混合菌微生物絮凝剂的研制及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物絮凝剂是一类由微生物产生的有絮凝活性的高分子物质,在水处理中以其无毒、无二次污染,易于生物降解等优点成为絮凝剂研究的新方向。目前微生物絮凝剂的研究主要集中在单一菌絮凝剂的研究,微生物絮凝剂不能很好利用多种微生物的优势,同时成本过高不能广泛应用于生产实践中。本研究利用絮凝菌混合培养研制出高效的混合菌絮凝剂YF-3,对其絮凝条件及其性能进行研究,同时利用啤酒废水培养YF-3,为降低微生物絮凝剂生产成本,进一步用于实际应用中提供实验基础与方法,絮凝剂YF—3对实际废水处理也取得很好的效果。
     本研究筛选出三株高效微生物絮凝菌,分别是两株黄单胞菌Xanthomonas WA-2和Xanthomonas WB-2,一株不动细胞菌Acinetobacter M-3,对其中絮凝活性最高的Xanthomonas WB-2进行研究,菌Xanthomonas WB-2的最适生长条件:碳源为葡萄糖或蔗糖,氮源为牛肉膏,初始pH值为7~8,温度为28~32℃,培养时间为60~72h。絮凝剂WBF-2对絮凝的pH值有广泛的适应性,絮凝最适的pH值为4~6。
     实验结果表明:混合菌Y-3以蛋白胨作为氮源絮凝率最高,絮凝率高达94.2%,葡萄糖和蔗糖作为碳源效果最好,絮凝剂YF-3在pH为4~6时絮凝效果最佳,高价金属离子对其有促进絮凝作用,其中Ca~(2+)的促进作用明显。
     利用啤酒废水作为培养基的实验结果表明:菌Y-3可以直接利用经稀释的啤酒废水,废水浓度为30%~70%,并加入蛋白胨(2mg/L)时取得良好的絮凝效果,在稀释浓度为50%时,絮凝率高达94.2%。
     絮凝剂结构成分分析表明,该絮凝剂属于两性高分子多糖,分子中所含阴离子基团(羧基和羟基)较多,即具有较多的活性吸附位点。具有分子量高、水溶性好等优点。
     实验结果表明絮凝剂YF-3对实际废水处理有一定的效果,对啤酒废水和含藻污水的处理时,如用与CaCl_2或无机絮凝剂联合使用有很好的处理效果。
Microbial flocculant is a kind of flocculant secreted by microorganism. These kinds of microbial polymers are expected to be useful in flocculating wastewater due to their bio-degradaility and the harmlessness of the products of their degradation toward the human and environment. Researchers are focused on the flocculant of single microbe and the cost of the microbial flocculant is too high to be used in the industry .In this paper the microbial flocculant YF-3 of high flocculating activity was manufactured by three bacteria of high flocculation activity. The culture conditions and activity of the flocculant YF-3 were studied, the ratio of flocculation was high when beer producing wastewater was used as the medium, only the nitrogen resource was added .It has been succeeded in the laboratory and given a way to use in the industry. YF-3 can be used to treat the various wastewater well.
    In this study, Xanthomonas WB-2, Xanthomonas WA-2 and Acinetobacter M-3 as high-yied strains were screened out . The best medium of nitrogen and carbon for Xanthomonas WB-2 grouth were beef grease, glucose and sucrose separately. The optimum pH of medium was 7~8. The optimum growing and flocculation-producing temperature was 28-32.The time of best performance was after cultivating 60~72h. The optimum pH of the environment was 4~6.
    The experiment showed that the best medium of nitrogen and carbon
    
    
    for flocculant YF-3 were peptone, glucose and sucrose separately. The suitable pH value for flocculant YF-3 was wide, and the optimum was pH 4~6.
    The experiment indicated that beer producing wastewater could be used as the medium . The best diluted concentration of wastewater was 30-70 %. The high ratio of flocculation was 94.2% when 50% of diluted concentration of the wastewater was used. The high cation can enhance the flocculating activity of YF-3 specially Ca2+ .
    Analytical experiment approved that the major constitute of YF-3 was polysaccharide. There were -COOH and -OH in the molecules. It had larger molecular weight, and its structure was liner. The mechanism of flocculating was mainly absorbing and bridging.
    The wastewater purification experiment demonstrated that the YF-3 had good purifying effect in the treatment of wastewater, especially in beer producing wastewater. Inorganic flocculant or CaC should be used together in treatment of beer producing wastewater .
引文
[1] 崔蕴霞,肖锦.铝盐絮凝剂及其环境效应.环境污染与防治(J),1998,20(3):39~41.
    [2] AWWA Sludge Disposal Committee. Committee report: research needs for alum sludge discharge. Journal American water works association(J), 1987,79(6):99.
    [3] 国家环境保护局,混凝剂与絮凝剂(M),中国环境科学出版社,1991
    [4] 傅文德,许保玖,高浊度给水工程(M),中国建筑工业出版社,1996
    [5] Kwon GS, Hong SD. A novel flocculant biopolymer produced by Pestalotiopsis sp. KCTC 8637P. Biotechnology Letters(J), 1996,18(12):1459~1464.
    [6] Kurane R. A protein bioflocculant produced by Rhodococcus erythropolis. Agric. Biol. Chem. (J), 1991,55(10):2663~2664.
    [7] Yoshitaka T. Exocellular mucopoly saccharide closely related to bacterial flocformation, Applied and Environmental Microbiology(J), 1977,34(3):308~314.
    [8] I.L. Shih, Y.T. Van, L.C. Yeh, H.G.. Lin, Y.N.Chang. Production ofa biopolymer floceulant from Bacillus licheniformis and its flocculation properties. Bioresource Technology(J), 2001,78(3):267~272.
    [9] H.Salehizadeh, M.Vossouhi, I.Alemzadeh. Some investigations on biofloceulant production bacteria. Biochemical Engineering Journal(J), 2000,5(1):39~44.
    [10] H.Salehizadeh, S.A.Shojaosadati. Extracellular biopolymeric flocculants recent trends and biotechnological importance. Biotechnology Advances(J), 2001,19(5):371~385.
    [11] Ryuichiro K, Yasuhiro N. Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from alcaligenes latus. Agric. Boil. Chem. (J), 1991,55(4):1127~1129.
    [12] Takagi H. Flocculant production by Paecilomyces sp.taxonomic studies and culture confions for production. Agric.Biol.Chem. (J), 1985,49(11):3151~3157.
    [13] Nakamura J, Hirose Y. Purification and chemical analysis of microbial cell floeeulant produced by Aspergillus sojae AJ-7002. Agric.Biol.Chem. (J), 1976,40(3):619~624.
    [14] Sakka K, Takahashi. DNA as a flocculation factor in Pseudomonas sp. Agri.Biol. Chem. (J), 1981, 45(2):2869~2876.
    [15] Jarkko H, Jarkkoh. The effciency of the protein dependent flocculation of Flavo bacterium is sensitive to the composition of growth medium. Microbiol Bioteehnol, (J)
    
    1991,36:100~104.
    [16] Sub H-H. Characterization of bioflocculant produced by Bacillus sp.DP-152. Journal of Fermentation and Bioengineering(J), 1997,184(2): 108~112.
    [17] Ryuichiro Kurane, Kazuki Toeda, Kiyoshi Takeda, Tomoo Suzuki. Culture conditions for production of microbial flocculant by Phodococcus erythropolis. Agric.Biol.Chem. (J), 1986,50(9):2309~2313.
    [18] Jun-ichi Koizumi, Minoru Takeda, Ryuichiro Kurane, Isei Nakamura. Synergentic flocculation of the bioflocculant FIX extracellularly produced by Nocrardia amarae. Gen. Appl. Microbiol. (J), 1991,37:447~454.
    [19] R Kurane, R Suzuki, R Tazawa. Microorganism flocculating agent manufacture with rhdococcus and nocardia. JP07-75561,1995.
    [20] R Kurane, T Yokomaku. Flocculating agent NOC-1 manufacture with rhdococcus. JP03-38203,1991.
    [21] R Kurane. Miciobial flocculants. Bioindustry(J), 1990,7(1):8~13.
    [22] 李智良,张本兰,斐健.微生物絮凝剂产生菌的筛选及其相关废水絮凝效果实验.应用环境与生物学报(J),1997,3(1):67~70.
    [23] 王镇,王孔星,谢裕敏.几株絮凝剂产生菌的特性研究.微生物学报(J),1995,35(2):121~129.
    [24] 庄源益,李彤,戴树桂等.生物絮凝剂除浊脱色作用的初步研究.城市环境与城市生态(J),1997,10(4):5~8.
    [25] 邓述波,胡筱敏等 一株芽孢杆菌所絮凝剂的研究 环境科学研究(J),2001.14(1):36~40
    [26] Junji Nakamura. Screening, isolation and some properties of microbial cell flocculants. Agfi.Biol.Chem., 1976,40(2):377~383.
    [27] Zhang J, Liu Z, Wang S, Jiang P. Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp NU-2. Applied microbiology and biotechnology, 2002,59 (4-5):517~522.
    [28] Dermlim W., Screening and characterization of bioflocculant produced by isolated Klebsiella sp. Applied Microbiology and Biotechnology(J), 1999,52(5):698~703.
    [29] Haruhiko Yokoi. Biopolymer flocculant produced by an Enterobacter sp. Bioteeh-nology
    
    Letters(J), 1997,19(6):569~573.
    [30] Yokoi H, Shiraki M. Flocculation properties of xanthan produced by Xanthomonas campestris. Biotechnology Techniques(J), 1996,10(10):789~792.
    [31] Nam JS. Bioflocculant produced by Aspergillus sp.JS-42. Biosci Biotechnol Biochem(J), 1996,60(2):235~237.
    [32] Kurane R., Development and Utilization of Microbial Flocculant. Bio.ind. (J) 1988,5(10):941~949.
    [33] Toeda K, Kurane R. Microbial flocculant from Alcaligenes cupidus T201. Agri. Biol. Chem. (J), 1991,55(11):2793~2799.
    [34] M.J Sousa, Teixeira J.A.,M.Mota. Difference in the flocculation mechanism of Kluyeromyces Marxianus and Sacchomyses Cerevisiaae. Biotech. Letters (J), 1990,24(5):743~950
    [35] R. Kurane. Correlation between Flocculant Production and Morphological changes in Rhodococcus erythropolis S-1[J], Journal of Fermentation and Bioengineer,1991,72(6),498~500.
    [36] Nakamura J, Miyashiro.S., Hirose Y. Condition for Production of microbial cell flocculant produced by Aspergillus sojae AJ-7002. Agric.Biol.Chem. (J), 1976,40(7):1341~1347.
    [37] David C. Sobeck, Matthew J. Higgins. Examination of three theories for mechanism of cation-induced bioflocculation. Water Research(J), 2002,36:527~538.
    [38] Frolund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research(J), 1996,30:1749~1758.
    [39] Dignac MF, Urbain V, Rybacki D, Bruchet A, Snidaro D, Scrib P. Chemical description of polymers: implication on activated sludge floc structure. Water Sci Technol(J), 1998,38:39~46.
    [40] Sanin FD, Vesilind PA. Synthetic sludge: a physical/chemical model in understanding bioflocculation. Water Environ Res(J), 1996,68:927~933.
    [41] 贾省芬,杨彦希,黄志勇等.处理城市污水的多功能混合菌研究,环境科学,2000,21(5):81~84.
    
    
    [42] 黄民生等.微生物絮凝剂的研制及废水净化研究,上海大学学报(自然科学版),2001.7(3):244~248.
    [43] 邓述波,胡筱敏,罗茜.微生物絮凝剂处理淀粉废水的研究,工业水处理(J),1999,19(5),8~10.
    [44] 范秀容,李广武,沈萍.微生物学实验(M).北京:高等教育出版社,1996.
    [45] R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(M).北京:科学出版社,1984.
    [46] 中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法(M).北京:科学出版社,1978.
    [47] 比嘉照夫著,冯玉润译.拯救地球大变革(M)北京:中国农业大学出版社,1997.
    [47] 邵青.EM对生活污水中常见污染物的去除效果,中国给水排水(J),2001,17(3):74~76
    [48] 朱亮,王超.EM在污水生物降解中的试验研究,环境工程(J),2001,19(6):15~17
    [50] 马放,刘俊良,李淑更,等.复合型微生物絮凝剂的开发.中国给水排水(J),2003,19(4):1~4
    [51] 王凯军,秦人伟 发酵工业废水处理(M)北京:化学工业出版社2000,
    [52] 李建武,萧能赓,余瑞元等.生物化学实验原理和方法.北京:北京大学出版社,1994.
    [53] 陶钧辉,陶力.生物化学实验(M)北京:高等教育出版社 2003
    [54] 胡筱敏,邓述波,牛力东等.一株芽孢杆菌所产絮凝剂的研究.环境科学研究(J),2001,14(1):36—40.
    [55] 复旦大学高分子科学系,高分子科学研究所.高分子实验技术(修订版)(M).上海:复旦大学出版社,1996.
    [56] Pushparaj B, Pelosi E, Torzillo G, Materassi R. Microbial biomass recovery using a synthetic cationic polymer. Bioresur. Technol. (J), 1993, 43: 59~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700