C., Jiang X., Yao Y, Li L.H., Wu F.C.,2006. Effects of light and oxygen on the uptake and distribution of phosphorus at the sediment-water interface. Science of the Total Environment, 357:231-236.
    Jin X.C, Wang S.R., Pang Y, Wu F.C.,2006. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution,139(2):288-295.
    Jin X.C., Wang S.R., Pang Y., Zhao H.C., Zhou X.N., 2005. The adsorption of phosphate on different trophic lake sediments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254:241-248.
    Jones R., Shaw P.J., Haan H.D.E., 1993. Effects of dissolved humic substances on the speciation of iron and phosphate at different pH and ionic strength. Environmental Science and Technology, 27: 1052-1059.
    Jorgensen S.E, Saburo M., 1997. Guidelines of lake management: Volume 8 The World's Lake in Crisis.
    Jugsujinda A., Krairapanona A., Patrick W.H., 1995. Influence of extractable iron, aluminum and manganese of P sorption in flooded acid sulfate soils. Biology and Fertility of Soils, 1995, 20: 118-124.
    Kaiserli A., Voutsa D., Samara C,2002. Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia, N. Greece. Chemosphere,46:1147-1155.
    Kamiya H., Ishitobi,2001. Effluxes ofdissolved organic phosphorus(DOP)and phosphate from the sediment to the overlying water at high temperature and low dissolved oxygen concentration conditions in an eutrophic brackish lake. Japanese Journal of Limnology,62(1):11-21.
    Katsev S., Tsandev I., L'Heureux I., Rancourt D.G.,2006. Factors controlling long-term phosphorus efflux from lake sediments:Exploratory reactive-transport modeling. Chemical Geology,234:127-147.
    Kaur J., Jaligama G., Atkinson J.F., DePinto J.V., Nemura A.D.,2007. Modeling dissolved oxygen in a dredged lake erie tributary. Journal of Great Lakes Research,33:62-82.
    Khoshmanesh A., Hart B.T., Duncan A., Beckett R.,1999. Biotic uptake and release of phosphorus in a wetland sediment. Environmental Technology,20:85-91.
    Khoshmanesh A., Hart B.T., Duncan A., Beckett R.,2002. Luxury uptake of phosphorus by sediment bacteria. Water Research,36:774-778.
    Kim K.Y, Jordan D., McDonald G.A.,1998. Enterobacter agglomerans, phosphate solubilizing bacteria, and microbial activity in soil:effect of carbon sources. Soil Biology and Biochemistry,30:995-1003.
    Kim L.H, Choi E, Stenstrom M.K.,2003. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere,50:53-61.
    Kozerski H.P., Kleeberg A.,1998. The sediments and the benthic pelagic exchange in the shallow lake Muggelsee. International Review of Hydrobiology,83:77-112.
    Kristensen P., Sondergaard M,1992. Jepposen E. Resuspension in a shallow eutrophic lake. Hydrobiologia,228:101-109.
    Lai D Y.F.,Lam K.C.,2009 Phosphorus sorption by sediments in a subtropical constructed wetland receiving stormwater runoff Ecological Engineering,35:735-743.
    Lake B.A., Coolidge K.M., Norton S.A., Amirbahman A.,2007. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. Science of the Total Environment,373:534-541.
    Lau S.S.S., Lane S.N.,2002. Biological and chemical factors influencing shallow lake eutrophication:a long-term study. Science of the Total Environment,288:167-181.
    Lewandowski I., Schauser I., Hupfer M.,2003. Long-term effects of phosphorus precipitations with alum in hypereutrophic Lake Susser See (Germany). Water Research,37:3194-3204.
    Lijklema L., Koelmans A.A., Portielje R.,1993. Water quality impacts of sediment pollution and the role of early diagenesis. Water Science and Technology,28:1-12.
    Lin C.Y.,Wang Z. G.,He M.C.,Li Y.X.,Liu R.M.,Yang Z.F.,2009.Phosphorus sorption and fraction charactics in the upper,middle and low reach sediments of the Daliao river systems,China Journal of Hazardous Materials,170: 278-285.
    Lin T.F., Huang H.I., Shen F.T., Young C.C.,2006. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-A174. Bioresource Technology,97:957-960.
    Liu J.Y., Wang H., Yang H.J., Ma Y.J., Cai O.C.,2009. Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy. Environmental Pollution,157:49-56.
    Liu T.S., Lee L.Y., Tai C.Y., Hung C.H., Chang Y.S., Wolfram J.H., Rogers R., Goldstein A.H., 1992. Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101:Nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. The Journal of Bacteriology,174:5814-5819.
    Liu W., Lu H.H., Wu W.X., Wei Q.K., Chen Y.X., Thies J.E.,2008. Transgenic Bt rice does not affect enzyme activities and microbial composition in the rhizosphere during crop development. Soil Biology and Biochemistry,40:475-486.
    Lopez P.,Lluch X,Vidal M Morgui J.A.,1996.Adusorptlon of phosphorus on sediments of the balearic islands (spain) related to their composition Estuarine, Coastal and Shelf Science, 42: 185-196.
    Luettich R.A., Harleman D.R.F., Somlyody L.,1990. Dynamic behavior of suspended sediment concentrations in a shallow lake perturbed by episodic wind events. Limnology Oceanography,35(5):1050-1067.
    Luo A.C., Sun X.,1994. Effect of organic manure on the biological activities associated with insoluble phosphorus release in a blue purple paddy soil. Communications in Soil Science and Plant Analysis,25:13-14.
    Maassen S., Balla D.,2010. Impact of hydrodynamics (ex-and infiltration) on the microbially controlled phosphorus mobility in running water sediments of a cultivated northeast German wetland. Ecological Engineering,36,1146-1155.
    Mach D.L., Ramirez A., Holland H.D. Organic phosphorus and carbon in marine sediments[J]. American Journal of Science.1989,278:411-429.
    Maguire R.O, Sims J,T., Foy R.H.,2001.Long term kinetics for phosphorus sorption desorption by high phosphorus soils from Ireland and the Delmarva Peninsula Soil Science,166: 557-565.
    Manuela-Claudia C., Dragan-Bulardab M.,2007. The enzymatic activity from the sediment of the Gilau dam reservoir-Cluj county. Journal of Biochemical and Biophysical Methods,69: 261-272
    McDowell R.W., Stewart I.,2005. An improved technique for the determination of organic phosphorus in sediments and soils by 31P nuclear magnetic resonance spectroscopy. Chemistry and Ecology,21:11-22
    Melack J.M.,1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiology,81:71-85.
    Michael C., Hans T.R.,2002. The importance of light intensity in algal tests with coloured substances. Water Research,36:2173-2178.
    Millero F., Huang F., Zhu X.R., Liu X.W., Zhang J.Z.,2001. Adsorption and Desorption of Phosphate on Calcite and Aragonite in Seawater. Aquatic Geochemistry,7:33-56.
    Mino T., van Loosdrecht M.C.M., Heijnen J.J.,1999. Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Research,32:3193-3207.
    Miralles G., Grossi V, Acquaviva M., Duran R., Bertrand J.C., Cuny P.,2007. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Chemosphere,68(7): 1327-1334.
    Murphy J., Riley J.P.,1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta,27:31-36.
    Murphy T.P., Lawson A., Kumagai M., Babin J.,1999. Review of emerging issues in sediment treatment. Aquatic Ecosystem Health and Management,2:419-434.
    Nalewajko C., Murphy T.P.,2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan:an experimental approach. Limnology,2:45-48.
    Nautiyal C.S, Bhadauria S., Kumar P., Lal H., Mondal R., Verma D.,2000. Stress induced phosphate solubilization inbacteria isolated from alkaline soils. FEMS Microbiol Letter,182: 291-296.
    Ne'meth Z., Ga'ncs L., Ge'mes G., Kolics A.,1998. pH dependence of phosphate sorption on aluminum. Corrosion Science,40(12):2023-2027.
    Nicholls K.H.,1999. Effects of Temperature and Other Factors on Summer Phosphorus in the Inner Bay of Quinte, Lake Ontario:Implications for Climate Warming. Journal of Great Lakes Research,25:250-262.
    Nixon S.W.1995. Coastal marine eutrophication:a definition, social causes, and future concerns. Ophelia,1995,41:199-219.
    Paerl H.W., Fulton R.S., Moisander P.H., Dyble J.,2001. Harmful freshwater algal blooms, with an emphasis on cyanobacterial. Science World,1:76-113.
    Pant H.K., Reddy K.R.2003. Potential internal loading of phosphorus in a wetland constructed in agricultural land. Water Research,37:965-972.
    Pardo P., Rauret G, Lopez-Sanchez J.F.,2004. Shortened screening method for phosphorus fractionation in sediments:A complementary approach to the standards, measurements and testing harmonised protocol. Analytica Chimica Acta,508:201-206.
    Paul E.A., Clark F.E.,1988. Soil Microniology and Biochemistry. San Diego, CA:Acdemic Press.
    Peix A., Rivas R., Mateos P.F., Martinez-Molina E., Rodriguez-Barrueco C, Velazquez E.,2003. Pseudomolas rhizosphaerae sp.nov., a novel species that actively solubilizes phosphate in vitro. International Journal of Systematic and Evolutionary Microbiology,53:2067-2072.
    Perez E., Sulbaran M., Ball M.M., Yarzabal L.A.,2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry,39:2905-2914.
    Perkins R.G, Underwood G.J.C.,2001. The potential for phosphorus release across the sediment-water interface in an eutrophic reservoir dosed with ferric sulphate. Water Research, 35:1399-1406.
    Petterson K., Istvonavics V,1988. Sediment phosphorus in Lake Balaton:forms and mobility. Archiv fur Hydrobiologie-Beiheft Ergebnisse der Limnologie,30:25-41:
    Psenner R., Pucska R. and Sager M.,1984. Die fractionierung organischer and anorganischer phosphorverbindungen von sedimenten versuch einer De.nition okologisch wichtiger tractionen. Archiv fur Hydrobiologie, (Suppl.10):115-155.
    Radl V, Pritsch K., Munch J.C., Schloter M.,2005. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical. Environmental Pollution,137:345-353.
    Rahi M.P., Pathania V., Gulati A., Singh B., Bhanwra R.K., Tewari R.,2010. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni. Applied Soil Ecology,46:222-229.
    Rao A.V., Venkateswarelu B., Icaul P.,1982. Isolation of a phosphate dissolving soil actinomycete. Current Science,51:1117-1118.
    Reitzel K., Ahlgren K., DeBrabandere H., Waldeback M., Gogoll A., Tranvik L., Rydin E.,2007. Degradation rates of organic phosphorus in lake sediment. Biogeochemistry,82:15-28.
    Reitzel K., Ahlgren K., Gogoll A., Rydin E.,2006. Effects of aluminum treatment on phosphorus, carbon, and nitrogen distribution in lake sediment:A 31P NMR study. Water Research,40: 647-654.
    Reitzel K., Hansen J.; Andersen F., Hansen K.S., Jensen H.S.,2005. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environmental Science and Technology,39:4134-4140.
    Ribeiro D.C., Martins G., Nogueira R., Cruz J.V., Brito A.G.,2008. Phosphorus fractionation in volcanic lake sediments (Azores-Portugal) Chemosphere,70:1256-1263.
    Richardson C.J.,Vaithiyanathan P.,1995.Phosphorus characteristics of Everglade soils along a eutrophic gradient. Soil Science Society of America Journal,59:1782-1788.
    Ripl W.,1976. Biochemical oxidation of polluted lake sediment with nitrate-a new restoration method. Ambio,5:132-135.
    Rodriguez H., Fraga R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances,17:319-339.
    Ruban V., Brigault S., Demare D., Philippe A.M.,1999. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal of Environmental Monitoring,1:403-407.
    Ruban V., Lopez-Sanchez J.F., Pardo P., Rauret G., Muntau H., Quevauviller Ph.,2001. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent work.. Fresenius Journal of Analytical Chemistry,370:224-228.
    Ruban V., Lopez-Sanchez J.F., Pardo P., Rauret G., Muntau H., Quevauviller Ph.,2001. Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. Journal of Environmental Monitoring,3:121-125.
    Ruben S., Richard D.R.,1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiology Ecology,24:187-200.
    Ruttenburg K.,1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography,37:1460-1482.
    Ryding E.,2000.Potentially mobile phosphorus in Lake Erken sediment.Water Research,34: 2037-2042.
    Saavedra C., Delgado A.,2005. Iron-related phosphorus in eroded sediments from agricultural soils of Mediterranean areas. Geoderma,125,1-9.
    Saghir K.M., Zaidi A., Wani P.A.,2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture:a review. Agronomy for Sustainable Development,27:29-43.
    Sahu S. N., Jana B.B.,2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecological Engineering,15:27-39.
    SanClements M.D., Fernandez I.J., Norton S.A.,2009. Soil and sediment phosphorus fractions in a forested watershed at Acadia National Park, ME, USA. Forest Ecology and Management, 258:2318-2325.
    Sannigrahi P, Ingall E.,2005. Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters:Evidence from P-31 NMR. Geochemical Transactions, 6:52-59
    Santos M.M., Lemos PC., Reis M.A.M., Santos H.,1999. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus:Applied and Environmental Microbiology,65:3920-3928.
    Schallenberg M., Burns C.W.,2004. Effects of sediment resuspension on phytoplankton production:teasing apart the influence of light, nutrients and algal entrainment. Freshwater Biology,49:143-159.
    Schindler D.W.,1977. Evolution of phosphorus limitation in lakes. Science,195:260-262.
    Shang C., Stewart J.W.B., Huang P M.,1992. pH effect on kinetics of adsorption of organic and inorganic phosphates by short-range ordered aluminum and iron precipitates. Geoderma,53: 1-4.
    Sheffer M., Rinaldi S., Gragnani A., Mur L.R., van Nes E.H.,1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology,78:272-282.
    Smith D.R., Warnemuende E.A., Haggard B.E., Huang C.,2006. Changes in sediment-water column phosphorus interactions following sediment disturbance. Ecological. Engineering,27: 71-78.
    Smith V.H.,1982. The nitrogen and phosphorus dependence of algal biomass in lakes:An empirical and theoretical analysis. Limnology and oceanography,27:1101-1112.
    Smith V.H.,1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science,221:669-671.
    Smolders A.J.P., Lamers L.P.M., Lucasseen E.C.H.E.T., Van der Velde G., Roelofs J.G.M.,2006a. Internal eutrophication:how it works and what to do about it:a review. Chemistry and Ecology,22:93-111.
    Sondergaard M., Jensen J., Jeppesen E.,1999. Internal phosphorus loading in shallow Danish lakes[J]. Hydrobiology,408/409:145-152.
    Sondergaard M., Kristensen P., Jeppesen E.,1992.Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso Denmark. Hydrobiologia,228(1):91-99.
    S(?)ndergaard M., Windolf J., Jeppesen E.,1996. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research,30:992-1002.
    Spear B.M., Carvalho L., Perkins R., Kirika A.,2006. Spatial and historical variation in sediment phosphorus fractions and mobility in a large shallow lake. Water Research,40:383-391.
    Steinle P., Stucki G., Stettler R., Hanselmann K.W.,1998. Aerobic Mineralization of 2,6-Dichlorophenol by Ralstonia sp. Strain RK1. Applied and Environmental Microbiology, 64:2566-2571.
    Stumm W.,Morgan J.J.,1981.Aquatic Chemistry John Wiley & Sons,New York.
    Sturm A., Crowe S.A., Fowle D.A.,2008. Trace lead impacts biomineralization pathways during bacterial iron reduction. Chemical Geology,249:282-293.
    Stutter M.I.,Lumsdon D.G.,2008. Interactions of land use and dynamic river conditions on sorption equilibria between benthic sediments and river soluble reactive phosphorus concentrations Water Research,42:4249-4260
    Sumann M., Amelung W., Haumaier L., Zech W.,1998. Climatic effects on soil organic phosphorus in the north American great plains identified by phosphorus-31 nuclear magnetic resonance. Soil Science,62:1580-1586.
    Sundareshwar P.V., Morris J.T., Koepfler E.K., Fornwalt B.,2003. Phosphorus limitation of coastal ecosystem processes. Science,299:563-565.
    Syndergaard M., Windolf J., Jeppesen E.,1996. Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research,30:992-1000.
    Takamura N., Otsuki A., Aizaki M., Nojiri Y.,1992. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in lake Kasumigaura, Japan. Arch Hydrobiol,124:129-148.
    Takano Y., Mori H., Kaneko T,, Ishikawa Y., Marumo K., Kobayashi K.,2006. Phosphatase and microbial activity with biochemical indicators in semi-permafrost active layer sediments over the past 10,000 years. Applied Geochemistry,21:48-57.
    Takeda I., Fukushima A.,2004. Phosphorus purification in a paddy field watershed using a circular irrigation system and the role of iron compounds. Water Research,38,4065-4074.
    Tao G.C., Tian S.J., Cai M.Y., Xie G.H.,2008. Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils. Pedosphere,18:515-523.
    Taylor K.G., Perry C.T., Greenaway A.M., Machent P.G.,2007. Bacterial iron oxide reduction in a terrigenous sediment-impacted tropical shallow marine carbonate system, north Jamaica. Marine Chemistry,107:449-463.
    Ternan N.G., McGrath J.W., McMullan G., Quinn J.P.,1998. Organophosphonates:occurrence, synthesis and biodegration by microorganisms. World Journal of Microbiology and Biotechnology,14:635-647.
    Thaller M.C., Berlutti F., Schippa S., Iori P., Passariello C., Rossolini G.M.,1995b. Heterogeneous patterns of acid phosphatases containing low-molecular-mass Polipeptides in members of the family Enterobacteriaceae. International Journal of Systematic And Evolutionary Microbiology,4:255-261
    Thaller M.C., Berlutti F., Schippa S., Lombardi G, Rossolini G.M.,1994. Characterization and sequence of PhoC, the principal phosphate-irrepressible acid phosphatase of Morganella morganii. Microbiology,140:1341-1350.
    Tilak K.V.B.R, Ranganayaki N., Pal K.K.,2005. Diversity of plant growth and soil health supporting bacteria. Current Science,89:136-150.
    Ting D.S., Appan A.,1996. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs. Water Science and Technology,34:53-59.
    Tonkova E.V., Balasheva D.M., Galabova D.,1996. Influence of growth temperature on the acid phosphatase activity in the yeast Yarrowia lipolytica. FEMS Microbiology Letters,145: 267-271.
    Trimbee A.M., Prepas E.E.,1987. Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Canadian Journal of Fisheries and Aquatic Sciences.44:1337-1342.
    Turner B.L., Mahieu N., Condron L.M.,2003. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts. Soil Science,67: 493-510.
    Turner B.L., Newman S., Reddy K.R.,2006. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry. Environmental Science and Technology,40:3349-3354.
    Vigdis T., Rathgeber C., Fride L.D.,1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology,56:782-787.
    Wakeham S.G., McNichol A.P., Kostka J.E., Pease T.K.,2006. Natural-abundance radiocarbon as a tracer of assimilation of petroleum carbon by bacteria in salt marsh sediments. Geochimica et Cosmochimica Acta,70(7):1761-1771.
    Wang H., Appan A., Gulliver J.S.,2003. Modeling of phosphorus dynamics in aquatic sediments: Ⅱ-examination of model performance. Water Research,3:3939-3953.
    Wang S.R., Jin X.C., Bu Q.Y., Zhou X.N., Wu F.C.,2006. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments. Journal of Hazardous Materials, A128:95-105.
    Wang S.R., Jin X.C., Bu Y.Q., Jiao L.X., Wu F.C.,2008. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids and Surfaces A:Physicochemical and Engineering Aspects,316:245-252.
    Wang S.R., Jin X.C., Zhao H.C., Wu F.C.,2009. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions. Journal of Hazardous Materials,161,1551-1559.
    Wang Y, Shen Z.Y, Niu J.F., Liu R.,2009. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions. Journal of Hazardous Materials,162:92-98.
    Wang Y.B., He Z.L.,2009. Effect of probiotics on alkaline phosphatase activity and nutrient level in sediment of shrimp, Penaeus vannamei, ponds. Aquaculture,287:94-97.
    Watts C.J.,2000a. The effect of organic matter on sedimentary phosphorus release in an Australian reservoir. Hydrobiologia,431(1):13-25.
    Wauer G, Gonsiorczyk T, Kretschmer K., Casper P., Koschel R.,2005. Sediment treatment with a nitrate-storing compound to reduce phosphorus release. Water Research,39,494-500.
    Weber Jr.W.J.,McGinley P.M.,Katz L.E.,1991 Sorption phenomenon in subsurgace systems concepts,models and effects on contaminant fate and transport Water Research,25: 499-528.
    Welch B.E., Cooke G.D.,1999. Effectiveness and longevity of phosphorus inactivation with alum. Lake and Reservoir Management,15:5-27.
    Williams J.D.H, Jaquet J.M., Thomas R.L.,1976. Forms of phosphorus in the surficial sediments of Lake Erie. Journal of the Fisheries Research Board of Canada,33:430-439.
    Williams J.D.H., Shear, H., Thomas, R.L.,1980. Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnology and Oceanography,25:1-11.
    Wright A.L., Reddy K.R.,2001. Heterotrophic microbial activity in northern Everglades wetland soils. Soil Science Society of America Journal,65:1856-1864.
    Wu G.F., Zhou X.P.,2005. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow, Eastern Lake. Water Research,39:4623-4632.
    Wu Q., Li Y, Wang M., Pan X.P., Tang Y.F.,2010. Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples. Journal of Microbiological Methods,83:175-178.
    Xie L.Q., Xie P., Li S.X., Tang H.J., Liu H.,2003. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Research,37:2073-2080.
    Xu H., Paerl H.W., Qin B.Q., Zhu G.W., Gao G,2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and oceanography,55: 420-432.
    Xu J.G., Johnson R.L.,1995. Root growth, microbial activity and phosphatase activity in oil-contaminated, remediated and uncontaminated soils planted to barley and field pea. Plant Soil,173:3-10.
    Yoo J.K., Ro H.M., Choi W.J., Yoo S.H., Han K.H.,2006. Phosphorus adsorption and removal by sediments of a constructed marsh in Korea. Ecological Engineering,27:109-117.
    Zeng L., Li X., Liu J.,2004. Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research,38,1318-1326.
    Zhang R.U., Wu F.C., Liu C.Q., Fu P.Q., Li W., Wang L.Y., Liao H.Q., Guo J.Y,2008. Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environmental Pollution,152,366-372.
    Zhang R.Y., Wu F.C., He Z.Q., Zheng J., Song B., Jin L.,2009. Phosphorus composition in sediments from seven different trophic lakes, China:A Phosphorus-31 NMR Study. Journal of Environmental Quality,38:353-359.
    Zhang T.X.;, Wang X.R., Jin X.C.,2007. Variations of alkaline phosphatase activity and P fractions in sediments of a shallow Chinese eutrophic lake (Lake Taihu). Environmental Pollution,150: 288-294.
    Zhou A.M., Tang H.X., Wang D.S.,2005. Phosphorus adsorption on natural sediments:Modeling and effects of pH and sediment composition. Water Research,39:1245-1254.
    Zhou P.J., Tian J.R.,2007. Phosphorus fractions of floodplain sediments and phosphorus exchange on the sediment-water interface in the lower reaches of the Han River in China. Ecological Engineering,30:264-270.
    Zhou Y.Y, Li J.Q., Zhang M.,2002. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Water Research, 36,2084-2090.
    安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究 山东大学,2008
    白洁,李海艳,张健,赵阳国.黄海西北部沉积物中细菌群落16S rDNA多样性解析.中国环境科学,2009:29:1277-1284.
    邓建才,陈桥,翟水晶,杨旭昌,韩红娟,胡维平.太湖水体中氮、磷空间分布特征及环境效应环境科学,2008,29:3382-3386.
    董春颖.人工干预对西湖富营养化和浮游植物的效应研究.浙江大学,2006.
    范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究.中国农业科学,2002,35:525-530.
    范成新,王春霞.长江中下游湖泊环境地球化学与富营养化.科学出版社,2007.
    范成新,张路,包鲜明.太湖沉积物-水界面生源要素迁移机制及定量化-2磷释放的热力学机制及汇-源转换.湖泊科学,2006,18(3):207-217.
    范成新,张路,包先明,尤本胜,钟继承,王建军,丁士明.太湖沉积物一水界面生源要素迁移机制及定量化2.磷释放的热力学机制及源一汇转换.湖泊科学,2006,18(3):207-217
    范成新.湖沉积物理化特征及磷释放动力学.湖泊科学,1995,7(4):341-350.
    高光,高锡芸,秦伯强,季江.太湖水体中碱性磷酸酶的作用阈值.湖泊科学,2000,12(4):353-358.
    高海鹰,刘韬,丁士明,白秀玲,李宝.滇池沉积物有机磷形态分级特征.生态环境,2008,17:2137-2140
    顾益初,蒋柏藩.石灰性土壤无机磷分级的测定方法.土壤,1990,22:101-110.
    黄清辉,王东红,王春霞,马梅,王子健.太湖梅梁湾和五里湖沉积物磷形态的垂向变化.中国环境科学,2004,24(2):147-150.
    黄清辉.浅水湖泊内源磷释放及其生物有效性—以太湖、巢湖和龙感湖为例.中国科学院生态环境研究中心,2005.
    金相灿.湖泊富营养化调查规范.北京:中国环境科学出版社,1994.
    金相灿.沉积物污染化学.北京:中国环境科学出版社,1992.
    李翠,袁红莉,黄怀曾.官厅水库沉积物中解磷细菌垂直分布特征.中国科学D辑:.地球科学,2005,35:241-248.
    李繁,涂然,陈三风.7株解有机磷细菌的分离和鉴定.农业生物技术学报,2006,1:600-605
    李金钟,李中华.罗尔斯顿菌属和亲铜菌属的研究进展.国际检验医学杂志,2008,29:437-439.
    李敏,韦鹤平,王光谦,倪晋仁.长江口、杭州湾水域沉积物对磷吸附行为的研究.海洋学报,2004,26(1):132-136.
    李涛,王鹏,汪品先.南海西沙海槽沉积物细菌多样性初步研究.地球科学进展,2006,21:1058-1062.
    李文红.地表水体水质改善技术及沉积物中磷细菌作用研究.杭州:浙江大学,2006.
    李悦,乌大年,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义.海洋环境科学,1998,17:15-20.
    林建伟,朱志良,赵建夫.天然沸石覆盖层控制底泥氮磷释放的影响因素.环境科学,2006,27(5):880-884
    林启美王华,赵小蓉,赵紫鹃.一些细菌和真菌的解磷能力及其机理初探,微生物学通报,2001.28:26-30.
    林启美,赵小蓉,孙焱鑫,姚军.四种不同生态系统的土壤解磷细菌数量及种群分布.土壤与环境,2000,9:34-37.
    林悦涓,吴峰,邓南圣,方涛,刘建彤.武汉东湖上覆水和沉积物中磷形态的垂直分布特征.农业环境科学学报,2005,24:1152-1156.
    刘敏,侯立军,许世远,欧冬妮,张斌亮,刘巧梅,杨毅.长江河口潮滩表层沉积物对磷酸盐的吸附特征.地理学报,2002,57(4):397-406.
    潘刚.亚稳平衡态吸附(MEA)理论——传统热力学理论面临的挑战与发展环境科学学报,2003,23(2):156-173.
    濮培民,王国祥.底泥疏浚能控制湖泊富营养化吗?湖泊科学,2000,12:269-279.
    石晓勇,史致丽.黄河口磷酸盐缓冲机制的探讨.海洋与湖沼,1999,3:192-197.
    宋炜,袁丽娜,肖琳,詹忠,杨柳燕,蒋丽娟.太湖沉积物中解磷细菌分布及其与碱性磷酸酶活性的关系.环境科学,2007,28:2355-2360.
    孙刚,盛连喜.湖泊富营养化治理的生态工程.应用生态学报,2001,12(4):590-592.
    孙慧敏,戴世鲲,王广华,谢练武,李翔.南海北部巴士海峡深海沉积物中细菌多样性分析.热带海洋学报,2010,29:41-46.
    孙晓杭,张昱,张斌亮,杨敏.微生物作用对太湖沉积物磷释放影响的模拟实验研究.环境化学,2006,25(1):24-27.
    汪家权,孙亚敏,钱家忠,巫建光,潘天声.巢湖底泥磷的释放模拟实验研究.环境科学学报,2002,22(6):738-742.
    王圣瑞,金相灿,赵海超,庞燕,周小宁,楚建周.长江中下游浅水湖泊沉积物对磷的吸附特征.
    环境科学,2005,26:38-43.
    王庭健,苏睿,金相灿等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响[J].环境科学研究,1994,7(4):12-19.
    王晓钧,丁士明,蒋海青,白秀玲,范成新.湖泊磷的核磁共振(NMR)分析——1环境标准样品的31P-NMR表征.湖泊科学,2008,20:45-50.
    王晓丽,潘纲,包华影,张宪伟,陈灏,郭博书.黄河中下游沉积物对磷酸盐的吸附特征.环境科学,2008,29:2137-2142.
    王晓丽,包华影.黄河上中游表层沉积物磷的赋存形态特征.生态环境学报,2010,19:.1358-1362.
    王颖,沈珍瑶,呼丽娟,牛军峰.三峡水库主要支流沉积物的磷吸附/释放特性.环境科学学报,2008,28:1654-1661
    王雨春等.湖泊现代化沉积物中磷的地球化学作用及环境效应.重庆环境科学,2000,22(4):39-41,59
    吴根福,吴雪昌,金承涛.杭州西湖底泥释磷的初步研究.中国环境科学,1998,18(2):107-110
    吴晓娜.西湖沉积物中磷的形态及迁移转化的沉积剖面研究.浙江大学,2006.
    徐清,刘晓端,刘浏.密云水库沉积物中磷释放的环境因子影响实验.岩矿测试,2005,24(1):19-22
    徐玉慧,姜霞,金相灿,夏忠林,林漪,方世裘.太湖东北部沉积物生物可利用性磷的季节性变化.环境科学,2006,27(5):869-873.
    杨学芬.熊邦喜,杨明生.武汉南湖水体及沉积物不同形态磷的季节变化.应用生态学报,2008,19(9):2029-2034
    于世繁.白洋淀底质磷的释放及与水体中磷的关系.环境科学,1995,16:30-31,34.
    展薛杨,王而力,邱素芬,于洋,张正夫.沉积物中磷的吸附和释放研究进展.辽宁工程技术大学学报:自然科学版,2009,A02:146-148.
    章婷曦,王晓蓉,金相灿.太湖不同营养水乎湖区沉积物中磷形态的分布特征.农业环境科学学报,2007,26(4):1207-1213.
    赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系.微生物学杂志,2003,23(2):5-7
    赵兴青,杨柳燕,陈灿,肖琳,蒋丽娟,马喆,朱昊巍,于振洋,尹大强PCR-DGGE技术用于湖泊沉积物中的微生物群落结构多样性研究.生态学报,2006,26(11):3610-3616.
    赵兴青,杨柳燕,尹大强,王汝成,陆现彩,陆建军.太湖沉积物中微生物多样性垂向分布特征.地学前缘,2008,15:177-184.
    钟继承,刘国锋,范成新,白秀玲,李宝,尹洪斌.湖泊底泥疏浚环境效应:对沉积物微生物 活性与群落功能多样性的影响及其意义.湖泊科学,2010,22(1):21-28.
    周丽华,陈士超,邓志瑞,陈沁,郑乐平,刘志学.太湖沉积物中的可培养细菌:Ⅰ细菌多样性初步分析.湖泊科学,2009,21(1):27-35.
    周易勇,付永清.水体磷酸酶:来源,特征及其生态学意义.湖泊科学,1999,11:274-283.
    朱广伟,秦伯强,高光.浅水湖泊沉积物磷释放的重要因子一铁和水动力.农业环境科学学报,2003,22(6):762-764.
    朱广伟,秦伯强,张路,罗潋葱,孙小静,洪大林,高亚军,谢瑞.太湖底泥悬浮中营养盐释放的波浪水槽实验.湖泊科学,2005,17(1):61-68.
    朱广伟,秦伯强.沉积物中磷形态的化学连续提取法应用研究.农业环境科学学报,2003,22:349-352.
    朱广伟,田光明.水体沉积物的污染谈控制技术研究进展.农业环境保护,2002,21(4):378-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700