节能型烧结页岩空心砖的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的出现,节能、低碳和绿色建筑在国民经济中的意义越来越受到重视。工程实践证明,墙体及窗户的保温隔热,是实现建筑节能的关键,而墙体材料的发展,又是实现建筑节能的基础。所以随着国家墙改政策的实施,市场上出现了不同类型的新型墙体材料,其中,空心砖得到了非常广泛的应用。在烧结实心砖中设置空气间层和内置微孔,都能有效改善烧结砖的热工性能。然而,空心砖孔型设计并不十分合理,以及缺少微孔化方面的研究。针对上述问题,本文作以下分析:
     首先在分析空气间层传热特点的基础上,考虑孔型、孔径比、孔洞率、孔排数和列数、排列方式等不同空气间层的孔洞结构对空心砖热工性能的影响,模拟结果表明:矩形孔具有较好的保温性能,而且随矩形孔长宽比增加保温效果愈好;增加孔的排列数、孔洞率和孔肋延长线系数都能提高空心砖的热工性能。市场上190mm×200mm×240mm节能空心砖模拟分析的导热系数为0.258 W/(m·K),实测为0.248 W/(m·K),相对误差约3.6%;优化设计的节能空心砖模拟分析的导热系数为0.236 W/(m·K),与市场节能空心砖相比,降低约8.5%。
     第四章,在分析锯末、煤矸石和造纸污泥的基本物性、化学成分及热解特性等的基础上,分别按不同掺量和页岩混合,经陈化、成型、干燥和烧成等工序,通过混合料可塑性指数、烧结制品的密度和抗压强度等指标,分析成孔剂在生产烧结页岩空心砖时的合理掺量。
     试验表明:成孔剂的燃烧大都发生在200~600℃范围内,因此制品烧成过程中,在此温度范围内升温速率不宜过快,使成孔剂燃烧充分从而促进烧成反应;随着锯末和煤矸石掺量的增加,混合料的可塑性呈减小趋势,而造纸污泥能提高混合料的成型性能。其次,当锯末掺量9%时,密度降低至1166 Kg/m~3,导热系数达到0.48 W/(m·K);煤矸石掺量60%时,密度降低至1457Kg/m~3,导热系数为0.62 W/(m·K);造纸污泥掺量11%时,密度降低至1284Kg/m~3,导热系数为0.54 W/(m·K)。结合生产工艺、力学性能等的要求,成孔剂的适宜掺量:锯末掺量≤5%,造纸污泥≤9%,煤矸石可根据制砖热量和可塑性要求,适量掺加,节约用煤。最后,借助X射线衍射分析了锯末掺量3%、煤矸石掺量40%和造纸污泥掺量7%的烧结制品的相组成,结果表明在经950℃烧成反应后,主要相组成为:石英、莫来石和长石等。
     在第五章中,利用优化的节能空心砖型、在确定页岩和煤矸石掺量的混合料中,再分别掺一定量的锯末和造纸污泥进行生产实验,烧制的节能型烧结页岩空心砖,其强度达到GB13545-2003标准规定的抗压强度MU3.5级,密度低至约700 Kg/m~3。
With the emergence of the energy and resource crisis, the significance of energy saving, low carbon and green architecture in national economy, it gets more and more attention. Engineering practice shows that the thermal insulation of wall and window, which is the key to achieve building energy efficiency, and the development of wall materials, which is also the basis for the realization of building energy efficiency. So along with the national wall change policy implementation, different types of new wall materials appeared on the market, among them, the hollow brick have been very widely used. Through setting the air layer and introducing micro-porous in the bricks, that can effectively improve the characteristics of thermal performance. However, hollow bricks’groove design is not very reasonable, and lack of micro-porous research. The following analysis is the view of above questions:
     First, considering hole pattern, hole diameter ratio, holes rate, hole row number and column number, arrangement, etc, and these holes structure on the characteristics of the thermal performance impact, Simulation results show that rectangular hole has the better thermal insulation performance, and as rectangular hole length-width ratio increases, the heat preservation effect is better; increasing holes row and column number, holes rate and pore rib extension cord coefficient, the thermal conductivity of hollow bricks can be improved. the market energy-saving hollow bricks 190mm×200mm×240mm ,its thermal conductivity of simulation analysis is 0.258 W/(m·K), the actual measurement value is 0.248 W/(m·K), the relative error is about 3.6%; through the optimized design, its thermal conductivity of simulation analysis is 0.236 W/(m·K), compared with the market energy-saving hollow bricks, thethermal conductivity reduce about 8.5%.
     In chapter 4, based on analyzing sawdust, coal gangue and paper mill sludge basic physical property, chemical composition and pyrolysis characteristics, separately as different dosage mixed with shale, after aging, molding, dry and sintering, get the finished, through mixture plasticity index, the density and compressive strength index of the finished to analyze the reasonable dosage of pore-forming agent in producing micro-porous shale hollow bricks.
     Test analysis shows as follows: pore-forming agents combustion tend to occur in 200 ~ 600℃, therefore, during the sintering process, too fast heating rate is unfavorable, make pore-forming agents burning full so as to promote firing response; with the sawdust and coal gangue content increased, the plasticity index of mixture appears decreasing trend, while the paper mill sludge can improve the formability of mixture; Secondly, when the admixture proportion of sawdust is 9%, the density is reduced to 1166 Kg/m~3, thermal conductivity reaches 0.48W/(m·K); coal gangue admixture proportion is 60%, the density is reduced to 1457Kg/m~3, thermal conductivity reaches 0.62 W/(m·K); when the admixture proportion of paper mill sludge is 11%, density is reduced to 1284Kg/m~3, thermal conductivity reaches 0.54 W/(m·K). Combined with the requirements of production process and mechanical properties, the appropriate dosage of pore-forming agents in the production as follows: sawdust dosage≤5%, paper mill sludge dosage≤9%, under the premise of ensuring the plasticity and heating value of mixture, the dosage of coal gangue is as maximum as possible, to save coal. Finally, By using X-ray diffraction to analyze the phase composition of fired brick, whose ingredients contain sawdust 3%, coal gangue 60% and paper mill sludge 7%, the result showed that after 950℃firing reaction the main phase composition are quartz, mullite and feldspar, etc.
     In chapter 5, using optimized brick type, reasonable shale and coal gangue dosage, through the production sintering experiment, we get the energy-saving shale hollow brick, its strength meet GB13545-2003 standards for compressive strength MU2.5 and density is as low as 700Kg/m~3.
引文
[1]中国幕墙网.和谐发展呼唤节能减排[EB/01]. http://www. alwindoor. com/info/2008-1-8/7 359-1. htm, 2008-08-01.
    [2]付祥钊.夏热冬冷地区建筑节能技术[M] .北京:中国建筑工业出版社, 2002.
    [3]盛泽平,徐凯.浅谈建筑节能[J] .天津建材, 2006, (1):9-10.
    [4]涂逢祥,王庆一.我国建筑节能现状及发展[J] .新型建筑材料, 2004, (7) :40-42.
    [5]中国能源发展战略与政策研究课题组.中国能源发展战略与政策研究[M] .北京:经济科学出版社, 2004.
    [6]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调, 2005, (5):30-40.
    [7]武涌,梁境.中国能源发展战略与建筑节能[J].重庆建筑, 2006, (3):6-19.
    [8]李兆坚,江亿.我国广义建筑能耗状况的分析和思考[J].建筑学报, 2006, (7):30-33.
    [9]负英伟,吴香国等.我国建筑节能现状分析及对策[J].重庆科技学院学报(自然科学版), 2006, 3 (1):62-65.
    [10] G. Verbeeck, H. Hens. Energy savings in retrofitted dwellings: economically viable [J]. Energy and Buildings, 2005, 37 (7) :747-754.
    [11]居松茂.混凝土小型空心砌块墙体的热工性能研究[D].重庆:重庆大学, 2009.
    [12]闫开放.发展高质量烧结空心制品适应节能型建筑墙休需要(一) [J].砖瓦, 2006, (1):8-11.
    [13]董孟能,张泽民等.节能型烧结页岩空心砖的研制和应用[J].新型墙材, 2008, (2):32-35.
    [14]何水清.废渣烧制砖瓦技术[M].北京:中国建筑工业出版社, 2008. 195-208.
    [15] L. P. Li. Optimization of the configuration of 290*140*90 hollow clay bricks with 3-D numerical simulation by finite volume method[J]. Energy and Buildings, 2008, 40(10): 1790- 1798.
    [16]陶有生.欧洲烧结砖[J].砖瓦, 2002增刊:47-49.
    [17]张文法.美国砖瓦生产和应用的特点[J].砖瓦, 2003, (7):86-88.
    [18]王继唐.空心砖与空心砖节能建筑[J].墙体革新与建筑节能, 2000, (1):13-17.
    [19]湛轩业,付善忠等.许现代烧结砖瓦产品的发展及种类(四) [J].砖瓦, 2009, (8):61-70.
    [20]雷勇敏,朱雅丽.烧结空心砖孔形及排布方式对热工性能的影响[J].砖瓦, 1999, (3):35-37.
    [21] J. J. del Coz Diaz. Analysis and optimization of the heat-insulating light concrete hollow brick walls design by the finite element method [J]. Applied Thermal Engineering, 2007, 27(8):1445-1456.
    [22] Ammar Bouchair. Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation[J]. Building and Environment, 2008, 43(10):1603–1618.
    [23] Jiapeng Sun, Liang Fang. Numerical simulation of concrete hollow bricks by the finite volume method[J]. International Journal of Heat and Mass Transfe, 2009, 52 (24):5598–5607.
    [24] Sohrab Veiseh, Ali A. Yousefi, The Use of Polystyrene in Lightweight Brick Production[J]. Iranian Polymer Journal, 2003, 12(4):323–329.
    [25] Ismail Demir, M. Serhat Baspinar, Mehmet Orhan, Utilization of kraft pulp production residues in clay brick production [J]. Building and Environment, 2005, 40(11):1533–1537.
    [26] Bettzieche, , H. Pore-forming in brick making clay by means of expanded glass granules[J], Ziegelindustrie International, 2000, (5):41–53.
    [27]易庆睦,吴成明.建筑和生产双节能的墙体材料[J].砖瓦, 2007, (11):7–11.
    [28]湛轩业,付善忠等.现代烧结砖瓦产品的发展及种类(二)[J].砖瓦, 2009, (6):63–68.
    [29]姚栋才.多孔砖生产工艺与力学性能试验研究[D].重庆:重庆大学, 2002.
    [30]李庆繁等.科学发展高品质煤矸石烧结多孔砖和空心砖[J].砖瓦, 2009, (9):27-32.
    [31]李桂青,严定法.空心砖产品的优化设计[J].武汉工业大学学报, 1991, (1):65-71.
    [32]李临平,吴志根等.粘土空心砖结构优化的数值模拟[J].工程热物理学报, 2008, (5):845-848.
    [33]张源,何嘉鹏.节能空心砌块选型的正交综合分析[J].建筑技术, 2009, (4):336-339.
    [34]陈丽萍,何嘉鹏等.新型节能墙体砌块热工性能的研究[J].南京建筑工程学院学报, 2002, (1): 16-20.
    [35]李红兰,魏玲.粉煤灰空心砌块墙体热阻的数值模拟[J].建筑科学, 2008, (12):67-70.
    [36]李建成.混凝土空心砌块的孔型对其隔热性能的影响[J].混凝土与水泥制品, 1999(5):50-52.
    [37]董晓峰,沈光银.利用造纸污泥生产建筑轻质节能砖[J].浙江建筑, 2008, (2):50-52.
    [38]邓家平,唐晓宇.建筑用泡沫玻璃保温砖的生产及应用[J].新型建筑材料, 1995, (4):4-8.
    [39]赵亚丁,张宝生等.造孔料的选择与烧结砖微孔坯体性能的关系[J].哈尔滨建筑大学学报, 1998, (4):85-90.
    [40]吴其胜,耿佳杰等.河道淤泥烧结节能砖的研究与开发[J].新型建筑材料, 2008, (5):33-35.
    [41]马保国,王耀城等.不同成孔机理造孔剂对粉煤灰页岩烧结制品性能影响[J].中国建材科技, 2009, (3):66-68.
    [42]孙继颖.空心砖与建筑[M].北京:中国建筑工业出版社, 1988.
    [43]赵镇魁.烧结砖瓦生产技术[M].重庆:重庆出版社, 1991.
    [44]陕西省砖瓦研究所粘土砖瓦工艺(原料) [M].北京:中国建筑工业出版社, 1995.
    [45] LIANG XH, KOZINSKI JA. Numerical modeling of combustion and pyrolysis of cellulosic biomass in thermogravimetric systems [J]. Fuel, 2000, 79 (12):1477-1486.
    [46]陈永辉,蔡海燕.纤维素和木质素含量对稻草、锯末热解及燃烧特性的影响[J].能源工程2009, (1):38-42.
    [47]赵军,王述洋.我国生物质能资源与利用[J].太阳能学报, 2008, (1):90-94.
    [48]伍贤益.煤矸石淤泥空心砖生产工艺及管理[J].煤炭加工与综合利用, 2006, (1):38-42.
    [49] Calace N, Nardi E, Petronio B. M. Adsorption of Phenols by paper mill sludge [J]. Environ. Pollut, 2002, 118 (3):315-319.
    [50] Maria Rosaria Boni, Laura D Aprile, Giancarlo De Casa. Environmental quality of primary paper sludge [J]. Journal of Hazardous Materials, 2004, 108(2):125-128.
    [51] TrustchlerJ. D. Fiber recovery-reducing operation costs and sludge[J]. Pap. Technol. 40(7): 97-100.
    [52]帕坦卡S. V.传热与流体流动的数值计算[M].北京:科学出版社, 1984.
    [53]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社, 2001.
    [54]王福军.计算流体动力学分析-CFD软件原理[M].北京:清华大学出版社, 2004.
    [55]李进良,李承曦,胡仁嘉等.精通fluent 6. 3流场分析[M].北京:化学工业出版社:2009.
    [56]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社, 2008.
    [57]姜涵,胡海波等.保温节能墙材空气间层设计对其热工性能的影响[J ].新型墙材, 2002, (1): 35-38.
    [58]杨世铭,陶文铨.传热学[M].北京:高等教育出版社, 1998.
    [59]栾伟,何嘉鹏等.节能墙体空心砌块热阻特性的研究[J ].南京工业大学学报, 2003, (9): 33-36.
    [60]孟庆林,蔡宁等.封闭空气层热阻的理论解[J ].华南理工大学学报, 1997, (4): 116-119.
    [61]朱谷君.工程传热传质学[M].北京:航空工业出版社, 1989.
    [62]伊萨琴科BⅡ.传热学.王丰,冀守礼等编译.北京:高等教育出版社, 1987.
    [63] Slayer I O. Development of phase-change technology for heating and cooling of residential buildings and other application [A]. American Chemical Society. Proceedings of the 28th intersociety energy conversation conference:2[C]. Atlanta:American Chemical Society, 1993: 133.
    [64]余才锐,沈冬梅等.节能建材垂直矩形空气间隙结构传热规律研究[J].新型墙材, 2008, (8): 32-35.
    [65]栾伟.节能墙体热工性能的计算分析与研究[D].江苏:东南大学. 2004.
    [66]杨沫,王育清等.具有表面辐射的导热和对流耦合问题的数值计算方法[J].西安交通大学学报, 1992, (12):25-30.
    [67] Li LP, Wu ZG, Li ZY, et al. Numerical thermal optimization of the configuration of multi-holed clay bricks used for constructing building walls by the finite volume method [J]. International Journal of Heat and Mass Transfer, 2008, 51(14):3669-3682.
    [68]郭恩震.砌块传热分析与合理应用[J].工业建筑, 2002, 32(11):42-46.
    [69]李建成.混凝土空心砌块的孔型对其隔热性能的影响[J].混凝土与水泥制品1995, (5):50-52.
    [70]杨增玲.煤矸石烧结空心砖的研究[D].山东:山东大学. 2007.
    [71]于漧.我国烧结页岩砖的发展方向[J].房材与应用, 1999, (3):43-47.
    [72]李庆繁,朱井杨.科学发展高品质煤矸石烧结多孔砖和空心砖[J].砖瓦, 2009, (9):27-32.
    [73]徐海涛,张长森等.烧结保温砖成孔剂的研究进展[J].砖瓦世界, 2008, 4 39-42.
    [74]万金泉,马邕文.造纸工业废水处理技术及工程实例[M].北京:化学工业出版社, 2008.
    [74]卢勇泉,邓振华.实用红外光谱分析[M].北京:电子工业出版社, 1989.
    [76]刘贤淼.造纸脱墨污泥制造纤维板及除臭初步处理[D].北京:中国林业科学研究院. 2008.
    [77]湛轩业,周汉平译.建筑粘土制品全国建筑材料专业砖瓦科技情报网, 1985.
    [78]陈移峰.生物质与煤歼石混合热解与燃烧特性实验研究[D].重庆:重庆大学, 2007.
    [79]李淑强.不同气氛下煤矸石热解特性及热解动力学机理[D].重庆:重庆大学, 2008.
    [80]陈江,黄立维等.造纸污泥热解特性及动力学研究[J].环境科学与技术, 2006, (1):87-88.
    [81] A. Mendez, M. Fidalgo, et al. Characterization and pyrolysis behaviour of different paper mill waste materials [J]. Journal of Analytical and Applied Pyrolysis, 2009, 86 (1):66–73.
    [82] Worrall WE. Ceramic raw material. 2nd ed Qxford. Pergamon Press, 1982.
    [83] F. H. Nortan. elements of Ceramics [M]. Addison-Wesley Publishing Co. Reading, 1994.
    [84]殷念祖.烧结砖瓦工艺[M].北京:中国建筑工业出版社, 1983.
    [85]张文法.美国砖瓦的硬塑挤出成型技术[J].建材工业信息2004, (11):32-34.
    [86]邵力.挤砖机挤出压力的合理选择与节能[J].建材工业信息, 2005, (3):34-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700