混凝土连续曲线梁桥在车辆荷载作用下的动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着我国公路建设和城市道路交通的快速发展,曲线梁桥被广泛应用于高速公路的跨线互通、大跨桥梁的桥头引道和大型立体交叉中,其中多数为混凝土曲线梁桥。曲线梁桥的静力计算理论在过去的几十年中取得了长足的发展,但对混凝土曲线梁桥的动力行为研究甚少,认识也不够深入,对混凝土曲线梁桥的动力设计尚无明确的依据可循。我国的曲线梁桥汽车荷载冲击系数的取值目前仍普遍采用直线梁桥的研究成果,对其合理性缺少足够的研究。因此,开展曲线梁桥的动力行为研究对完善曲线梁桥的结构设计理论、规范冲击系数的取值方法、养护管理和寿命评估具有重要的意义。曲线梁桥受力弯扭耦合作用效应明显,实际工程中多采用抗弯扭刚度大的箱形截面。为此,本文以曲线箱形桥梁为对象,对其动力特性及车辆荷载作用下的动力行为开展理论和试验研究,主要研究成果如下:
     1、基于剪力柔性梁格理论,充分考虑翘曲刚度和转动惯量的影响,对已有的计算模型进行改进,提出了适于曲线梁桥动力分析的三梁式模型,通过环境振动测试和实体模型的动力分析结果验证了模型的可靠性。在此基础上,基于通用软件ANSYS,采用12自由度的空间3轴车辆模型,联合采用空间梁单元和质量单元、弹簧阻尼单元对车辆和桥梁模型进行离散,分别建立车辆和桥梁的有限元模型,综合考虑离心力、桥面不平度及其速度项的影响,提出了一种简便的求解曲线梁桥车桥耦合振动响应的数值分析方法,并通过桥梁的动载试验结果验证了该方法的有效性和实用性。
     2、应用前面提出的模型和方法研究了单车荷载作用下,桥面不平度、曲率半径、车辆行驶偏心、轮胎的刚度和阻尼、桥梁结构阻尼比、桥梁跨数、主梁的支承类型和桥梁纵坡等多个针对曲线梁桥主要特征的参数对的桥梁的内力、位移和墩柱动力响应的影响,计算了相应工况的动力放大系数并进行了比较分析。随后研究了横向加载车道数、纵向加载车辆数、车头间距和车速对车队荷载作用下桥梁动力响应的影响。分析结果为桥梁分析实例的选择、分析和曲线梁桥冲击系数公式的确定提供了重要的参考依据。
     3、在考虑随机桥面不平度及其速度项影响的基础上,根据d’Alembert原理推导了车辆由于加、减速阻力的影响而产生的荷载转移和制动力分配的具体表达式,并在变速行驶车辆-桥梁耦合振动分析中给予了考虑。基于前文提出的方法,采用变化的时间步长和车速,研究了制动力上升时间和车辆制动位置对制动过程中桥梁动力响应的影响,以及加速行驶车辆以不同初速度和加速度通过桥梁时对桥梁的动力响应和冲击效应的影响。结果表明了车辆变速行驶对车桥耦合振动响应有较大影响。
     4、根据大量混凝土连续曲线梁桥实例的车桥耦合振动分析结果,采用取上界包络线的方法给出了不同桥面等级下桥梁不同位置的冲击系数与圆心角和结构竖向弯曲振动基频的函数关系。统计分析结果表明,桥梁不同位置的内力、位移和支座反力的冲击系数差别很大,为此分别给出了不同关键截面的内力和位移的冲击系数计算公式。曲线梁桥冲击系数随着圆心角和竖向弯曲振动基频的增大而减小,与我国现行桥梁设计规范中所给的直线梁桥冲击系数-基频的关系恰好相反,因此采用现行规范进行跨度较大的曲线梁桥动力设计是偏于不安全的。文中给出的冲击系数公式可为曲线梁桥的动力设计和运营维护提供参考。
With the rapid development of highway construction and urban road transportation in recent years, curved beam bridges are widely used in highway viaducts, approach of long span bridges and large interchanges, most of which are concrete curved bridges. Though great progress has been made in static analysis theory of concrete curved bridges in the last years, less theoretical and experimental research was conducted on the dynamic performances. These lead to an insufficient understanding and no specific criteria are available on dynamic design on concrete curved bridges. The impact factor assessment method of curved bridge under moving vehicles mostly adopts the usages of straight beam bridges, but not enough argumentations can demonstrate the reasonability. Thus, the dynamic performance studies of concrete curved bridges have important significance on the perfection of design theories, regulation of impact factor assessment method, maintenance management and service life evaluation for concrete curved bridges. Box girder beams are commonly used in curved bridges to resist the extant coupled bending-torsional effect. This thesis focuses on the dynamic characteristics and dynamic responses due to vehicles for curved box girder bridges. The main contents are as follows:
     First, based on the shear force flexible grillage method, the triple beam model suitable for the dynamic analysis of curved bridges, in which the effects of warping stiffness and moment of inertia are both considered, is presented by improving the existing model. The model is validated by both ambient excitation test and solid model analysis. Then, based on the commercial program ANSYS, 3D beam element, mass element and spring-damper element are adopt together in building the 12 DOFs spatial vehicle model and the bridge model. A simplified numerical method is put forward for solving the coupled vehicle-bridge vibration problems, of which the effect of centrifugal force, random road roughness and its velocity term are considered comprehensively. The method is validated by comparison between the numerical simulation and dynamic loading test of a preselected bridge under vehicle at uniform velocity.
     Second, by using the former presented model and numerical method, parametric studies are conducted on dynamic responses of curved bridges under a single vehicle, in which road roughness, curvature of radius, vehicle travelling eccentricities, rigidity and damping of the tyres, damping ratio of the bridge, number of bridge spans, bearing types and the longitudinal gradient of the bridge are included. Both the dynamic responses and dynamic amplification factors are calculated and compared. Then, the influence of lateral multi-lane loading, longitudinal multi-vehicle loading, space headway and velocity are also investigated for bridges under platoon. The parametric analysis results can provide good references for the selection, analysis of engineering examples and the stipulation of impact factor formulae in the later studies.
     Third, the formulae of load transferring caused by accelerating and decelerating resistance are deduced by d’Alembert theorem and also the formulae of braking force distribution. These forces are all considered in the dynamic response analysis of bridges due to vehicle at various velocities. Based on the former presented method and taken varying time steps and velocities into account, the effects of braking rise time and braking position in braking process, as well as the effects of initial velocity and acceleration in the acceleration process are investigated on the bridge dynamic responses and impact effects. The results indicate that vehicle travelling at various speeds has great influence on bridge dynamic responses.
     Last, an extensive investigation is conducted to determine the effects of key parameters on the impact factors of continuous concrete curved bridges. Studies on correlation among impact factors and various important parameters are conducted to determine the most important ones. Based on the results, it is found that the impact factors of internal forces at various position, deflection and support reaction have great significance. The upper-bound envelop expressions of the impact factors for maximum bending moment, torsional moment, shear force, de?ection and support reaction were deduced and given in different road roughness classes as the function of central angle and the fundamental bending vibration frequency, respectively. It is found that the impact factors of curved bridges descend as the value of central angle and the fundamental bending vibration frequency ascend, which is contrary to the relationship between impact factor and the fundamental bending vibration frequency of straight beam bridges presented in the current bridge design standard (JTG D60-2004). Therefore, it may be relative unsafe for the medium to large span concrete curved bridges whose fundamental bending vibration frequencies are low while impact factors are calculated according to the current bridge design standard (JTG D60-2004). The formulae presented in the thesis can offer references for dynamic design and maintenance of concrete curved bridges.
引文
1姚玲森.曲线梁.北京:人民交通出版社.1989
    2邵容光,夏淦.混凝土弯梁桥.北京:人民交通出版社,1996
    3孙广华.曲线梁桥计算.北京:人民交通出版社,1997
    4黄剑源.薄壁结构的扭转分析.北京:中国铁道出版社.1998
    5刘柏青,张士铎.(十九)曲线桥梁(上、下).中南公路工程,1989
    6梁仲林.曲线梁桥设计中支承形式的选用.桥梁建设.2007,(增刊):7~10
    7张罗溪.弯桥结构分析中约束条件的影响.石家庄铁道学院学报.1990,3(4):7~12
    8徐光辉,胡明义.公路桥涵设计手册——梁桥(上册).北京:人民交通出版社,1996
    9 Timoshenko S, Young D.H. Vibration Problems in Engineering. New Jersey: Van Nostrand, 1955
    10 Gere J.M, Lin Y.K. Coupled Vibrations of Thin-walled Beams of Open-cross Section. Journal of Applied Mechanics. 1958, (80): 373~380
    11 Vlasov V.Z. Thin-walled Elastic Beams.Israel Program for Scientific Translations. Jerusalem, 1961
    12 Rao J.S, Carnegie W. Solution of the Equations of Motion of Coupled-bending Torsion Vibrations of Turbine Blades by the Method of Ritz-Galerkin. International Journal of Mechanical Science. 1970,(12): 875~882
    13 Mei C. Coupled Vibrations of Thin-walled Beams of Open-section Using the Finite Element Method. International Journal of Mechanical Science. 1970, 12: 883~891.
    14 Bishop RED, Price W.G.. Coupled Bending and Twisting of a Timoshenko Beam. Journal of Sound and Vibration. 1977, (50): 469~477
    15 Hallauer WL, Liu R.Y.L. Beam Bending-torsion Dynamic Stiffness Method for Calculation of Exact Vibration Modes. Journal of Sound and Vibration. 1982,(85): 105~113
    16 Friberg P.O. Coupled Vibration of Beams :an Exact Dynamic Element Stiffness Matrix. International Journal for Numerical Methods in Engineering. 1983, (19): 479~493
    17 Dokumaci E. An Exact Solution for Coupled Bending and Torsion Vibrations of Uniform Beams Having Single Cross-sectional Symmetry. Journal of Sound andVibration. 1987, (119): 443~452
    18 Bishop R.E.D, Cannon S.M, Miao S. On Coupled Bending and Torsional Vibration of Uniform Beams. Journal of Sound and Vibration. 1989, (131): 457~464
    19 Leung A.Y.T. Natural Shape Functions of a Compressed Vlasov Element. Thin-walled Structures. 1991, 11(5): 431~438
    20 Leung A.Y.T. Dynamic Stiffness Analysis of Thin-walled Structures. Thin-walled Structures. 1992, (14): 209~222
    21 Dvorkin E.N, Celentano D, et al. A Vlasov Beam Element. Computers and Structures. 1989, (33): 187~196
    22 Banerjee J.R, Williams F.W. Coupled Bending-torsional Dynamic Stiffness Matrix for Timoshenko Beam Elements. Computers and Structures. 1992, (42): 301~310
    23 Banerjee J.R, Williams F.W. Coupled Bending-torsional Dear Sir or Madam :Dynamic Stiffness Matrix of an Axially Loaded Timoshenko Beam Element. International Journal of Solids and Structures. 1994, 31:749~762
    24 Klausbruckner M.J, Pryputniewicz R.J. Theoretical and Experimental Study of Coupled Vibrations of Channel Beams. Journal of Sound and Vibration. 1995, 183: 239~252
    25 Banerjee J.R, Guo S, Howson W.P. Exact Dynamic Stiffness Matrix of a Bending-torsion Coupled Beam Including Warping. Computers and Structures. 1996, 59: 613~621.
    26 Bercin A.N, Tanaka M. Coupled Flexural-torsional Vibrations of Timoshenko Beams. Journal of Sound and Vibration. 1997, (207): 47~59
    27 Tanaka M, Bercin A.N. Free Vibration Solution for Uniform Beams of Nonsymmetrical Cross Section Using Mathematica. Computers and Structures. 1999,(71): 1~8
    28 Hashemi S.M, Richard M.J. Free Vibrational Analysis of Axially Loaded Bending-torsion Coupled Beams: a Dynamic Finite Element. Computers and Structures. 2000, (77): 711~724
    29 Ambrosini R.D, Riera J.D, Danesi R.F. A Modified Vlasov Theory for Dynamic Analysis of Thin-walled and Variable Open Section Beams. Engineering Structures. 2000, (22): 890~900
    30 Jun Li, Rongying Shen, Hongxing Hua, et al. Coupled Bending and Torsional Vibration of Axially Loaded Thin-walled Timoshenko Beams. International Journal of Mechanical Sciences. 2004,(46): 299~320
    31 Li Jun, Jin Xianding. Response of Flexure–torsion Coupled Composite Thin-walled Beams with Closed Cross-sections to Random Loads. Mechanics Research Communications. 2005, (32): 25~41
    32 Timoshenko S P, Gere J M. Theory of Elastic Stability. 2nd ed. NewYork: Mc Graw Hill Book Co. Inc, 1961
    33 C.G. Culver, D.J. Oestel. Natural Frequencies of Multispan Curved Beams. Journal of Sound and Vibration. 1969, 10(3): 380~389
    34 M. Petyt, C. C. Fleischer. Free Vibration of a Curved Beam. Journal of Sound and Vibration. 1971,18(1): 17~30
    35 M. Petyt, C.C. Fleischer. Vibration of Multi-supported Curved Beams. Journal of Sound and Vibration. 1974, 32(3): 359-365
    36 D.L. Thomas, R.R. Wilson. The Use of Straight Beam Finite Elements for Analysis of Vibrations of Curved Beams. Journal of Sound and Vibration. 1973, 26( 1): 155~158
    37 E.J. Sapountzakis, V.G.Mokos. Dynamic Analysis of 3-D Beam Elements Including Warping and Shear Deformation Effects. International Journal of Solids and Structures. 2006, (43): 6707~6726
    38 M. M. Tabba, C. J. Turkstra. Free Vibrations of Curved Box Girders. Journal of Sound and Vibration. 1977, 54( 4): 501~514
    39 M. S. Issa. Natural Frequencies of Continuous Curved Beams on Winkler-type Foundation. Journal of Sound and Vibration. 1988, 127(2): 291~301
    40 J. M. Snyder, J. F. Wilson. Free Vibrations of Continuous Horizontally Curved Beams. Journal of Sound and Vibration. 1992, 157(2): 345~355
    41 Pany C, Parthan S. Free Vibration Analysis of Multi-span Curved Beam and Circular Ring Using Periodic Structure Concept. Journal of the Institution of Engineers (India):Aerospace Engineering Journal. 2002, 83: 18~24
    42 Yang S. -Y., Sin H. -C. Curvature-based Beam Elements for the Analysis of Timoshenko and Shear-deformable Curved Beams. Journal of Sound and Vibration. 1995, 187(4): 569~584
    43 Y. AYVAZ, K. ?ZGAN. Application of Modified Vlasov Model to Free Vibration Analysis of Beams Resting on Elastic Foundations. Journal of Sound and Vibration. 2002, 255(1): 111~127
    44 Lee S Y, Hsiao J.Y. Forced In-plane Vibrations of Non-uniform Curved Beams. Journal of the Chinese Society of Mechanical Engineers, 2002, 23(2): 135~142
    45 Lee S Y, Hsiao J.Y. Free In-plane Vibrations of Curved Non-uniform Beams. Acta Mechanics. 2002,155(4): 173~189
    46 Kim M Y, Kim N I, Min B C. Analytical and Numerical Study on Spatial Free Vibration of Non-symmetric Thin-walled Curved Beams. Journal of Sound andVibration. 2002, 258(4): 595~618
    47 Nam-Il Kim, Kwang-Jin Seo, Moon-Young Kim. Free Vibration and Spatial Stability of Non-symmetric Thin-walled Curved Beams with Variable Curvatures. International Journal of Solids and Structures. 2003, 40(12): 3107~3128
    48 Kim N I, Kim M Y. Spatial Free Vibration of Shear Deformable Circular Curved Beams with Non-symmetric Thin-walled Sections. Journal of Sound and Vibration. 2004, 276(1-2): 245~271
    49 Kim N I, Kim M Y. Exact Dynamic Stiffness Matrix of Non-symmetric Thin-walled Curved Beams Subjected to Initial Axial Force. Journal of Sound and Vibration. 2005, 284(3-5): 851~878
    50 Wu J S, Chiang L.K. Free Vibration of a Circularly Curved Timoshenko Beam Normal to Its Initial Plane Using Finite Curved Beam Elements. Computers & Structures. 2004, 82(29-30): 2525~2540
    51 MARCELO T. P, VíCTOR H. C, RAUL E. R. Out-of-plane Vibrations of Shear Deformable Continuous Horizontally Curved Thin-walled Beams. Journal of Sound and Vibration. 2000, 237( 1): 101-118
    52 Ki-Young Yoon, Nam-Hoi Park, et al. Natural Frequencies of Thin-walled Curved beams. Finite Elements in Analysis and Design. 2006, 42(13): 1176~1186
    53 Chris H. Riedel, Bongsu Kang. Free Vibration of Elastically Coupled Dual-span Curved Beams. Journal of Sound and Vibration. 2006, 290(3-5): 820~838
    54唐友刚,潘永皓.薄壁结构弯扭耦合振动分析.振动工程学报,1993,6(4):399~405
    55袁向荣,刘欣.开口薄壁杆件振动的弯扭耦合效应.石家庄铁道学院学报,1994,7(4):40~43
    56黎胜,赵德有,郭昌捷.薄壁结构弯扭耦合振动计算研究.振动与冲击,2000,19(4):48~50
    57李俊,金咸定. Timoshenko薄壁梁弯扭耦合振动的动态传递矩阵法.振动与冲击,2001,20(4):57~61
    58李俊,沈荣瀛,华宏星.考虑翘曲影响的Bernoulli-Euler薄壁梁的弯扭耦合振动.机械强度,2003,25(5): 486~489
    59李鸿,韩广才,聂武.翘曲对非对称结构弯扭耦合振动的影响.哈尔滨工业大学学报,2003, 35(8): 992~995
    60马功勋,徐郁文.弯扭组合振动应变导纳的试验研究.理化检验-物理分册,2003,39(3):117~120
    61李俊,金咸定.轴向受载的Bernoulli-Euler薄壁梁固有振动和稳定性的理论研究.力学季刊,2001,22(2):264~269
    62李俊,刘见华,金咸定.轴向受载的Timoshenko薄壁梁的弯扭耦合动力响应.计算力学学报,2003,20(3):184~188
    63李俊,沈荣瀛,华宏星.非对称Bernoulli-Euler薄壁梁的弯扭耦合振动.工程力学,2004,21(4):91~96
    64舒歌群,梁兴雨.基于自重影响的连续轴扭/弯耦合振动的研究.工程力学.2005,22(2):168~172
    65刘炎海,刘凤奎.薄壁曲线箱梁的自振特性研究.兰州铁道学院学报.1997,16(2):6~11
    66杨勇,贺国京.曲线薄壁箱梁的空间受力分析.长沙铁道学院学报.2000,18(2):17~21
    67赵跃宇,康厚军,冯锐等.曲线梁的研究进展.力学进展.2006,3(2): 170~186
    68单德山,李乔.曲线弯梁桥振动分析方法.土木工程学报.2005,38(10): 61~66
    69李国豪.桥梁结构稳定与振动.第2版.北京:中国铁道出版社,2002
    70李小珍,马文彬,强士中.车桥系统耦合振动分析的数值解法.振动与冲击,2002,21(3):21~26
    71李军强,刘宏昭,何钦象,等.车——桥系统耦合振动响应的简便计算.应用力学学报,2004,21(2):66~69
    72 Yang Y B,Yau J D. Vehicle-Bridge Interaction Element for Dynamic Analysis. Journal of Structural Engineering. 1997, 123(11): 1512~1518
    73王解军,张伟.汽车荷载作用下梁桥的动力冲击效应研究.振动与冲击,2007,26(6):125~130
    74王永平,陈彦江,傅金科.单车荷载下简支梁桥的动力特性和响应的实验研究.土木工程学报.1995,28(5):39~47
    75 Leslaw Kwasniewski, Jerry Wekezer, et al. Experimental Evaluation of Dynamic Effects for a Selected Highway Bridge. Journal of Performance of Constructed Facilities. 2006, 20(3): 253~260
    76吴定俊,李奇,高丕勤.轨道不平顺速度项对车桥动力响应的影响分析.同济大学学报(自然科学版).2006,34(4):494~498
    77桂水荣,陈水生,许士强.移动荷载下简支梁桥3种车桥耦合模型研究.华东交通大学学报,2007,24(1):35~39
    78肖新标,沈火明.3种车桥耦合振动分析模型的比较研究.西南交通大学学报,2004,39(2):172~175
    79夏禾,张楠.车辆与结构动力相互作用.北京:科学出版社,2005
    80 L.T. Oehler. Vibration Susceptibilities of Various Highway Bridges Types. ASCE, 1957, 83(3): 885~894
    81 C.P. TAN, S. SHORE. Dynamic Response of a Horizontally Curved Bridge. Journal of the Structural Division, ASCE. 1968,94: 761~781.
    82 J. F. Wilson,Y. Wang,I. Threlfall. Responses of Near-optimal, Continuous Horizontally Curved Beams to Transit Loads. Journal of Sound and Vibration, 1999,222(4):565~578
    83 Henchi K, Farfad M, Dhatt G, Talbot M. Dynamic Behavior of Multi-span Beams under Moving Loads. Journal of Sound and vibration. 1997, 199(1): 33~50
    84 da Silva J.G. S. Dynamical Actions on Highway Bridge Decks Due to an Irregular Pavement Surface. The 7th International Symposium on Structural Failure and Plasticity, Australia, 2000,( 1): 103~108
    85 M.米奇克.汽车动力学.陈荫三.第二版.北京:人民交通出版社,1994
    86李清海,谭笃光.车辆荷载作用下桥梁动力效应的有限元分析.振动与冲击.1994,(1):15~22
    87谭国辉.桥梁与车辆相互作用的系统模拟.土木工程学报.1996,29(3):34~42
    88孙璐,邓学钧.速度与车辆动态特性对于车路相互作用的影响.土木工程学报.1997,30(6):34~40
    89 Dongzhou Huang, Ton-Lo Wang, M. Shahawy. Dynamic Behavior of Horizontally Curved I-girder Bridges. Computers & Structures, 1995, 57(4): 703~714
    90 Dongzhou Huang, Ton-Lo Wang, M. Shahawy. Vibration of Horizontally Curved Box Girder Bridges Due to Vehicles. Computers and Structures, 1998, 68 : 513~528
    91王元丰,J.F.Wilson.多跨连续曲线梁在移动荷载下的动力响应.土木工程学报.1999,32(4):33~36
    92 M. Ichikawa, Y. Miyakawa, A. Matsuda.Vibration Analysis of the ContinuousBeam Subjected to a Moving Mass.Journal of Sound and vibration. 2000, 30(3): 493~506
    93 J.D. Yau. Y.S. Wu, Y.B. Yang.Impact Response of Bridges with Elastic Bearings to Moving loads. Journal of Sound and vibration.2001, 248(1):9~30
    94单德山,李乔.移动荷载列作用下简支曲线梁的振动响应.铁道学报.2001,23(3):99~104
    95单德山,李乔.荷载列作用下简支曲线梁的动力响应.重庆交通学院学报.2001,20(1):6~10
    96 X. Q. Zhu. S. S. Law. Dynamic Load on Continuous Multi-lane Bridge Deck from Moving Vehicles. Journal of Sound and Vibration. 2002, 251(4):697~716
    97 S.S. Law, X.Q. Zhu. Bridge Dynamic Responses Due to Road Surface Roughness and Braking of Vehicle. Journal of Sound and Vibration. 2005, (282): 805~830
    98 Jia-Jang Wu. Dynamic Analysis of an Inclined Beam Due to Moving Loads. Journal of Sound and Vibration.2005, (288): 107~131
    99 Kamal Nazzal. An Investigation of Vibration of Horizontally Curved Bridge in Highway Feeder Ramps. A Dissertation for Doctor of Philosophy in Civil Engineering. 2004
    100 Yang Y.B, Wu C.M, Yau J.D. Dynamic Response of a Horizontally Curved Beam Subjected to Vertical and Horizontal Moving Loads. Journal of Sound and Vibration. 2001, 242 (3): 519~537
    101 Iwase T, Hirashima K. I. Dynamic Responses of Multi-span Curved Beams with Non-uniform Section Subjected to Moving Loads. Trans JSME. 2003, 69(12): 1723~1730
    102王元丰,许士杰.桥梁在车辆作用下空间动力响应的研究.中国公路学报.2003,13(4):37~41
    103王彬.城市立交桥匝道曲线梁静动载试验.长安大学学报(自然科学版).2004, 24(5):48~53
    104 Wang Y.M. The Transient Dynamics of Multiple Accelerating/Decelerating Masses Traveling on an Initially Curved Beam. Journal of Sound and Vibration. 2005, 286(1-2): 207~228
    105 Wu J S, Chiang L K. Out-of-plane Responses of a Circular Curved Timoshenko Beam due to a Moving Load. International Journal of Solids and Structures. 2003, 40: 7425~7448
    106 Sang-Youl Lee, Sung-Soon Yhim. Dynamic Behavior of Long-span Box Girder Bridges Subjected to Moving Loads: Numerical Analysis and Experimental Verification. International Journal of Solids and Structures 2005, (42): 5021~5035
    107 Khaled M. Sennah, Xuesheng Zhang, John B. Kennedy. Impact Factors for Horizontally Curved Composite Box Girder Bridges. J. Bridge Engrg. 2004, (9): 512~520
    108 Magdy Samaan, John B. Kennedy, Khaled Sennah. Impact Factors for Curved Continuous Composite Multiple-Box Girder Bridges. J. Bridge Engrg. 2007, (12): 80~88
    109 J. Senthilvasan, D.P. Thambiratnam, G.H. Brameld. Dynamic Response of a Curved Bridge under Moving Truck Load. Engineering Structures. 2002, (24): 1283~1293
    110沈火明.移动荷载作用下桥梁的振动理论及非线性研究.西南交通大学博士学位论文.2005:45~49
    111单德山,李乔.曲率半径对曲线连续梁桥车桥耦合振动的影响.桥梁建设.2004,(6):1~4
    112李忠献,陈锋.曲线箱梁桥的车桥相互作用分析.工程力学.2007,24(11):93~99
    113 ISO 8608. Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data. 1995
    114张庆,史家钧,胡振东.车辆——桥梁耦合作用分析.力学季刊.2003,24(4):577~584
    115 M. Majka, M. Hartnett. Effects of speed, load and damping on the dynamic response of railway bridges and vehicles. Computers and Structures. 2008, (86): 556~572
    116交通部.公路桥涵设计通用规范(JTG D60-2004).北京:人民交通出版社.2004
    117建设部.城市桥梁设计荷载标准(CJJ77-98).北京:中国建筑工业出版社.1998
    118 [日]小西一郎.钢桥-第六分册.戴振藩.北京:中国铁道出版社,1981:127~130
    119周勇军,赵小星,宋一凡,贺拴海.连续梁桥模态分析与试验.长安大学学报(自然科学版).2007,27(3): 57~60
    120何波,郭小川,朱宏平,李俊.大跨薄壁墩连续刚构桥动力特性研究.世界桥梁.2004,4:40~43
    121卢彭真,张俊平等.基于梁格理论的人字形桥梁动力特性分析.西北地震学报.2006,28(1):31~35
    122韩大建,苏成,王乐文,谭学民.香港汀九大桥动力特性研究.华南理工大学学报.1999,27(1):29~35
    123夏樟华,宗周红.三跨斜交T梁动力特性分析.振动与冲击.2007,26(4):147~151
    124王林,项贻强,等.连续箱梁桥静动力特性及试验研究.公路交通科技.2005,22(2):67~71.
    125 Ren Wei-xin, Zong Zhou-hong. Experimental Modal Parameter Identification of Civil Engineering Structures. International Journal of Structure Engineering and Mechanics. 2004, 17(3-4): 429~444
    126王元汉.有限元法基础与程序设计.广州:华南理工大学出版社,2000
    127 R.W.克拉夫,J.彭津.结构动力学.王光远.北京:科学出版社,1983
    128魏双科,李鸿晶,罗寒松,等.立交桥曲线箱梁动力分析模型.地震工程与工程振动.2006,26(4):168~174
    129 T.J Memory, D.P Thambiratnam, G.H Brameld. Free Vibration Analysis of Bridges. Engineering Structures. 1995, 17(10): 705~713
    130 [英]E.C汉勃利.桥梁上部构造性能.郭文辉.北京:人民交通出版社, 1982
    131袁建力,樊华,陈汉斌,等.虎丘塔动力特性的试验研究.工程力学.2005,22(5):158~164
    132李国强,李杰.工程结构动力检测理论与应用.北京:科学出版社,2002
    133应怀樵,刘进明.DASP-Data Auto Sample and Process System.北京:中国东方振动和噪声研究所,1996
    134刘振学,黄仁和,田爱民.实验设计与数据处理.北京:化学工业出版社,2005
    135金良超.正交设计与多指标分析.北京:中国铁道出版社,1988
    136 [英]Dave Crolla,喻凡.车辆动力学及其控制.北京:人民交通出版社.2004
    137 Chul Woo Kim, Mitsuo Kawatani, Ki Bong Kim. Three-dimensional Dynamic Analysis for Bridge–vehicle Interaction with Roadway Roughness. Computers and Structures, 2005, (83): 1627~1645
    138 Qi-Lin Zhang, A. Vrouwenvelder, J. Wardenier. Dynamic Amplification Factorsand EUDL of Bridges under Random Traffic ?ows. Engineering Structures, 2001, (23): 663~672
    139严志刚.大跨度中承式钢管混凝土拱桥车辆荷载作用下的动力分析.哈尔滨工业大学博士学位论文.2003:68~94
    140 [日]高岛春生.曲线梁桥.张德礼.北京;中国建筑工业出版社,1979
    141郭忆,叶见曙,万红燕.预应力混凝土箱梁偏载系数试验研究.黑龙江工程学院学报.2002,16(4):14~16
    142王勇,刘永健,唐小方.混凝土连续箱梁偏载系数简化算法研究.长沙交通学院学报.2006,22(3):35~39
    143赵发章,王解军.阻尼对行车荷载下大跨桥梁振动的影响.冰川冻土,2004,26(4):461~465
    144《南浦大桥》编委会.南浦大桥.同济大学出版社.1993
    145罗霞,杜进有,霍娅敏.车头间距分布规律的研究.西南交通大学学报. 2001,36(2):113~116
    146 G. T. Michaltsos. Dynamic Behaviour of a Single-span Beam Subjected to Loads Moving with Variable Speeds. Journal of Sound and Vibration. 2002, 258(2): 359~372
    147陈上有,夏禾,战家旺,等.变速移动荷载作用下简支梁的动力响应分析.中国铁道科学.2007,28(6):41~46
    148彭献,刘子建,洪家旺.匀变速移动质量与简支梁耦合系统的振动分析.工程力学.2006,23(6): 106~110
    149彭献,殷新锋,方志.变速车辆与路面不平弹性支撑桥梁的耦合振动分析.振动与冲击.2007,26(5):19~24
    150钟阳,周福霖,张永山.变速移动荷载作用下的弹性地基板的动力反应分析.振动与冲击.2008,27(1):61~65
    151 Thomas D. Gillespie.车辆动力学基础.赵六奇,金达锋.北京:清华大学出版社,2006
    152代汝泉.汽车运行性能.北京:国防工业出版社,2003
    153吴际璋等.汽车构造(下册).北京:人民交通出版社,2001
    154 R.K. Gupta, R.W. Traill-Nash. Vehicle braking on highway bridges. Journal of Engineering Mechanics. 1980, 106 (4): 641~658
    155鲍卫刚,张海龙,刘菊玖.关于桥梁所承受的冲击力计算方法的研究.桥梁建设.2000,(1):24~26
    156宋一凡,贺拴海.公路桥梁冲击系数的影响因素分析.西安公路交通大学学报.2001,21(2):47~49
    157盛国刚,彭献,李传习.连续梁桥与车辆耦合振动系统冲击系数的研究.桥梁建设,2003,(6):5~7
    158马祥骏,任晓刚,李建生.互通立交中的桥梁设计.华东公路.2006,(4):14~19
    159《公路桥梁抗风设计指南》编写组.公路桥梁抗风设计指南.人民交通出版社.1996
    160杨少伟.道路立体交叉规划与设计.北京:人民交通出版社.2000
    161黄剑源,张哲,杨子江.上海一座多联曲线高架桥的分析.宁波大学学报.1988,1(1):334~349
    162彭荣.曲梁独柱支承预设偏心研究.交通与计算机.2007,25(4):118
    163彭大文,林希鹤.预应力连续弯箱梁的支座反力研究.福州大学学报(自然科学版).1998,26(6):63~68
    164彭大文,王忠.连续弯箱梁剪滞效应分析和实用计算法研究.中国公路学报.1998,11(3):41~49
    165张华新.顶推法施工的连续弯桥的设计施工.中国公路学会桥梁和结构工程学会等.桥梁学术讨论会论文集.1991
    166 American Association of State Highway and Transportation Officials (AASHTO). Guide specifications for horizontally curved highway bridges, AASHTO, Washington, D.C. 1993
    167 Akoussah, K. E., Fafard, M., Talbot, M., et al. Parametric study of dynamic load amplification factor for simply-supported reinforced concrete bridges. Can. J. Civ. Eng. 1997, 24(2):313~322
    168 OHBDC. Ontario highway bridge design code, Downsview, Ontario, Canada. 1983
    169 OHBDC. Ontario highway bridge design code, Downsview, Ontario, Canada. 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700